Hardware Installation

\square 1 Introduction
\square 2 Chassis
3 Power units
\square 4 Central units
5 CNC axis modules6 Positioning modules
\square 7 Digital I/O modules8 Analog I/O modules9 Communication modules10 Operating panels11 Connectings

1. Introduction
1.1 Composition of the modules 1-2
1.2 Technical data of the modules 1-6

1.1 Composition of the modules

Module \begin{tabular}{lll}
Short

name

\quad Art. no.

Description

in paragraph
\end{tabular}

Chassis

Chassis 1 slot with double connector plug (for PLC CPU)		083579	2
Chassis 1 slot		083580	2
Chassis 2 slots	083581	2	
Chassis 4 slots		083582	2
Chassis 8 slots		083583	2
Buffer battery	PB	083678	2
Bus terminal	BA	083679	2
Cover trim for empty slot		084102	2
Potential neutralization	KOP	083920	2
Coupling mudules	084036	2	

Power units

Power unit 4 A
 Power unit 8 A

NG4 083314
3
Power unit 16 A
Power unit 24 A
NG8 083547
NG16 083548
NG24 084242 3

Central units

CNC	32Bit ETH Standard version	CNC	085003	4
CNC E	32Bit ETH Export version	CNC E	085008	4
CNC	64Bit ETH Standard version	CNC	085004	4
CNC E	64Bit ETH Export version	CNC E	086004	4
CNC	32Bit Standard version			
CNC E	32Bit Version with reduced function range	CNC	083671	4
CNC	64Bit Standard version	CNC	088671	4
				4
PLC	16k commands	PLC	084564	
PLC	64 k commands	PLC	08444	4
CEA	16 inputs, 8 outputs, power unit 4 A	CEA	083543	4

1.1 Composition of the modules (continued)

Module

Short name

Art. no. Description in paragraph

Peripheral interface adapter

Slot for operating panel Slot for operating panel Slot for operating panel Slot for operating panel

TTY - 20mA 083589 4
RS232-V24 083897 4
$\begin{array}{lll}\text { RS422 } & 084589 & 4\end{array}$
RS422/485 084539 4

Axial modules

1 axis, analog, passive, incremental
2 axes, analog, passive, incremental
4 axes, analog, passive, incremental
2 axes, analog, passive, absolute, SSI
4 axes, analog, passive, absolute, SSI
8 axes, digital, passive
3 axes, passive, step-motor module

AAZ1	083637	5
AAZ2	083705	5
AAZ4	083549	5
AZA2	083937	5
AZA4	083936	5
SERC	084544	5
ASM3	084079	5

POS modules

3 axes, standard design, analog, incremental	POS	083545	6
3 axes, high-performance design, analog, incremental	POS	083672	6
3 axes, standard design, analog, SSI			
3 axes, high-performance design, analog, SSI	POA	083673	6
3 axes, 1 spindle, standard design, digital		083674	6
3 axes, 1 spindle, high-performance design, digital	POD	083546	6
3 axes, standard design, step-motor module	SMM	083675	6
3 axes, high-performance design, step-motor module	SMM	083676	6

1.1 Composition of the modules (continued)

Module

Short name

Art. no. Description in paragraph

Digital input/output modules

Input/output module, 16 inputs, 16 outputs (0.5A)	AEK	083950	7
Input/output module, 16 inputs, 16 outputs (0.5A), fast	SEA	084126	7
Input module, 32 inputs	EK	083946	7
Output module, 32 outputs (0.5A)	AK	083942	7
Output module, 16 outputs (2A) AK2	083541	7	
Relay module, 16 outputs	AKR	083540	7

Analog input/output modules

Digital-analog converter, twofold	DAW2	083706	8
Digital-analog converter, fourfold	DAW4	083736	8
Analog-digital converter, fourfold			8

Communication modules

Module for user specific records	COM	083708	9
Module for active EtherNet connection, SINEC H1 RJ45	ETH	084185	9
Module for active EtherNet connection, universal	ETH	084309	9
Module for AS interface with 1 master	AS-I	084187	9
Module for AS interface with 2 masters	AS-12	084425	9
CAN applications	CAN	084489	9

1.1 Composition of the modules (continued)

Module
 Operating panels CNC

Short name

Art. no. Description in paragraph

| CNC with color LC display and Touch screen 6,5" | 085002 | 10 |
| :--- | :--- | :--- | :--- |

CNC with color LC display and Touch screen 10" machine operating panel

CNC with color LC display and Touch screen 10" and integrated industrial PC
machine operating panel

CNC with color LC display and Touch screen 15 " and integrated industrial PC
machine operating panel

Operating device with color LC display
CNC 900

CNC900C
10
Operating device with color LC display and integrated industrial PC

800069
10

Operating panels RC

RC with color LC display and Touch screen 6,5" $\begin{array}{llll}\text { version standard } & R C 910 & 085001 & 10\end{array}$ version with handwheel RC $910 \quad 08500510$ version with joystick RC $910 \quad 085006$

1.2 Technical data of the modules

Chassis
Having 1, 2, 4 and slots for plugging in the modules.
The chassis can be combined optionally by means of plug-in connections.

Power units

NG4
$+5 \mathrm{~V} / 4 \mathrm{~A}$ and $\pm 15 \mathrm{~V} / 0.2 \mathrm{~A}$
NG 8
$+5 \mathrm{~V} / 8 \mathrm{~A}$ and $\pm 15 \mathrm{~V} / 0.5 \mathrm{~A}$
NG 16
$+5 \mathrm{~V} / 16 \mathrm{~A}$ and $\pm 15 \mathrm{~V} / 1.0 \mathrm{~A}$
NG 24
$+5 \mathrm{~V} / 24 \mathrm{~A}$ and $\pm 15 \mathrm{~V} / 1.5 \mathrm{~A}$

Central units

CNC	32Bit ETH CNC E	CPU for all CNC Functions and integrated PLC Functions,
		32Bit ETH Flag memory 1,5MB for NC programs and parameters, Channels 4, axes 16, Parameter 30,000, Chassis with 1 slot (art. No. 083580)
CNC	64Bit ETH	CPU for all CNC Functions and integrated PLC Functions,
CNC E 64Bit ETH	User memory 3MB for NC programs and parameters, Flag memory 60kB, parameter 60,000,	
	Channels 8, axes 32, Chassis with 1 slot (art. No. 083580)	

CNC (32Bit)
CNC E (32Bit)

CNC (64Bit)

CPU for complex CNC tasks as well as optionally for integrated PLC tasks, User memory of $1,5 \mathrm{MB}$ for NC programs and parameters, Flag memory 60 kB , parameter 30,000 ,
CNC: Channels 4, axes 16,
CNC E: Channels 2, axes 8,
Chassis with 1 slot, art. No. 083580
CPU for complex CNC tasks as well as optionally for integrated PLC tasks, User memory of 3MB for NC programs and parameters,
Flag memory 60 kB , parameter 60,000,
Channels 8, axes 32,
Chassis with 2 slots, art. No. 083581

1.2 Technical data of the modules (continued)

Central units

PLC (16k/64k) CPU for the whole of PLC tasks as well as for NC tasks by means of POS modules, flag memory of 60 kB , program memory for $16 \mathrm{k} / 64 \mathrm{k}$ of instructions, Chassis with 1 slot with double connector, art. no. 083579

CEA CPU for inferior PLC tasks as well as for NC tasks by means of POS modules, flag memory of 60 kB , program memory for 16 k of instructions, 16 inputs, 8 outputs (0.5 A), integrated power unit for $+5 \mathrm{~V} / 4 \mathrm{~A}$ and $\pm 15 \mathrm{~V} / 0.2 \mathrm{~A}$, chassis with $1,2,4$ or slots, each time at the 1 st slot.

Axial modules

AAZ1 Passive axial module for 1 analogly selected axis, incremental
AAZ2 Passive axial module for 2 analogly selected axes, incremental
AAZ4 Passive axial module for 4 analogly selected axes, incremental
AZA2 Passive axial module for 2 analogly selected axes, absolute
AZA4 Passive axial module for 4 analogly selected axes, absolute
SERC Passive axial module for 8 digitally selected axes
ASM for 3 step motors

POS modules

Standard design CPU for autonomous interpolation and positioning adjustment
High-performance design CPU with co-procesor for autonomous interpolation and positioning adjustment, tool offset compensation and parametric computation

POS for 3 analogly selected axes by means of incremental measuring systems
POA for 3 analogly selected axes by means of absolute measuring systems SSI
SMM for 3 step motors

1.2 Technical data of the modules (continued)

Digital input / output modules

EK 32 inputs

AEK	16 inputs, 16 outputs $(0.5 \mathrm{~A})$ input delay approx. 3 ms
SEA	16 inputs, 16 outputs $(0.5 \mathrm{~A})$ input delay approx. $0,15 \mathrm{~ms}$
AK	32 outputs $(0.5 \mathrm{~A})$
AK2	16 outputs (2A)
AKR	16 outputs

Analog input / output modules

DAW2 with 2 analog outputs
DAW4 with 4 analog outputs
ADW4 with 4 differential inputs for the digitization of an analog voltage

Communication modules

COM	Module for user specific records for connecting bar code readers, for particular serial coupling arrangements etc.
ETH	Module for active EtherNet connection
AS-1	Module for AS interface with 1 master AS-I2
Module for AS interface with 2 masters	

1.2 Technical data of the modules (continued)

Operating panels RC

RC 910 Standard design and version with handwheel as well as with joystick, Color LCD (TFT), VGA Graphic (640×480), 6.5", 256 off 4096 colours, Touch screen with resolution 1024×1024.
Run-time memory DRAM with 16 MB ,
Flash disk memory with 8MB for operating system and control surface. 42 function keys, of it 10 freely shapable, PLC keys with display on LCD Display.

Emergency stop switch, key-operated switsch, Override Potentiometer.
1 EtherNet interface RJ45, 1 serial interface (V24 / RS422).

Operating panels CNC

CNC 910 Standard design
Color LCD (TFT), VGA Graphic (640×480), 6.5", 256 off 4096 colours, Touch screen with resolution 1024×1024.
Run-time memory DRAM with 16 MB ,
Flash disk memory with 8MB for operating system and control surface.
42 function keys, of it 15 freely shapable, PLC keys with display on LCD Display.

Emergency stop switch, key-operated switsch, Override Potentiometer.
1 EtherNet interface RJ45, 1 serial interface (V24 / RS422).

CNC 920 Standard design
Color LCD (TFT), VGA Graphic (640 x 480), 10.4", 256 off 4096 colours, Touch screen with resolution 1024×1024.
Run-time memory DRAM with 16 MB ,
Flash disk memory with 8MB for operating system and control surface. 42 function keys, of it 15 freely shapable, PLC keys with display on LCD Display. 1 EtherNet interface RJ45, 1 serial interface (V24 / RS422).

Separate machine operating panel Emergency stop switch, key-operated switsch, Override Potentiometer, illuminated push button.

1.2 Technical data of the modules (continued)

Operating panels CNC

CNC $930 \quad$ Operating panels in two versions
CNC 930/10 LCD-Bildschirm TFT 10"
Resolution / colours $640 \times 480 / 16$ Bit
Touch screen resolution 1024×1024
CNC 930/15 LCD-Bildschirm TFT 15"
Resolution / colours 1024×768 /16Bit
Touch screen resolution 1024×1024

Processor CPU Pentium compatibly	1 GHz
Memory	RAM memory
	Hard disk

42 function keys, of it 15 freely shapable PLC Keys with display on the LCD Display

1 Ethernet 10/100 Mbit, 1 serial interface, 4 USB
1 PS/2 mouse / keyboard Potentiometer / handwheel / key-operated switsch SVGA monitor

Machine operating panel separately 1 emergency stop, 1 key-operated switsch with CNC 930/10, 2 key-operated switsches with CNC 930/15, 2 potentiometers, 1 illuminated push button

1.2 Technical data of the modules (continued)

Operating panels CNC

CNC $900 \quad$ Wide Color LCD (TFT), VGA Graphic (640×480),
Function keys, cursor keys and numeric key block, Separate ones keys for the axis selection and keys for machine functions, Peripheral device interface, connection for handbedienteil TP,

2 potentiometers and emergency-stop keys, Front version in protective system IP65, Supply voltages 24 V DC or 22 V AC

CNC 900C Wide Color LCD (TFT), VGA Graphic (640×480),
CPU Pentium compatibly, RAM Saving 8MB,
Hard disk 1GB, floppy disk drive 3.5 ",
Function keys, cursor keys and numeric key block, ASCII foil keyboard, Separate ones keys for axis selection and keys for machine functions, Peripheral device interface, connection for handbedienteil TP,

1 parallel and 2 serial interfaces,
2 free slots,
2 potentiometers and emergency-stop keys, Front version in protective system IP65, Supply voltages 24 V DC or 22V AC Option: Power pack for no-break current supply.

Use of marketable software, Free organization of control surfaces, Integration of customer know-how, Application of CAD software, Workshop-oriented programming (WOP), Integration of expert systems.

2. Chassis

2.1 General data 2-2
2.2

Chassis mounting 2-3
2.3 Chassis measurement 2-5
$\begin{array}{ll}2.4 & \text { BUS terminal and buffer battery }\end{array}$
2.5 Addressing of the chassis slots $2-11$
2.6 BUS system 2-13
$\begin{array}{ll}2.7 & \text { Incasing the modules }\end{array}$
2.8 Coupling module KOP $\quad 2$-15

2.1 General data

Configuration

The chassis have 1, 2, 4 and 8 slots for the accommodation of the modules.
The individual chassis can be put next to each other. Thus actual the BUS connection simply and fast manufactured. If the chassis must be arranged off space reasons among themselves, the BUS is connected with the ouple module KOP and a cable.

A CPU can address max. 32 EA slots. Those are 4 chassis with 8 slots each. So that with large EA requirement no addressing gaps result, those sollten of eight chassis together to be first always put. At the end (on the right) can follow then on more êr or on èr chassis.

Empty slots can be plugged to the protection with a shrouded-type panel.
The modules are located with 2 knurled screws in the chassis. Thus both a good bonding in the bus plug and the optimal contact of the cable screens are achieved.

Location

The chassis can be installed separately from the machine or be built in in the control cabinet of the machine. To pay attention with the installation actual to good heat dissipation (avoidance of warming esters). Devices, which emit much heat in the operation, are to be arranged above the chassis.

Environment conditions

Operating temperature $\quad 0$ to $+50^{\circ} \mathrm{C}$
Storage temperature $\quad-10$ to $+60^{\circ} \mathrm{C}$
Dampness $\quad 10 \%$ to 90%, non-condensing

2.2 Chassis mounting

Installation of chassis

The chassis are attached together on two mounting rails DIN EN 60715, TS35x15 steel (before times DIN EN 50022). The rails are in the distance (light measure) by 190 mm , as in the dimensional drawings given to install on the mounting plate in the switchgear cabinet. To pay attention in the indicated distance actual to a fixed adjustment of the rails.

Usually becomes with the mounting of the left Chassis started.

The chassis becomes into the upper DIN rail from above coming easily diagonally hung up and then against the lower rail to Prefab wall swivelled.

With a Philips bolt one shifts turners in the area the lower DIN rail present Locking screw approx. 5 mm upward and it turns also 1 rotation to the right fixed.

Note: The Philips bolt before do not turn on to the left. Thus the default became ineffectivy and to problems the mounting lead.

2.2 Chassis mounting

Installation of chassis

When the assembling of a further chassis this becomes on the right in the distance from 2 cm hung up and afterwards to the left shifted up to locking the plug-in connection. The protection becomes then over the locking screw how with the 1 . Chassis made.
In this way all further chassis are mounted.
Absolutely actual on the justified connection of the particulars To note chassis.

The back-up battery becomes into the left bus plug of the 1. Chassis and the bus termination into the right plug the final chassis plugged in and attaches.

With one or more ground bars (Article No. 083920) become those Chassis connected and to protective grounding the control cabinet connected (see paragraph Safety precautions).

Further mechanical strength arises as a result of that Attach from fixing clips (Article No. 800117) at the bottom that individual chassis.

Expansion of chassis

The backwall screw with a screwdriver if turners screw around approx. 1 rotation to the left turn, until on resistor noticeable becomes.

Then downwards and presses the chassis presses shift to the right laterally.

And pulls forward the chassis forward pulls release upward.

2.3 Chassis measurement

Chassis with 1 slot

Depth of 186.5 (without modules)

2.3 Chassis measurement

Chassis with 2 slots

Depth of 186.5 (without modules)

2.3 Chassis measurement

Chassis with 4 slots

Depth of 186.5 (without modules)

2.3 Chassis measurement

Chassis with 8 slots

Depth of 186.5 (without modules)

2.3 Chassis measurement

Chassis, side view

2.4 BUS terminal and buffer battery

2.5 Addressing of the chassis slots

The individual chassis can by plugging together together to be gereiht.
So that with the E/A slots no addressing gaps result, those sollten of eight chassis to be first always used. At the end (on the right) can follow then on more êr or on èr chassis.

Examples of chassis combinations without addressing gaps with the I/O slots.

A.1.1.1

A1.1.1

2.5 Addressing of the chassis slots

Examples of chassis combinations with addressing gaps with the I/O slots.

2.6 BUS system

The I/O BUS is the connecting element of all modules. This parallel bus is located within the address range of the selecting CPU module. The CPU selects the bus with a very high transmission rate resulting in a high system speed.

The following routes are available in the BUS systems:

1. Data BUS: Data lines D[0...31]
2. Address BUS: Address lines A[0...10] (address range of 2 k)
3. Control BUS: Control signals for various bus cycles

Control BUS:

- SYSCLK Processor clock
- AS* Address strobe
- DRDY* Data ready
- MXS* Memory transactions start
- RD* Read strobe
- RT* Read transaction
- WR* Write strobe
- INT*[0...3] Interrupt inputs
- RESET Reset signal
- PWRGD Power-good signal from the power unit
- SYNC* Synchronizes the take-over of count of several modules

The following operating voltages are available:
$+5 \mathrm{~V}$
$+15 \mathrm{~V}$
-15V
+3.6 V battery voltage for RAM buffering
For regulating the +5 V operating voltage, there is available a detector line ($\mathrm{U}_{\text {detect }}$) on the BUS which is connected to +5 V in the last chassis by plugging in the BUS terminal in order to guarantee levelling the voltage exactly at the most remote slot, too. All of the above voltages have a common ground contact!

2.7 Incasing the modules

Upon operating the modules, it has to be taken care that the two knurled screws for fixing the modules in the chassis are tightened. By fixing the modules it is guaranteed that the contact in the bus plug connection as well as the contact of the cable screening with the housing are optimal.

Connecting the modules

As a matter of principle, the following installation instructions have to be taken into consideration.
The lines of the measuring system and of the scheduled values are to be connected to the corresponding inputs resp. outputs by means of screened cables. The screenings should be skinned at both cable ends.

2.8 Coupling module KOP

Coupling of groups of chassis

with the ouple module KOP

Connections and display

Allocation 9pol. CD-Sub-socket input and output
Pin 1 screen
Pin 2 TXD+
Pin 3 TXD
Pin 4 freely
Pin 5 GND
Pin 6 VCC
Pin 7 RXD
Pin 8 RXD+
Pin 9 MSR

ST light emitting diode for status indication

displays the program and hardware status

- lamp on
- lamp off
- lamp flashes
flash frequency $1 / 10$ s

Everything in order
CPU defectively, no voltage or lamp defectively
System error
Hardware errors (module or connection failed)

2.8 Coupling module KOP (continued)

Coupling of chassis groups

The chassis groups are composed of individual chassis which are plugged together under normal conditions. Consequently, the BUS connection is realized simply and quickly.

In case the chassis cannot be mounted side by side, the BUS connection has to be realized by means of the coupling module (having an integrated power unit) and the connection cable (art. no. 084077).

The chassis groups are divided into basic chassis and additional chassis. The basic chassis group contains the power unit, the central unit and the slots for the axial modules resp. the POS modules. The groups of the additional chassis consist of the coupling module and the slots for the I/O modules. The power supply is hereby performed by means of the integrated power unit of the coupling module.

The coupling module can be operated both in an 8 -chassis and a separate 1 -chassis. If there is used a separate chassis for the coupling module, all of the slots of the 8 -chassis are available for I/ O modules.

Notice:

The power supplies of the basic chassis and the additional chassis must always be switched on simultaneously !

Example 1:

A chassis group consisting of 4×8-chassis arranged in 1 group side by side.

Chassis group with power unit and central unit as well as slots for 8 axial modules or 8 POS modules and 24 I/O modules

2.8 Coupling module KOP (continued)

Example 2:
A chassis group consisting of 4×8-chassis arranged in 2 groups one under the other.

Basic chassis group
with power unit
and central unit
as well as slots for 8 axial modules or 8 POS modules
and $8 \mathrm{I} / \mathrm{O}$ modules

Group of additional chassis
with coupling module
and slots
for 16 I/O modules

2.8 Coupling module KOP (continued)

Example 3:
A chassis group consisting of 4×8-chassis arranged in 4 groups one under the other.

2.8 Coupling module KOP (continued)

Connecting cable

There is available a ready-made cable of a length of 0.7 m , art. No. 084077 , for connecting the individual chassis groups

Starting addresses of the groups of additional chassis

The function block KOPL serves for defining the starting addresses of the additional chassis.

KOPL
-S 1
S 2
S 3

$9 \quad 9$ Starting address of 1st additional chassis
$17 \quad 17$ Starting address of 2nd additional chassis
2525 Starting address of 3rd additional chassis

2.8 Coupling module KOP (continued)

KOP power unit

Input values

Input voltage	UI	$24 \mathrm{~V}=$ admissible range of 22 V to 35 V Three-phase bridge connection max. ripple $3 \mathrm{~V}_{\text {ss }}$
max. rise time from 0 V to $24 \mathrm{~V}: 60 \mathrm{~ms}$		
Input current	II	1.5 A for UI $24 \mathrm{~V}=$ and a load of 4 A for 5 V , of 0.2 A for $\pm 15 \mathrm{~V}$

Output values

Output voltage
Output current
UO_{+5}
IO_{+5}

$$
\mathrm{UO}_{+15}
$$

$+15 \mathrm{~V}$
Output voltage
$1 \mathrm{O}_{+15}$
UO_{-15}
Output voltage
IO-15
$+5 \mathrm{~V}$

Output current

Output current

4A for convective aeration permanently short circuit proof
-15V
0.2A
permanently short circuit proof
0.2A
permanently short circuit proof

The total load for +5 V and $\pm 15 \mathrm{~V}$ must not exceed 25 W . The load for each individual configuration of devices can be ascertained resp. verified with the tables 'Current consumption of the modules' on the pages 3-11 and 3-12.

2.8 Coupling module KOP (continued)

Block diagram

$\triangle \square$	$\begin{aligned} & \text { CPU } \\ & \text { 16Bit } \end{aligned}$	$\begin{aligned} & \text { SRAM } \\ & 128 \mathrm{kB} \times 16 \end{aligned}$	
\downarrow			Power unit Input: $+24 \mathrm{~V}$
I/ O-BUS	Serial input output	Boot-BS EPROM 64kB x 16	Output: $+5 \mathrm{~V} / 4 \mathrm{~A}$

3. Power units

3.1 Power pack NG8 3-2
3.2 Power pack NG16 3-4
3.3 Safety functions starting from index J 3-6
3.4 Diagnostic functions starting from index J 3-8
3.5 Selection of the power pack \quad 3-11

3.1 Power unit NG8

The power pack NG8 supplies to the operation the modules required voltages.

The NG8 requires on chassis also 1 slot (art. No. 083580).

3.1 Power unit NG8 (continuation)

The power pack actual as galvanically separate DC DC converter executed. The primary input 0 V does not have an internal galvanic connection with the secondary output GND.
The input voltage UE always refers to 0 V , the output voltages UA and the NA signal to GND.

Inputs

Input voltage	UE	$24 V_{D C}$ admissible area $22 V_{D C}$ to $35 V_{D C}$ three-phase bridge, max. ripples 3 V		
Input current			\quad IE \quad	max. rise time of 0 V on $24 \mathrm{~V}: 60 \mathrm{~ms}$
:---				
4 A with $\mathrm{UE} 24 \mathrm{~V}_{\mathrm{DC}}$				
and a load with 5 V of 8 A and with $\pm 15 \mathrm{~V}$ of $0,5 \mathrm{~A}$				

Outputs

Output voltage	$U A+5$	+5,1V, $\pm 2 \%$	
Output current	$1 A+5$	8A,	durable short-circuit proof (switching off)
Output voltage	$U A+15$	+15V, $\pm 3 \%$	
Output current	$1 \mathrm{~A}+15$	0,5A,	durable short-circuit proof (switching off)
Output voltage	UA -15	-15V, $\pm 3 \%$	
Output current	IA -15	0,5A,	durable short-circuit proof (switching off)

3.2 Power unit NG16

The power pack NG16 supplies to the operation the modules required voltages.

The NG16 requires on chassis also 2 slots (art. No. 083581).

3.2 Power pack NG16 (continuation)

The power pack actual as galvanically separate DC DC converter executed. The primary input 0 V does not have an internal galvanic connection with the secondary output GND.
The input voltage UE always refers to 0 V , the output voltages UA and the NA signal to GND.

Inputs

Input voltage	UE	$24 V_{D C}$ admissible area $22 V_{D C}$ to $35 V_{D C}$ three-phase bridge, max. ripples $3 V_{\text {s }}$
Input current	IE	max. rise time of 0 V on $24 \mathrm{~V}: 60 \mathrm{~ms}$ 8 A with UE $24 \mathrm{~V}_{\mathrm{DC}}$ and a load with 5 V of 16 A and with $\pm 15 \mathrm{~V}$ of 1 A

Outputs

Output voltage	$U A+5$	+5,1V, $\pm 2 \%$	
Output current	$1 \mathrm{~A}+5$	16A,	durable short-circuit proof (switching off)
Output voltage	$U A+15$	+15V, $\pm 3 \%$	
Output current	$1 \mathrm{~A}+15$	1A,	durable short-circuit proof (switching off)
Output voltage	UA -15	-15V, $\pm 3 \%$	
Output current	IA -15	1A,	durable short-circuit proof (switching off)

3.3 Security features for NG8 / NG16 from index J

Overtemperature protection

The power unit is provided with a temperature sensor, which to me the heat sink temperature is measured and can be switched on when required, the internal mini fan. The unit runs up to a temperature of $60^{\circ} \mathrm{C}$ without fan support. At temperatures above $60^{\circ} \mathrm{C}$, the internal fans are switched on. Should rise by a lack of ventilation or excessive ambient temperature, the internal temperature to $90^{\circ} \mathrm{C}$, the unit switches off.
There are tensions and set off all the signal to L-NA.
At the same error code is returned seventh. This state is maintained even when the temperature is again dropped in the meantime. A reset of the error message is only possible by turning off the set.

Over Voltage protection

The power supply detects voltages that exceed the maximum input voltage of 35 V .
For overvoltage, all output voltages and set off the signal to L-NA, the same error code 8 is issued. This condition can only be reset by switching off the unit, even if the over Voltage in the meantime has fallen again.
If the voltage rises to more than 40 V , it can blow the internal protection diode and the input fuse. In this case, the adapter needs to be returned for repair to BWO. If the supplying external power supply in the event a short circuit current of $>9 \mathrm{~A}$ in NG8 or $>12 \mathrm{~A}$ in NG16 can provide, the internal input fuse may not solve and can lead to severe fire damage inside the power supply.

Short circuit shutdown

All output voltages are short circuit proof. For short duration> 1 s the corresponding output is switched off. To restart the power supply again after a short circuit, the operating voltage must be switched off. It has long been waiting to be switched on again until all LEDs are extinguished completely at least 2 s .
Will be switched on again is not guaranteed that all monitoring circuits are reset. Can the power supply does not turn on despite adequate reset time, so there is an error.

Combination of the output voltages

The +5 V voltage is the leading power and is first launched.
Then $\pm 15 \mathrm{~V}$ can be connected. The +15 V and -15 V are interrelated and can only appear together. The failure of a 15 V voltage, the respective inverse voltage is also switched off.
With the failure of the $+5 \mathrm{~V}, \pm 15 \mathrm{~V}$ voltage is switched off.

3.3 Security features for NG8 / NG16 from index J (continuation)

Sensor line

The power unit is provided with a sensor line input. This input controls from the voltage drop, which can exist at high currents on the 5 V line to the modules.
Ensure that the scheme is working properly, the sensor cable must be connected to the chassis on the last +5 V line. This connection is made via the bus terminator (083 679).
Without the bus terminator to the network device may not work properly and it will shut down all voltages, simultaneously displayed error code 3 and set the signal to L-NA.

Internal communication error

Occur in communication between primary and secondary controller error, error code is issued one, the signal is set to L-NA and off all voltages.

'NA' Power failure signal

LED lights up when standing on level L.
LED turns off when level is at H .
The NA signal in the system is directly connected to all outputs. A low level of NA signal causes immediate shutdown of the outputs. The NA signal is designed as an open-drain output and can even be linked with other modules.

'Batt.' Buffer battery

LED lights up when the backup battery module (083678) provides a sufficiently high voltage. When changing the CPU, the LED may briefly be extinguished until the internal buffer capacitor is charged.

3.4 Diagnostics for NG8 / NG16 from index J

The power supplies have an index \mathbf{J} from extended functionality.

The current internal control hardware has been replaced by a controller with two microcontrollers. A micro-controller on the primary side of the power supply monitors the input voltage, the NAevaluation and the heat sink temperature. A second microcontroller monitors on the secondary side of the output voltages and the backup battery.

Both controllers are connected via a through galvanically isolated serial interface connected to each other. Can be connected to a yellow error LED by a different number issued by flashing an error code pulses for 8 different fault conditions.
An error code consists of 1 to 8 flash pulses of 0.3 s length.
This is followed by an ad break of 1.3 s .
Arises between the ad breaks, the error code from the number of flashes.

Error code NG8 / NG16

- 1 An internal communication error, power supply is switched off, NA = L
- 2 Lower voltage at 24 V input was available, power supply is switched off, $N A=L$
$-3+5 \mathrm{~V}$ failure due to overload or missing bus termination, power supply is switched off, NA $=\mathrm{L}$
$-4+15 \mathrm{~V}$ failure due to overload, switch off $\pm 15 \mathrm{~V}$, NA state is not changed
$-5-15 \mathrm{~V}$ fault caused by overload, switch off $\pm 15 \mathrm{~V}$, NA state is not changed
- 6 battery voltage has dropped below 2.5 V , power supply continues, NA condition is not changed
-7 temperature $\geq 90^{\circ} \mathrm{C}$ was present power supply is switched off, NA $=\mathrm{L}$
$-8 \geq 36 \mathrm{~V}$ voltage at 24 V input was available, power supply is switched off, $\mathrm{NA}=\mathrm{L}$

Status LEDs

The power supply is equipped with 7 LEDs that indicate the current operating condition visually. In addition to the LED test sockets are arranged, in which measured it with a multimeter, the voltage corresponding to about 2 mm test plugs can be.
About the test sockets may be removed no electricity, because the cross section is not
designed for a current load! designed for a current load!

24V LED (green)

LED lights up when the primary input voltage has reached the applicable internal workspace of $>20 \mathrm{~V}$. At voltages $<18 \mathrm{~V}$, the LED goes out, the same error code is output 2 and set the signal to L-NA, +5 V and $\pm 15 \mathrm{~V}$ are switched off.

+5V LED (green)

LED lights when the 5 V output voltage has reached a value of $>4.7 \mathrm{~V}$ and disappears when the 5 V voltage has dropped to $<4.5 \mathrm{~V}$, at the same time, error code 3 and set the output signal to L-NA.

3.4 Diagnostics for NG8 / NG16 from index J (continuation)

+15 V LED (green)

The LED displays directly to the presence of the +15 V output voltage. If the voltage drops to $<+13.5 \mathrm{~V}, \pm 15 \mathrm{~V}$ converter blocked, the same error code is 4 and the output signal remains at NA H.

-15 V LED (green)

The LED displays directly to the presence of the -15 V output voltage. If the voltage drops to $<-13.5 \mathrm{~V}, \pm 15 \mathrm{~V}$ converter blocked, the same error code is 5 and the output signal remains at NA H.

Battery LED (green)

The LED shows a sufficiently high voltage of the backup battery module (083 678), which must be attached to the left side of the power supply chassis. The battery LED will turn off when the float voltage is dropped to $<2.5 \mathrm{~V}$, the same error code 6 is issued.
The buffer voltage monitor also works in case of failure of the +5 V supply.
In this case, the error code displayed in succession .. $6+3$.

NA LED (red)

This LED indicates the status of the power failure signal.
LED on = low level, LED off $=\mathrm{H}$ level.
The NA signal in the system is directly connected to all output cards and analog outputs. A low level of NA signal causes immediate shutdown of the outputs. The NA signal is designed as an open-drain output and can be linked with other modules.
A system generated within the NA-L-level signal can now be recognized by the network device and turns on the LED-NA.

Error LED (yellow)

LED indicates a fault condition of the power supply.
LED off = normal mode, no error
LED flashing = error condition, number of flash pulses see Error Code
It can also be more error codes are displayed in a row. For example:
Code 3 and Code 6 This error condition occurs when a network device without a backup battery and is operated without bus termination.

Code 3

3.4 Diagnostics for NG8 / NG16 from index J (continuation)

Further diagnostic function

The OV test socket has a dual function and is designed as a switching jack. The various functions by inserting a test plug $(2 \mathrm{~mm})$ is triggered in half or full length.

ATTENTION: This function tests may only take place without active drives!

- Normal function: test plug is inserted half = Error LED off

In this position, together with the +24 V input voltage, the primary test socket the DC-DC converter can be measured. This voltage is smaller than that on the 24 V Jack on applied voltage.
The voltage drop caused by the existing internal filters and protection circuitry.

- Diagnostic function: test plug is inserted into full-length = Error LED is on In this position, the fault Power supply shutdown and removed all memory errors are reset. The power supply is now working in the current-limited mode and it can be determined by measuring the voltage at the test jacks, which of the three output voltages is not in order. Is e.g. the +5 V power overloaded, and in normal operation, all voltages
off. Diagnosed with this cut-off function is canceled. It can be switched any existing tensions active. By measuring the corresponding test sockets can now be determined, the incorrect voltage.

Is measured, for example on the 5 V jack only 3.5 V , then by subtracting the individual Modules from the chassis, the control module to determine the cause of the overload. The voltage should then rise again to 5 V .
The same applies for the $\pm 15 \mathrm{~V}$ voltages.
If after these tests with the function modules is still an incorrect voltage is measured, the power supply can be faulty.
The power supply should be given for repair.
The diagnosis function may only be used temporarily for troubleshooting purposes.
The operation of the CNC controller with plugged test plug is not permitted!

3.5 Selection of the power pack

For the selection of a suitable power supply, the sum of the current set of modules is determined.

Current consumption of the modules.			All entries for DC current in mA		Bufferbattery 3,6V
Modules	Art.-NO.	+5V	+15V	-15V	
X-CPU modules					
X-CNC 32Bit	800803	2000	6	6	0,01
X-CNC 32Bit ETH	800833	2000	6	6	0,01
X-CNC 64Bit	800836	2300	6	6	0,01
X-CNC 64Bit ETH	800863	2300	6	6	0,01
X-CNC fanless	800884	2100	6	6	0,01

CNC-axes modules					
AAZ1	083637	400	$*$	40	18
AAZ2	083705	420	$*$	29	50
AAZ4	083549	630	$*$	58	100
AZA2	083937	500	$*$	28	40
AZA4	083936	700	$*$	50	70
ASM3	084079	400	$*$	--	35
SERC	084544	500	--		

Positioning modules						
POS	$083545 / 083672$	$1200 / 1300$	$*$	42	70	0,01
POA	$083673 / 083674$	$1200 / 1300$	$*$	42	70	0,01
SMM	$083676 / 083677$	$1050 / 1160$	$*$	50	30	0,01

I/O-modules					
AEK / SEA	083950 / 084126	140 / 250	Ausgänge aus / ein	--	--
EK	083946	110		--	--
AK	083942	155 / 380	Ausgänge aus / ein	--	--
AK2	083541	145 / 250	Ausgänge aus / ein	--	--
AKR	083540	150 / 250	Ausgänge aus / ein	--	--
ADW4 /ADW4E	083755 / 084647	320		20	3
ADWI4	088755	320		20	3
DAW2	083706	320		29	50
DAW4	083736	320		58	100
Communication modules					
COM	083708	980		--	--
ETH	084185 / 084309	1150		$0 / 500$	--
AS-I 1 Master	084187	475		4	4
AS-I 2 Master	084425	565		4	4
BUS terminal / Interfaces					
Bus terminal	083679	170		--	--
20 mA	083589	10		40	--
RS232	083897	1		15	--
RS422/485	084539 / 08458	1		--	--

* Additionally, the power consumption of the connected measuring systems are considered.

The total power consumption may not cross the nominal output current of the used power supply unit.

CENTRAL UNITS

区

4. Central units

4.1 Central unit XCNC 32Bit and 64Bit 4-2

Central unit XCNC 32Bit and 64Bit ETH CNC axis control 4-3
4.2 Central unit CNC ETH 4-15
4.3 Central unit CNC 4-22
4.4 Central unit PLC 4-33
4.5 Central unit CEA 4-41

4.1 Central unit CNC X-CNC 32Bit and 64Bit

Connections and display

Standard design
32Bit CPU
art.-no. 8008003
Export version

Standard design
32 Bit CPU
art. no. 800808

Export version
64Bit CPU
art. no. 800836
64Bit CPU
art. no. 800886
Status display 7 segment

switch mode

LEDs on RJ45

Green lights up:
Cable puts,
connection actual in order
Yellow lights up: CPU transmits

Connections

E1 EtherNet RJ45

Standard interface for operating consoles RC910 and operating panels CNC910 / CNC920 / CNC930

E2 EtherNet RJ45

standard interface
for programmers and servers
S1 9-polige D-SUB-socket
Serial interface for programming devices with 20 mA Adapter

S2 9-polige D-SUB-socket
Serial interface for operating panels $20 \mathrm{~mA} \quad 32 \mathrm{Bit} \mathrm{CPU}$ (option) RS422/485 64Bit CPU (option)

4.1 Central unit X-CNC 32Bit and 64Bit ETH- CNC axis control

Connections and display

Standard design
32Bit CPU
art. no. 800833
Export version

Standard design
32Bit CPU
art. no. 800838

Export version
64Bit CPU
art. no. 800863
64Bit CPU
art. no. 800868

Status display 7 segment

switch mode

LEDs on RJ45

Green lights up:
Cable puts,
connection actual in order
Yellow lights up: CPU transmits

Connections

A Ethernet RJ45 10/100 MBit

Axis control for digital drive buses
E1 EtherNet RJ45
Standard interface for operating consoles RC910 and operating panels CNC910 / CNC920 / CNC930

E2 EtherNet RJ45
standard interface
for programmers and servers
S1 9-polige D-SUB-socket
Serial interface for programming devices with 20 mA Adapter

S2 9-polige D-SUB-socket
Serial interface for operating panels
$20 \mathrm{~mA} \quad 32 \mathrm{Bit} \mathrm{CPU}$ (option)
RS422/485 64Bit CPU (option)

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Interfaces and socket allocation

A und E1 und E2	S1 and S2 with(Option)	S1 and S2 with (Option)	S1 and S2 with(Option)
8-polige socket	20mA-Adapter	RS422/485-Adapter	V24/RS232 Adapter
RJ45	9-polige D-SUB-socket	9-polige D-SUB-socket	9-polige D-SUB-socket

| | 1 | shield | 1 | shield | 1 shield |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | transmitter+ | 2 | - | 2 RX |
| allocation | 3 | transmitter- | 3 | transmitter + | 3 TX |
| see | 4 | 20mA-Power source | 4 | - | 4 DTR |
| down | 5 | GND | 5 | transmitter- | 5 GND |
| | 6 | 20mA-Power source | 6 | - | 6 DCD |
| | 7 | acceptor - | 7 | acceptor - | 7 RTS |
| | 8 | acceptor + | 8 | acceptor + | 8 CTS |
| | 9 | GND | 9 | GND | $9-$ |

EtherNet Sockets A and E1 and E2

- with all terminals, like PC, operating panel, CNC CPU, the allocation of the RJ45 equal socket.
- Hub's have a turned allocation.

If the devices are connected over a stroke (interlaced), then $1: 1$ cable is required.
If those are directly interconnected to device, then turned cables (CROSS over) are to be used.

- direct connection used with operating panel <->CNC,
- or if no stroke available actual also with CNC <->PC (Labtop).

There are colored plug housings. Thus the cables can be also visually differentiated.
BWO uses blue plugs with 1:1 cable and red plugs with turned cable.

Allocation RJ45 plug operating panel CNC E2

1	OP	\mid
2	ON	\mid
3	IP	\mid
4	-	$\mid \gg$
5	-	\mid
6	IN	1
7	-	1
8	-	1

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Interfaces and socket allocation

Schnittstellen

A Ethernet RJ45 10/100 Mbit
Axis control: Digital drive buses
to drive digital axes and
IO modules
SERCOS III ${ }^{1}$, PROFINET ${ }^{1}$, ETHERCAT ${ }^{1}$
(1 are registered trademarks of the companies: SERCOS International eV, Siemens, Beckhoff)
E1 Ethernet RJ45 10/100 MBit
Standard interface
for control panels and RC910,
for the panels CNC910, CNC920, CNC930
E2 Ethernet RJ45 10/100 MBit
Standard interface
for programming devices and servers

S1 9-polige D-SUB-socket
Free serial interface
20mA, RS422/485, RS232

S2 9-polige D-SUB-socket

Free serial interface
20mA, RS422/485, RS232

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Interfaces and socket allocation

1:1 cable for networking CNC CPU < - > stroke (plug colour blue)

Plug CPU

in pairs twists

Switch

in pairs twists

Alternatively, a direct connection is possible even without a switch!

Turned cable for direct connection CNC CPU < - > operating panel, Operating panel <-> PC and CNC CPU <-> PC (plug colour red plug operating panel
Plug CPU

JP3(RJ45)	JP4(RJ45)	D SUB 9pol.
CNC	RC910	RC910

1	OP
2	ON
3	IP
6	IN

1	OP
2	ON
3	IP
4	IN

6 OP
1 ON
4 IP
9 IN

The pins 5, 7, 8 may not be used when using the socket E1 on the X CNC CPU.

Operating mode selector switch

0 Normal operation(Flashboot)
1 Fixed IP address 172.16.20.180
2 RBOOT (CPU boots via Panel)
3 - not assigned
4 Panel on S2 (z.B.: CNC900C)
5 - not assigned
6 - not assigned
7 CMD 2 PLC-flag an overall reset
8 Diagnostic mode / monitor in RAM
9 Diagnosis mode / monitor in the EPROM, screen via S2 (9600/8/1/n)

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Data for standard and export versions

Execution	X-CNC 32Bit ETH		X-CNC 64Bit ETH	
	Standard	Export	Standard	Export
Item number dto. (with ETH-axis control)	$\begin{aligned} & 800803 \\ & 800833 \end{aligned}$	$\begin{aligned} & 800808 \\ & 800838 \end{aligned}$	$\begin{aligned} & 800836 \\ & 800863 \end{aligned}$	$\begin{aligned} & 800886 \\ & 800868 \end{aligned}$
Clock speed	500 MHz		1 GHz	
Flag memory	60 kB		60 kB	
NC memory	8 MB		64 MB	
NC memory	ca. 400 MB		ca. 400 MB	
Parameter	30000		60000	
Channels	4		8	
Axes	16		32	
Linear interpolation in axes	16	4	32	4
Circular interpolation axes in	$3+13$	2+1	$3+29$	2+1
Screws interpolation axes	$2+14$	*	$2+30$	*
Spline-Interpolation	-	*	-	*
Polynom-Interpolation		*	-	*

- Function is only available for standard versions
* Function is not possible with export-version

CENTRAL UNITS

BuIJ)

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Weitere Eigenschaften und Funktionen

- Spline interpolation *
- Polinom interpolation *
- Several spindles
- Tangential axis
- Couple, reflect and exchange axes
- Restarting after discontinuation
- Feed, corner, county and contour dynamics
- Electronic gear
- Handwheel
- Digital and analog drives
- Polar coordinate system
- Polar-Transformation
- Robot-Transformation ** / Tool / workpiece coordinate
- Robot transformation folding arm, SCARA, etc.
- Axes and graphics simulation
- Rotate, reflect and move coordinates
- Measuring and adapting cycles
- Interpolation levels
- Tool radius path correction
- Automatic selection of linear and circular interpolation
- Zero points / zero point offset
- Contour short programming
- Parameter calculation
- Diagnostic functions
- Free programmable cycles
- Freie Konnektivität zu Netzwerk- Servern / Internet
- Programmable in DIN 66025 or in high-level programming language C
* not possible with export-version
** with max. 4 axes at export-version

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Status diagnosis function

The 7-segment display 'Status' indicates the hardware state of the CPU.
Display Function

CENTRAL UNITS

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

jumper settings

Extradition status: \quad S1 serial, S1 is active, J14 PIN 2 and 3 closed J15-PIN 2 and 3 close

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

assembly view

Mode switch position 4 (S 2 when using the control Panel is connected)

Position of the interfaces

> A
> E1

CNC panel

S1

Port A only for version "CNC axis control drive" is available.

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Interface adapter for connection socket 'Control Panel' / 'networking'

TTY / 20mA - Interface
art. no. 083589
circuit

Assembly

The adapters are by their male protected from Twisted touchdown.

This page shows the module front.

RS232 / V24 - Interface
art. no. 083897
circuit

Assembly
The adapters are by their male protected from Twisted touchdown.

This page shows the module front.

4．1 Central unit X－CNC 32Bit and 64Bit（continuation）

Interface adapter for connection socket＇Control Panel＇／＇networking＇

RS422－Interface untagged
art．no． 084589
Data transfer with 9600B

RS422－Interface with identifier
art．no． 084539
Data transfer with 115KB
circuit

Assembly
The adapters are by their male protected from Twisted touchdown．

This page shows the module front．

Betriebsartenauswahl

J4	RS422 0000	$\begin{aligned} & \text { RS485 } \\ & 0 \quad 0 ⿴ 囗 口 \end{aligned}$	$\begin{aligned} & \text { RS485 } \\ & 0 \square 0 \square \end{aligned}$
$J 2$	\square 000 vollduplex	00 D Halbduplex	00 O vollduplex

Assembly
The adapters are by their male protected from Twisted touchdown．

This page shows the module front．

4.1 Central unit X-CNC 32Bit and 64Bit (continuation)

Schnittstellen und Buchsenbelegung

Assignment of 9-pin. Sockets 'S1' / 'S2'
with TTY - 20mA - Adapters
Sender und Empfänger wahlweise aktiv oder passiv in Stecker brücken
Pin 1 shield
Pin 2 Sender+
Pin 3 Sender-
Pin 4 20mA-Stromquelle
Pin 5 GND
Pin $6 \quad$ 20mA-Stromquelle
Pin 7 Empfänger-
Pin 8 Empfänger+
Pin 9 GND
Assignment of 9-pin. Sockets 'S1' / 'S2'
with RS422/485 - Adapters
Pin 1 shield
Pin 2 -
Pin 3 Sender+
$\begin{array}{ll}\text { Pin } 4 & \text { Sender- } \\ \text { Pin } 5 & \text { Sen }\end{array}$

Pin 6	-
Pin 7	Empfänger-

Pin 8 Empfänger+
Pin 9 GND
Assignment of 9-pin. Sockets 'S1' / 'S2'
with V24-RS232 - Adapters
Pin 1 shield
Pin 2 Rx
Pin 3 Tx
Pin 4 DTR
Pin 5 GND
Pin 6 DCD
Pin 7 RTS
Pin 8 CTS
Pin 9 -

4.2 Central unit CNC ETH

Connections and display

Standard design
Export version

Standard design
Export version
play
32Bit CPU
art. no. 085003
32Bit CPU
art. no. 085008
64Bit CPU
art. no. 085004
64Bit CPU
art. no. 086004

Status indication

Light emitting diodes

Green lights up: Cable puts, connection actual in order

Yellow lights up: CPU transmits

Connections

E1 EtherNet RJ45

Standard interface for operating consoles RC910 and operating panels CNC910 / CNC920

E2 EtherNet RJ45

standard interface
for programmers and servers
S1 9-polige D-SUB-socket
Serial interface for programming devices with 20 mA Adapter

S2 9-polige D-SUB-socket

Serial interface for operating panels $20 \mathrm{~mA} \quad 32 \mathrm{Bit}$ CPU (option) RS422/485 64Bit CPU (option)

4.2 Central processing unit CNC ETH high performance 64Bit

Connections and display

High Performance version 64Bit CPU art. no. 800242

Status indication

Light emitting diodes

Green lights up:

Yellow lights up:
Cable puts, connection actual in order

Connections

Interfaces

E1

E2

S1

OTX serial output visually
ORX

Ethernet RJ45 10/100 MBit
standard interface
for programmers and servers
9-polige D-SUB-socket
for serial interface (option)

S2 9-polige D-SUB-socket
for serial interface (option)
Ethernet RJ45 10/100 MBit
standard interface for the operating panels CNC920, CNC930/10, CNC930/15
serial input visually
alternative with S1

CNC 800242

4.2 Central unit CNC ETH (continuation)

Interfaces and socket allocation

EtherNet Sockets E1 and E2

- with all terminals, like PC, operating panel, CNC CPU, the allocation of the RJ45 equal socket.
- Hub's have a turned allocation.

If the devices are connected over a stroke (interlaced), then 1:1 cable is required.
If those are directly interconnected to device, then turned cables (CROSS over) are to be used.

- direct connection used with operating panel <-> CNC,
- or if no stroke available actual also with CNC <-> PC (Labtop).

There are colored plug housings. Thus the cables can be also visually differentiated.
BWO uses blue plugs with 1:1 cable and red plugs with turned cable.

Allocation RJ45 plug operating panel CNC E2

1	OI
2	ON
3	IP
4	-
5	-
6	IN
7	-
8	-

4.2 Central unit CNC ETH (continuation)

Interfaces and socket allocation

Allocation RJ45 plug CNC E1

1 OI
2 ON
3 IP
4 -
5 Debug With low the CPU reacts to default IP addresses, e.g. 172.16.20.180
6 IN
7 RESET With low hardware RESETS of the CPU
8 GND
Note: With the socket E1 additional signals are available. The pins 5, 7, 8 may not be connected in the cable, since otherwise interferences can impair the function of the CNC CPU.

1:1 cable for networking CNC CPU < - > stroke (plug colour blue

Plug CPU

plug stroke

plug operating panel JP3 (RJ45) JP4 (CNC/RC910)

1 OP
2 ON
3 IP
4 IN

Turned cable for direct connection CNC CPU < - > operating panel, Operating panel <->PC and CNC CPU <-> PC (plug colour red

The pins 5, 7, 8 may not be occupied on use of the socket E1 on the CNC CPU.

4.2 Central unit CNC ETH (continuation)

Data for Standard and Export version

Version Item No	CNC 32Bit ETH		CNC 64Bit ETH		CNC 64Bit ETH High Performance
	Standard 085003	Export 085008	Standard 085004	Export 086004	
Clock frequency	240 MHz		240 MHz		1 GHz
Flag memory	60 kB		60 kB		60 KB
NC memory	1,5MB		3MB		8 MB
Flash- Saving					512 MB
Memory instructions	16ki		64ki		64 ki
Parameter	30000		60000		60000
Channels	4		8		8
Axis	16		32		3,2
Linear nterpolation in axis	16	4	32	4	32
Circular interpolation in axis	$3+13$	2+1	$3+29$	2+1	$3+29$
Screw interpolation in axis	$2+14$	-	$2+30$	-	$2+30$
Spline interpolation	-	-	-	-	-
Polynom interpolation	-	-	-	-	-

- Function is only possible by standard design
- Function is not possible by export version

CENTRAL UNITS

BuIJ)

4.2 Central unit CNC ETH (continuation)

- Several spindles
- Tangential axis
- Axes couple, reflect and exchange
- Restarting after abort
- Feed, corners, circle and outline dynamics
- Electronic gears
- Handwheel
- Digital and analog drives
- Polar coordinates system
- Polar transformation
- Robot transformation ** / tool coordinates / workpiece coordinates
- Robot transformation for 6 axes folding arm, SCARA ***
- Axes and graphic simulation
- Coordinates turn, reflect and shift
- Measuring cycles and processing cycles
- Interpolation plane selection
- Tool radius path correction
- Automatic selection of linear and circular interpolation
- Zero points / zero point shift
- Outline path short programming
- Parameter calculation
- Diagnostic functions
** with max. 4 axes by export version
*** only for CPU 64 bits high performance

4.2 Central unit CNC ETH (continuation)

Diagnostic function status

The 7 section display ' status ' shows the hardware status of the CPU on.
Display Function

Segments circle everything in order, everything runs ' approximately '.
off CPU defectively, no voltage, display defectively.
0
CPU in the monitor operation.
8.

1-9
Hardware RESET.
Hardware test after that boats.
If status remains 1-9, if the hardware test was not ok - > CPU defective.
b
Writing in the flash, do not switch off.
E blinks Error while the loading of the operating system.
E1
Fatal error, please contact BWO.
E2
Fatal error, please contact BWO.
F Operating system is loaded from the flash.
F0
Hardware failure, module or network is down.
F1 Buffer battery is defective.
F2
F3
F4
Voltage $\pm 15 \mathrm{~V}$ defective.
Buffer battery and voltage $\pm 15 \mathrm{~V}$ defective.
CPU fan failure.

4.3 Central unit CNC

Connections and display

Version with reduced
Function range

Standard design

Standard design

Status indication

Connections

Service

9-pin D-Sub-socket Interface RS422/485

Prog. device
9-pin D-Sub-socket Interface 20 mA

Networking *

9-pin D-Sub-socket
Interface standard without adapters
alternatively with adapter RS422/485 or with adapter RS232

Operating panel

9-pin D-Sub-socket
Interface standard with adapter 20 mA

CNC E 32Bit art. NR. 088671

CNC 32Bit art. NR. 083671

CNC 64Bit art. NR. 084564

* Networking not with CNC E (088671)
alternatively adapter RS422/485

Networking not with CNC (088671)

4.3 Central unit CNC

Interfaces and socket allocation
Service allocation of the 9-pin Socket ' service ‘

pin 1	shield
pin 2	TXD+
pin 3	TXD-
pin 4	-
pin 5	GND
pin 6	VCC
pin 7	RXD
pin 8	RXD+
pin 9	MSR

Operating panel and Networking *
allocation of the 9-pin Sockets ' operating panel '/ ' networking ' with TTY - 20 mA - adapter,
transmitters and acceptors alternatively actively or passively
in plugs bridge
pin 1 shield
pin 2 transmitter +
pin 3 transmitter -
pin $4 \quad 20 \mathrm{~mA}$ Power source
pin 5 GND
pin $6 \quad 20 \mathrm{~mA}$ Power source
pin 7 acceptors -
pin 8 acceptors +
pin 9 GND
allocation of the 9-pin Sockets ‘ operating panel ‘/ ' networking ‘ with RS422/485 - adapters,
pin 1 shield
pin 2
pin 3 transmitter +
pin 4 -
pin 5 transmitter -
pin 6 -
pin 7 acceptor -
pin 8 acceptor +
pin 9 GND
allocation of the 9-pin Sockets ‘ operating panel ‘/ ' networking ‘
with V24-RS232-adapter
pin 1 shield
pin $2 \quad$ Rx
pin 3 Tx
pin 4 DTR
pin 5 GND
pin 6 DCD
pin 7 RTS
pin 8 CTS
pin 9 * Networking not with CNC E (088671)

4.3 Central unit CNC (continued)

Data

$\left.\begin{array}{ll|l|l} & \begin{array}{l}\text { CNC E (32Bit) } \\ \text { reduction } \\ \text { function range } \\ \text { Version }\end{array} & \begin{array}{l}\text { CNC (32Bit) } \\ \text { standard }\end{array} & \begin{array}{l}\text { CNC (64Bit) } \\ \text { standard }\end{array} \\ \text { Article number } & 088671\end{array}\right)$

- function actual only possible during standard design
* function actual not possible with version with reduced function range

4.3 Central unit CNC (continued)

- Several spindles
- Tangential axis
- Axes couple, reflect and exchange
- Restarting after abort
- Feed, corners, circle and outline dynamics
- Electronic gears
- Handwheel
- Digital and analog drives
- Polar coordinates system
- Polar transformation
- Robot transformation ** / tool coordinates / workpiece coordinates
- Axes and graphic simulation
- Coordinates turn, reflect and shift
- Measuring cycles and processing cycles
- Interpolation plane selection
- Tool radius path correction
- Automatic selection of linear and circular interpolation
- Zero points / zero point shift
- Outline path short programming
- Parameter calculation
- Diagnostic functions
** with max. 4 axes by reduced function range version

4.3 Central unit CNC (continued)

Diagnostic function status

The 7 section display ' status ' shows the hardware status of the CPU on.
Display Function

Segments circle	everything in order, everything runs ' approximately '.
out	CPU defectively, no voltage, display defectively.
0	CPU in the monitor operation.
8.	hardware RESET.
1-9	hardware test after that boats. if status remains $1-9$, if the hardware test was not ok -> CPU defectively.
b	writing in the flash, do not switch off.
E flashes	error while the loading of the operating system.
E1	fatal error, please at BWO turn.
E2	fatal error, please at BWO turn.
F	operating system is charged from the flash.
F0	hardware error. Module or network failed.
F1	back-up battery defectively.
F2	voltage $\pm 15 \mathrm{~V}$ defectively.
F3	back-up battery and voltage $\pm 15 \mathrm{~V}$ defectively.
F4	CPU fan defectively.

4.3 Central unit CNC (continued)

Block diagram

CENTRAL UNITS

4.3 Central unit CNC (continued)

Components layout CNC 32Bit

Position of the peripheral interface adapters

Networking

Operating panel

4.3 Central unit CNC (continued)

Components layout CNC 64Bit

Position of the peripheral interface adapters

Networking

Operating panel

4.3 Central unit CNC (continued)

Peripheral interface adapter for the connecting socket of the operating panel

TTY / 20mA interface

See for pin assignment also on page 4-2/3.

Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS232 / V24 interface

See for pin assignment also on page 4-2/3.

Circuit diagram

Components layout

The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

4.3 Central unit CNC (continued)

Peripheral interface adapter for the connecting socket of the operating panel

RS422 - interface without perception

Data transfer 9600B
See for pin assignment also on page 4-2/3.
Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS422 - interface with perception

Data transfer 115KB
See for pin assignment also on page 4-2/3.

Selection of operation mode

d 4	$\begin{gathered} \text { RS422 } \\ \hline 008 \end{gathered}$	$\begin{aligned} & \text { RS485 } \\ & 0 \quad 0 \quad \end{aligned}$	$\begin{array}{r} \text { RS485 } \\ 0 \quad 0 \quad 0 \end{array}$
± 2	0010 voliduplex	00 Halbduplex	\square 0 vollduplex

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

4.3 Central unit CNC (continued)

Interface of operating panel CNC 900C

The Interface of operating panel supports 3 different standards of interfaces (siehe auch 10-30):

- TTY (TTY active / passive fixed)
- RS422
- RS485

A Jumper block switch over between the interfaces TTY and RS422/485. If block J[8..12] on Pin $1<>$ Pin 2 , than TTY interface.
If block J[8..12] on Pin $2 \longleftrightarrow$ Pin 3 , than RS422/485 inteerface.
If jumper J13on Pin $2 \ll$ Pin 3, than RS422 (084539) with perception.
If J 14 on Pin $1 \longrightarrow$ Pin 2 , than conclusion for RS485.
If J 14 on Pin $2 \longleftrightarrow$ Pin 3 , than conclusion for RS422.

Jumper	TTY	RS422/485	Abschluß		
			Jumper	RS485	RS422
J8	1-2	2-3			
J9	1-2	2-3	J14	1-2	2-3
J10	1-2	2-3			
J11	1-2	2-3			
J12	1-2	2-3			
J13	1-2	2-3			
J13	DCD-Bit	Interface	Transfer	RS422	
$1 \longleftrightarrow 2$	0	TTY/RS422	9600B	without p	ception
$2 \ll 3$	1	RS422/485	115KB	with perce	tion

4.4 Central unit PLC

Connections and display

Version	PLC 16ki	art. no. 083544
	PLC 64ki	art. no. 084439

Status indication

Connections

Service

9-pin D-Sub-socket
Interface RS422/485

Prog. device

9-pin D-Sub-socket Interface 20 mA

Networking

9-pin D-Sub-socket
Interface standard without adapters
Alternatively with adapter RS422/485
or with adapter RS232

Operating panel

9-pin D-Sub-socket
Interface standard with adapter 20 mA alternatively adapter RS422/485

4.4 Central unit PLC (continued)
Interfaces and socket allocation
Serviceallocation of the 9-pin Socket ' service '

pin 1	shield
pin 2	TXD+
pin 3	TXD-
pin 4	-
pin 5	GND
pin 6	VCC
pin 7	RXD
pin 8	RXD+
pin 9	MSR

Operating panel and
Networkingallocation of the 9-pin Sockets ‘ operating panel "/ ' networkingwith TTY - 20 mA - adapter,transmitters and acceptors alternatively actively or passively inplugs bridge
pin 1 shield
pin $2 \quad$ transmitter +
pin 3 transmitter
pin $4 \quad 20 \mathrm{~mA}$ Power source
pin $5 \quad$ GND
pin $6 \quad 20 \mathrm{~mA}$ Power source
pin $7 \quad$ acceptor -
pin 8 acceptor +
pin 9 GND
allocation of the 9-pin Sockets ‘ operating panel ‘/‘ networking
with RS422/485-adapters,
pin 1 shield
pin 2
pin $3 \quad$ transmitter +
pin 4
pin $5 \quad$ transmitter
pin 6
pin 7 acceptor
pin $8 \quad$ acceptor +
pin 9 GND
allocation of the 9-pin Sockets ‘ operating panel "/ ' networking
with V24-RS232-adapter
pin 1 shield
pin $2 \quad$ Rx
pin 3 Tx
pin 4 DTR
pin $5 \quad$ GND
pin 6 DCD
pin 7 RTS
pin 8 CTS
pin 9

4.4 Central unit PLC (continued)

Data

	PLC (16k)	PLC (64k)
Article number	083544	084439
Flag memory Program memory for	60 kB 16 k commands	60 kB 64 k commands

Functions with POS modules

Linear interpolation in	3 axes	3 axes
Circular interpolation in	2 axes	2 axes

CENTRAL UNITS

DUINO

4.4 Central unit PLC (continued)

Status display

The light-emitting diode shows the program and hardware status.

Lamp is lit Everything in order

Lamp is off \quad CPU is defective, no voltage or lamp is defective

Lamp is flashing System error

Flash frequency of 2 s empty	EEPROM contents is defective or EEPROM is
Flash frequency of 1 s	Buffer battery is defective, to be exchanged
Flash frequency of $1 / 4 \mathrm{~s}$	Voltage of $\pm 15 \mathrm{~V}$ is defective (The AD converter and the operating panels do not work anymore)
Flash frequency of $1 / 10 \mathrm{~s}$	Hardware error (Module or network has failed)

CENTRAL UNITS

4.4 Central unit PLC (continued)

Block diagram

4.4 Central unit PLC (continued)

Components layout

Position of the peripheral interface adapters

Networking

Operating panel

4.4 Central unit PLC (continued)

Peripheral interface adapter for the connecting socket of the operating panel

TTY / 20mA interface

See for pin assignment also on page 4-12.

Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS232 / V24 interface

See for pin assignment also on page 4-12.

Circuit diagram

Components layout

The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

4.4 Central unit PLC (continued)

Peripheral interface adapter for the connecting socket of the operating panel

RS422 - interface without perception

Data transfer 9600B
See for pin assignment also on page 4-12.
Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS422 - interface with perception
Data transfer 115KB
See for pin assignment also on page 4-12.

Selection of operation mode

d 4	$\begin{gathered} \text { RS422 } \\ \hline 008 \end{gathered}$	$\begin{aligned} & \text { RS485 } \\ & 0 \quad 0 \quad \end{aligned}$	$\begin{array}{r} \text { RS485 } \\ 0 \quad 0 \quad 0 \end{array}$
± 2	0010 voliduplex	00 Halbduplex	\square 0 vollduplex

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

4.5 Central unit CEA

Connections and display

Standard design CEA
art. no. 083543

Status indication

Connections

Pro g. device

9-pin D-Sub-socket Interface 20 mA

Networking

9-pin D-Sub-socket
Interface standard without adapters
Alternatively with adapter RS422/485 or with adapter RS232

Operating panel

9-pin D-Sub-socket
Interface standard with adapter 20 mA alternatively adapter RS422/485

4.5 Central unit CEA (continued)

Interfaces and socket allocation

Operating panel and allocation of the 9-pin Sockets ‘ operating panel "/ ' networking ‘ Networking with TTY - 20mA - adapter,
transmitters and acceptors alternatively actively or passively in plugs bridge
pin 1 shield
pin 2 transmitter +
pin 3 transmitter
pin $4 \quad 20 \mathrm{~mA}$ Power source
pin 5 GND
pin $6 \quad 20 \mathrm{~mA}$ Power source
pin 7 acceptor-
pin 8 acceptor +
pin 9 GND
allocation of the 9-pin Sockets ' operating panel '/ ' networking ‘
with RS422/485-adapters,
pin 1 shield
pin 2 -
pin 3 transmitter +
pin 4
pin 5 \quad transmitter
pin 6 -
pin 7 acceptor
pin 8 acceptor +
pin 9 GND
allocation of the 9-pin Sockets ‘ operating panel ‘/ ' networking ‘
with V24-RS232-adapter
pin 1 shield
pin 2 Rx
pin 3 Tx
pin 4 DTR
pin 5 GND
pin 6 DCD
pin 7 RTS
pin 8 CTS
pin 9 -

4.5 Central unit CEA (continued)

Technical data

Data of in and outputs

- 16 inputs
- visual check by LED
- galvanic separation over opto couplers
- switching levels of inputs with approx. 5 V
- protection against negative voltage peaks
- hysteresis of inputs approx. 1 V
- input current 7 mA
- pro input ever on filters
- input delay approx. 3ms
- 8 outputs
- fatigue strength $0, A ̈, 100 \%$ at the same time loadable
- visual check by LED
- galvanic separation over opto couplers
- short circuit proof
- current limiting
- over-temperature disconnection
- internal cut-off diode for inductive loads, max. 200mJ
- 8 outputs over own inlet for separate fuse protection
- output delay approx.. $7,5 \mu \mathrm{~s}$ when switching on on
approx. 29μ s when switching off

Diagnosis

For 8 outputs on diagnostic bit is available. Are monitored:

- undervoltage
- wire break
- short-circuit against 0 and 24 v
- over-temperature

CENTRAL UNITS

DUINO

4.5 Central unit CEA (continued)

Status display

The light-emitting diode shows the program and hardware status.

Lamp is lit Everything in order

Lamp is off \quad CPU is defective, no voltage or lamp is defective

Lamp is flashing System error

Flash frequency of 2 s	EEPROM contents is defective or EEPROM is empty
Flash frequency of 1 s	Buffer battery is defective, to be exchanged
Flash frequency of $1 / 4 \mathrm{~s}$	Voltage of $\pm 15 \mathrm{~V}$ is defective (The AD converter and the operating panels do not work anymore)
Flash frequency of 1/10s	Hardware error (Module or network has failed)

4.5 Central unit CEA (continued)

Block diagram

Real time clock	$\begin{aligned} & \text { CPU } \\ & \text { 16Bit } \end{aligned}$	SRAM unit $32 \mathrm{kB} \times 16$	Flag SRAM 32kB x 16	16 digit inputs 8 digit outputs
$\Delta \square$	Serial Sync 1 Sync 2	Code SRAM 32kB x 16	PLC prog. EEPROM 32kB x 16	
\downarrow	Async 1			Power unit input: +24V
I/ O-BUS		Editor- SRAM 32kB x 16	Boot-BS EPROM 64kB x 16	output: $+5 V / 4 A$

4.5 Central unit CEA (continued)

Block diagram connections Inputs and outputs

4.5 Central unit CEA (continued)

CEA power unit

Input values

Input voltage	UI	$24 \mathrm{~V}=$ admissible range of 22 V to 35 V
		Three-phase bridge connection max. ripple $3 \mathrm{~V}_{\text {ss }}$
Input current	II	max. rise time from 0 V to 24 V : 60 $1.5 \mathrm{~A} \text { at } \mathrm{UI} 24 \mathrm{~V}=$
		and a load of 4 A at 5 V , of 0.2 A at $\pm 15 \mathrm{~V}$

Output values

Output voltage	UO_{+5}	+5 V
Output current	IO_{+5}	4 A for convective aeration permanently short circuit proof
		+15 V
Output voltage	UO_{+15}	0.2 A Output current
	IO_{+15}	permanently short circuit proof Output voltage Output current
	UO_{-15}	-15 V
		0.2A permanently short circuit proof

The central processing unit CEA uses 910 mA (outputs off) or 950 mA (outputs on). Less this on gene requirement then still approx. Á is available for the supply of other modules.

The performance is still enough to the operation of max. 1 positioning module and 6 EA modules. The total cost with +5 V and $\pm 15 \mathrm{~V}$ may not exceed 25 W . The load for the respective device configuration can using the tables ' current consumption of the modules ' in Hardware, 3,6 Selection of the power pack cut off to be determined or checked.

CENTRAL UNITS

4.5 Central unit CEA (continued)

Components layout

Position of the peripheral interface adapters

Networking

Operating panel

4.5 Central unit CEA (continued)

Peripheral interface adapter for the connecting socket of the operating panel

TTY / 20mA interface

See for pin assignment also on page 4-21.

Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS232 / V24 interface

See for pin assignment also on page 4-21.

Circuit diagram

Components layout

The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

4.5 Central unit CEA (continued)

Peripheral interface adapter for the connecting socket of the operating panel

RS422 - interface without perception

Data transfer 9600B
See for pin assignment also on page 4-12.
Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS422 - interface with perception
Data transfer 115KB
See for pin assignment also on page 4-12.

Selection of operation mode

d 4	$\begin{gathered} \text { RS422 } \\ \hline 008 \end{gathered}$	$\begin{aligned} & \text { RS485 } \\ & 0 \quad 0 \quad \end{aligned}$	$\begin{array}{r} \text { RS485 } \\ 0 \quad 0 \quad 0 \end{array}$
± 2	0010 voliduplex	00 Halbduplex	\square 0 vollduplex

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

CNC AXIS MODULES

5. Axis modules

5.1 Axis module AAZ1 / AAZ2 / AAZ4 5-2
5.2 Axis module AZA2 / AZA4 5-7
5.3 Stepper motor module ASM 5 -12
5.4 Digital axis module SERC 5 -17

5.1 Analog axis modules AAZ1 / AAZ2 / AAZ4

Passive axis modules

for 1, 2 or 4 analog triggered axis
with incremental measuring system

Allocation of the 15-pin HD Sub sockets
' measuring 1 ' to ' measuring 4 '
Pin 1
T1
Pin 2 sensor line 0V
Pin 3 / T2
Pin 4
T0
Pin 5 sensor line 5V
Pin 6 screen
Pin $7 \quad$ Uas (error signal)
Pin 8 -
Pin 9 / T1
Pin 10 T2
Pin 11 OV
Pin 12 / T0
Pin 13
Pin $14+5 \mathrm{~V}$
Pin 15 / Uas (error signal)

5.1 Analog axis modules AAZ1 / AAZ2 / AAZ4 (continued)

allocation of the 10-pin Terminal strip with AAZ1
Pin $1 \quad \mathrm{~S} 1+\quad$ command value 1
Pin 2 S1-
Pin $3 \perp$ screen
Pin $4 \quad$ MT+ Messtaster +
Pin 5 MT- Messtaster -
Pin 6 -
Pin 7 R1 reference 1
Pin 8 R2 reference 2
Pin 9 R- reference -
Pin $10 \perp$ screen

Allocation of the 10-pin Terminal strip with AAZ2
Pin $1 \quad$ S1+ command value 1
Pin $2 \quad$ S1
Pin $3 \perp$ screen
Pin $4 \quad$ S2+ command value 2
Pin 5 S2
Pin $6 \perp \perp$ screen
Pin $7 \quad$ R1 reference 1
Pin 8 R2 reference 2
Pin 9 R reference -
Pin $10 \perp$ screen
allocation of the 10-pin Terminal strip with AAZ4
upper Klemmleis
lower terminal strip

Pin 1	S1+	command value 1	Pin 1	S3+	command value 3
Pin 2	S1-		Pin 2	S3-	
Pin 3	\perp	screen	Pin 3	\perp	screen
Pin 4	S2+	command value 2	Pin 4	S4+	command value 4
Pin 5	S2-		Pin 5	S4-	
Pin 6	\perp	screen	Pin 6	$\perp \perp$	screen
Pin 7	R1	reference 1	Pin 7	R3	reference 3
Pin 8	R2	reference 2	Pin 8	R4	reference 4
Pin 9	MT+	sensor	Pin 9	R-	reference -
Pin 10	MT-		Pin 10	\perp	screen

5.1 Analog axis modules AAZ1 / AAZ2 / AAZ4 (continued)

Technical characteristics

The axis modules do not possess own intelligence, are thus not in the layer the axes automatically to be controlled. The interpolation and position adjustment are executed rather by the central processing unit in special tasks. The drive is triggered over an analog interface.

	AAZ1	AAZ2	AAZ4
controllable axes	1	2	4

AAZ1 offers also the possibility of 2 handwheels to connect and the D/A transducer for a spindle axis to use.

Technical data

Inputs

- path measuring system
- disturbance signal
- reference input
- sensor input

Outputs

Interface for on incremental measuring system per axis (line receiver RS422 with differential inputs) max. Input frequency $2,5 \mathrm{MHz}$, analysis fourfold, max. Counting rate 10 MHz ; Input impedance 150Ω
of the measuring system (e.g. by contamination)
optically decoupled 24 V -Eingang for each axis
optically decoupled 24 V -Eingang for each axis
on analogue output per axis; Resolution 16bit; voltage range -10 V to +10 V (max. 5 mA)

5.1 Analog axis modules AAZ1 / AAZ2 / AAZ4 (continued)

Technical data (continuation)

Safety functions

- Watchdog
$- \pm 15 \mathrm{~V}$-Ueberwachung
- NA signal
- end positions
- measuring system monitoring
on the CPU created RESET signal stops all axes.
stops all axes in the event of an error, if message creates
stops all axes with power failure
per axis two software limit switches are programmable
wire break
input frequency $\leq 2,5 \mathrm{MHz}$
input for disturbance signal (Uas) of the measuring system

Switching level

Measuring system inputs
T0, /T0, T1, /T1, T2, /T2
Uas, /Uas
Reference input

Sensor input
low: min. $-1,0 \mathrm{~V}$ max. $+1,2 \mathrm{~V}$
high: min. $+2,8 \mathrm{~V}$ max. $+5,5 \mathrm{~V}$
low: min. $-1,0 \mathrm{~V}$ max. $+14,0 \mathrm{~V}$
high: min. $+17,0 \mathrm{~V}$ max. $+30,0 \mathrm{~V}$
low: min. $-1,0 \mathrm{~V}$ max. $+14,0 \mathrm{~V}$
high: min. $+17,0 \mathrm{~V}$ max. $+30,0 \mathrm{~V}$

5.1 Analog axis modules AAZ1 / AAZ2 / AAZ4 (continued)

Block diagramm

AAZ1

1/O-BUS

Interface for
2 incremental counters and

1 D/A converter

AAZ2

Interface for 2 axes having an incremental measuring system

AAZ4

Interface for 4 axes having an incremental measuring system

5.2 Analog axis modules AZA2 / AZA4

The passive axis module
for 2 and 4 analog triggered axes
with absolute measuring system

Allocation of the 15-pin HD Sub sockets ' measuring 1' to ' measuring 4 '
Pin 1
Pin 2
clock +
Pin 3
OV
Pin 4
Pin 5
$+5 \mathrm{~V}$
Pin 6 screen
Pin 7 -
Pin 8 24V Encoder
Pin 9 data +
Pin 10 data -
Pin 11 OV
Pin 12 -
Pin 13 OV Encoder
Pin $14 \quad+5 \mathrm{~V}$
Pin 15 -

5.2 Analog axis modules AZA2 / AZA4 (continued)

Allocation of the 10-pin Terminal strip with AZA2

Pin 1	S1+	command value 1
Pin 2	S1-	
Pin 3	\perp	screen
Pin 4	S2+	command value 2
Pin 5	S2-	
Pin 6	\perp	screen
Pin 7		-
Pin 8	24 V E	Encoder
Pin 9	$0 V$ E	
Pin 10	\perp	screen

Allocation of the 10-pin upper terminal strip with AZA4
upper terminal strip

Pin 1	S1+	command value 1
Pin 2	S1-	
Pin 3	\perp	screen
Pin 4	S2+	command value 2
Pin 5	S2-	
Pin 6	\perp	screen
Pin 7		-
Pin 8		-
Pin 9	MT+	sensor
Pin 10	MT-	

lower terminal strip

Pin 1	S3+	command value 3
Pin 2	S3-	
Pin 3	\perp	screen
Pin 4	S4+	command value 4
Pin 5	S4	
Pin 6	\perp	screen
Pin 7		-
Pin 8	24 V E	encoder
Pin 9	OV E	
Pin 10	\perp	screen

5.2 Analog axis modules AZA2 / AZA4 (continued)

Technical characteristics

The analog axis modules are conceived for the activation of servo-drives with absolute measuring systems with SSI Interface. Each channel possesses on programmable synchronous-serial INTERFACE. The module does not possess own intelligence; to control it actual thus in the layer the axes automatically. The interpolation and position adjustment are executed rather by the central processing unit in special tasks. The drive is triggered over an analog interface.

	AZA2	AZA4
controllable axes	2	4

Synchronous-serial transfer (SSI)

The data communication from the Encoder to the control is controlled by one in the axis module generated clock. In a state of rest the signals clock and data are situated on ' high '. With the first falling clock edge the transmitter (in the Encoder) saves the current measured value. The data communication takes place starting with the rising edges, with the MSBit (max. 32 clocks). Actual the final (niederwertigste) data bit transferred, is switched the data line to ' low ', to the Encoder for a new measured value ready actual. The duration of this Low phase actual dependent on the internal monoflop time of the Encoders.

Voltage supply of the measuring systems

To create for the supply of the measuring systems actual at the clips 24VE and OVE an external voltage (operating voltage of the measuring systems).

5.2 Analog axis modules AZA2 / AZA4 (continued)

Technical data

Inputs

- path measuring system
- sensor input

Outputs

Safety functions

- Watchdog
$- \pm 15 \mathrm{~V}$-Ueberwachung
- NA signal
- end positions

Switching level

- measuring system signals

Takt+, clock

- measuring system signals

Daten+, data

- sensor input
interface for on absolute measuring system (SSI) per axis. programmable transfer frequencies
$250 \mathrm{kHz}, 330 \mathrm{kHz}, 500 \mathrm{kHz}, 1 \mathrm{MHz}$. programmable data format max. 32Bit.
software related switching Gray /Binaer code
optically decoupled 24 V -Eingang for each axis
on analogue output per axis; Resolution 16bit; voltage range -10 V to +10 V (max. 5 mA)
on the CPU created RESET signal stops all axes.
stops all axes in the event of an error, if message creates
stops all axes with power failure
per axis two software limit switches are programmable

```
low: min.-1,0V max. +1.2V
high: min. +2,8V max. +5,5V
reference potential = 0V of the control
```

low: min. $-1,0 \mathrm{~V}$ max. +1.2 V
high: min. $+2,8 \mathrm{~V} \quad$ max. $+5,5 \mathrm{~V}$
reference potential $=0 \mathrm{~V}$ externally
low: min. $-1,0 \mathrm{~V}$ max. $+14,0 \mathrm{~V}$
high: min. $+17,0 \mathrm{~V}$ max. $+30,0 \mathrm{~V}$
reference potential $=0 \mathrm{~V}$ of the control

5.2 Analog axis modules AZA2 / AZA4 (continued)

Block diagram

AZA2

AZA4

5.3 Stepper motor module ASM

The passive axis module

for 3 stepping motors

Pin 1	T2	clock 2
Pin 2	R2	direction 2
Pin 3	B2	Boost 2
Pin 4	\perp	screen
Pin 5	T3	clock 3
Pin 6	R3	direction 3
Pin 7	B3	Boost 3
Pin 8	Ref3	reference switch 3
Pin 9	\perp	screen
Pin 10	OV	(externally 0V)

5.3 Stepper motor module ASM (continued)

Function

The stepper motor module is designed for selecting out of three stepper motor power ranges. Each channel has the control signals 'Clock pulse', 'Direction' and 'Boost' as well as three inputs for reference switch and measuring sensor. All inputs and outputs are electrically isolated by means of an optical coupler.

Connection

The module is connected to the system bus and the operating voltages by means of an 96 -pin plug-type connector (VG bar).

All peripheral signals for the stepper motor power units as well as the reference switch and the sensor signals are connected by means of two 10-pin screwed plug-type connectors at the front side of the module.

Power supply

The ASM module is supplied via the system bus with the required operating voltages $+5 \mathrm{~V},+15 \mathrm{~V},-$ 15 V .

5.3 Stepper motor module ASM (continued)

Technical data

Module identification character
BUS interface

Interface for the stepper motor power unit

23 H , inquirable at address 80 H
The data transfer to the system bus is performed via the lower half of the bus (D0-D15).

The control signals ‘Clock pulse', 'Direction' and 'Boost' are realized as optically separated open-collector outputs $(28 \mathrm{~V}, 30 \mathrm{~mA})$. The signals are connected to pin $10(0 \mathrm{~V})$ each. The maximum clock rate is 60 kHz .
optically decoupled 24 V input for each axis optically decoupled 24 V input for each axis

On-state: $I_{\max }=30 \mathrm{~mA} / I_{\min }=5 \mathrm{~mA}, \mathrm{U}_{\text {cemax }}=2,2 \mathrm{~V}$
Off-state: $\mathrm{I} \leq 1 \mathrm{~mA}, \mathrm{U}_{\text {cemax }}=28 \mathrm{~V}$
stops all axes in case of failure, sends message
stops all axes in case of power failure
low: min. -1.0 V max. +14.0 V high: min. +17.0 V max. +30.0 V
low: min. -1.0 V max. +14.0 V high: min. +17.0 V max. +30.0 V

5.3 Stepper motor module ASM (continued)

Block diagram

5.3 Stepper motor module ASM (continued)

Connection scheme (examples)

ASM module Power unit

A cable having screened pairs of wires is recommended for connecting. The cable screenings can be skinned and connected at the power unit or on both ends.

5.4
 Digital axis module SERC

Passive axis module
for 8 digitally triggered axes
with SERCOS LWL Interface

Allocation 9pol. CD-Sub-socket 'terminal ${ }^{\text {‘ }}$
Pin 1 screen
Pin 2 TXD+
Pin 3 TXD
Pin 4 -
Pin 5 GND
Pin 6 VCC
Pin 7 RXD
Pin 8 RXD+
Pin 9 MSR

5.4 Digital axis module SERC (continuation)

Technical characteristics

The application of digitally controlled drives in numerical controlled machines requires a digital interface to the numerical control, which is and Istwerte apart from the transfer also additional functions permitted.

The total synchronisation for all connected drives with the control is achieved by a cyclic data exchange with accurate equidistant time.

In the event of an error is and Istwerte by cyclic communication automatically corrected. Up to the next cycle with the final valid are and Istwerten continued to work. Afterwards two successive incorrect transfers switch the drives off

The data between the control and the drives are exchanged over fiber-optic cables. Thus any opposite-acting disturbing influence is avoided.

SERCOS (Serielles real time Communikations System) enables the transfer of performance data as well as operating modes with extended data scope.

The interface permits the connection of up to 8 drives at a fiber-optic cable ring. The number of drives for each control actual by the use of several fiber-optic cable rings expandable.

During the initialization dependent on capability characteristics on control and drives the function of the interfaces of a ring is determined, whereby speed and position adjustment are assigned to the CNC Control with BWO.

5.4 Digital axis module SERC (continuation)

Example of SERCOS Ringstruktur

5.4 Digital axis module SERC (continuation)

Error and diagnostic description

Occurrence the appearance of certain error or exceptional cases the program branches out to specific error routines with defined reactions.

Internal errors

After switching on of the SERC Module on the internal hardware components are checked. Possible errors are displayed over the 7-Segment-Anzeige.

System error

With system errors the system parameter „system error „, is settinged accordingly and indicated this the control about the INTERRUPT status register with the value 0×4000.
The error code is entered in the parameter $\mathrm{Y}-0-0011$.
With system errors SERC always switches 0 into the phase and enables the elimination of errors. After clearing the error SERC starts a renewed phase build-up.

Axis-specific errors

In the case of axis-specific errors the diagnostic status is settinged and indicated this the control about the INTERRUPT status register with the value $0 \times 01 \mathrm{nn}$ (nn: Axis structure bit). Some axisspecific errors cause additionally a system error.

In the case of axis-specific errors SERC remains in the current phase and enables the elimination of errors. After clearing the error the control or the control surface must activate on a shifting of the phase up.

5.4 Digital axis module SERC (continuation)

Meaning of the status messages (overall view)

Status	Supervisor state
7-Seg.	Status message in the system parameter

0	0xE001	Phase 0
0	0xE011	Phase 0, phase switching actively
1	0xE002	Phase 1
1	0xE012	Phase 1, phase switching actively
2	0xE003	Phase 2
2	0xE013	Phase 2, phase switching actively
3	0xE004	Phase 3
3	0xE014	Phase 3, phase switching actively
b	0xE005	„,ready for use"
5.	0xE006	test operation: Zero-bit stream
6.	0xE007	test operation: Steady light
7	0xE008	LWL ring not closed
8.	0x0000	Reset

5.4 Digital axis module SERC (continuation)

Meaning of the system errors (overall view)

Status	Error in	Reaction	System- 7-Seg.
phase		Error messages in the system parameter	
, system error " (Y-0-0011)			

A	1	Phase 0	0x8005	drive addresses not correctly
C	3-4	Phase 0	0x8007	double AT failure
C	3-4	Phase 0	0xF008	double MST failure
L	1-4	Phase 0	0x8009	LWL ring interrupted
n	2	Phase 0	0xF001	configuration errors (command / actual channel)
0	2	Phase 0	0xF002	errors in the time protection calculation
P	0-4	Phase 0	0xF003	false phase specification of the numerical control
r	0-4	Phase 0	0xF004	SERC: internal error
U	4	Phase 0	0xF005	error life counter
u	2	Phase 0	0xF006	copying times too long
y	0	Phase 0	0xF007	check total errors (Y parameter)
c	2-4	Phase 0	0xF008	SYNCIN signal incorrectly (ESD, spike, missing)
J	0-4	keine	0xF009	Errors with system parameter store or system parameter modified. The examination of the Min4Max-Wene failed.
J	0-4	keine	0XF00A	One or several parameters actual / are write protected (see, control instructions in more Interruptregister ".

5.4 Digital axis module SERC (continuation)

Meaning of the axis-specific errors (overall view)

| Status | Error in
 phase | Reaction | Diagnostic
 status |
| :--- | :--- | :--- | :--- | | Error messages in the diagnostic text |
| :--- |
| the eight axis-specific diagnostic channels |

d	2-4	Phase 0	0x8006	HS timeout
E	2	Phase 2	0xD002	switching phase $2->3$ not possible
F	3	Phase 3	0xD003	switching phase 3 - > 4 not possible
H	2-4	Phase 2-4	0xD004	command in the drive not executably
H	0-1	Phase 0-1	0xC003	command channel at present not actively
h	2-4	Phase 2-4	0xD001	drive error (status class 1, S-0-0011)

5.4 Digital axis module SERC (continuation)

Status- Meaning of the status messages

 display0 Phase 0 phase switching actively

Phase 1 phase switching actively

2
Phase 2 phase switching actively

3
b
Phase 4 "ready for use " The performance can be connected and the drives be traversed.

5.
 Test operation zero-bit stream

The test operation, " zero-bit stream " was selected.
Reaction by SERC
SERC transmits zero-bit stream and prevents the phase build-up.
A cause
Test operation over DIP SWITCH SD1 switch 1 activates.
Remedial action
DIP SWITCH SD1 switch 1 switch off.

6. Test operation steady light

The test operation, ‘ steady light ' was selected.
Reaction by SERC
SERC transmits steady light and prevents the phase build-up.
A cause
Test operation over DIP SWITCH SD1 switch 2 activates.
Remedial action
DIP switch SD1 switch 2 switch off.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the status messages

 display
7 LWL Ring not closed

After a hardware RESET of SERC the SERCOS Ring was not closed.
SERC cannot receive 10 sequential MST Telegrams of the phase 0 .

Reaction by SERC

SERC remains not closed in the status, LWL ring " to the fiber-optic cables closed actual and leads afterwards automatically a build-up into the target phase through.

A cause

- fiber-optic cable interchanges or not correctly screwed on.
- defective fiber-optic cable ring.
- data rates of the drives and adjusted by SERC differently.
- the visual transmitting power of a user in the SERCOS Ring actual falsely adjusted.
- defective drive.

Remedial action

- all fiber-optic cables check.
- data rates check,

Drives: see description of application of the drive manufacturer

- visual transmitting power of all users in the SERCOS Ring of the actual LWL length adapt.

8. Reset

SERC is in the RESET status.
It actual no communication with SercTop possible.

A cause

The control did not setting in the Config registers 2 or PC control register the bit 0 .

Remedial action

In the Config registers 2 or PC control registers the bit 0 setting or the RESET behavior adjust with automatic build-up.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages
display

C Double AT failure or double MST Failure
Became two successive drive-put-ram (RK) a drive or two successive master synchronisation telegrams (MST) of SERC do not receive.

Reaction by SERC
phase resetting in communication phase 0 .
A cause

- fiber-optic cables not correctly screwed on.
- defective fiber-optic cable ring.
- defective drive.
- the visual transmitting power of a user in the SERCOS Ring actual falsely adjusted.

Remedial action

- all fiber-optic cables check.
- visual transmitting power of all users in the SERCOS Ring of the actual LWL length adapt.
d NC/MMI Servicekanal HS Timeout
On drive does not have with a request over the service channel within 10 SERCOS cycles the bit 0 in the drive status getoggelt.

Reaction by SERC
Phase resetting in communication phase 0 .
A cause
Defective drive.
Remedial action
Drive exchange.
Turns it itself to the service of the drive manufacturer.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages
 display

E Switching: Phase $2>3$ not possible
SERC cannot execute the phase switching of phase 2 after phase 3 .
Reaction by SERC
SERC leaves the switching command settinged and terminates the phase build-up.
Diagnosis of the suitable drive is written into the diagnostic channel.
A cause
At least on drive refuses switching into the phase 3 with that Command, switching preparation on communication phase 3 ".

Remedial action
Errors in the suitable drive recover (see help of the drive manufacturer).

F Switching phase $3>4$ not possible
SERC cannot execute the phase switching of phase 3 after phase 4.

Reaction by SERC

SERC leaves the switching command settinged and terminates the phase build-up.
Diagnosis of the suitable drive is written into the diagnostic channel.
A cause
At least on drive refuses switching into the phase 4 with that
Command, switching preparation on communication phase 4 ".

Remedial action

Errors in the suitable drive recover (see help of the drive manufacturer)

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages display

H Command in the drive not executably

 or kommandokanal at present not actively.Over the kommandokanal of SERC on SERCOS Command activated the numerical controls. This actual in the drive concerned not feasible.

Reaction by SERC

SERC leaves the command settinged and writes the diagnosis of the suitable drive into the diagnostic channel.

A cause
Diagnostic status D004: During the command version on error stepped up in the drive Diagnostic status C003: The numerical controls tried 1 has on in communication phase 0 or to start command.

Remedial action
Diagnostic status D004: It checks you whether the boundary conditions are correct thereby drive can execute the command.

Diagnostic status C003: Switches you into the communication phase 2 or 4 and starts them the command again.

h Drive error

On drive announces a drive error by settinging the static status bit for the status class 1 in the drive status.

Reaction by SERC
The diagnosis of the suitable drive is written into the diagnostic channel.

A cause

In the drive actual on errors occurred.
Remedial action
Parameter "status class 1 "(s 00011) "diagnosis" (S-0-0095) and "diagnostic number" (S-0-0390) analyse, error cause recover.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages display

A Drive addresses not correctly

The phase shifting off phase 0 cannot be executed, because in , list of the drive addresses „ $(\mathrm{Y}-0-0012)$ entered drive addresses in the ring not were found.

Reaction by SERC
Phase resetting in communication phase 0 .
A cause
In the Y-0-0012 actual at least one drive address entered, those in the ring not one found.
After SERC detected that the LWL Ring became closed actual, the LWL Ring in phase 1 again interrupted.

Remedial action
Drive addresses check. It actual admissible the fact that drive addresses are in the ring, which not in, is entered to list of the drive addresses „ (Y-0-0012).
LWL Ring check.
Data rates check,
SERC: see parameter $\mathrm{Y}-0-0003$,
Drives: see description of application of the drive manufacturer

L LWL Ring interrupted
The LWL Ring was interrupted, after it was already detected that it was closed
Reaction by SERC
Phase resetting in communication phase 0 .

A cause

Defective fiber-optic cable ring.
The visual transmitting power of a user in the SERCOS Ring actual falsely adjusted.
Defective drive.
Remedial action
All fiber-optic cables check.
Visual transmitting power of all users in the SERCOS Ring of the actual LWL length adapt.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages
 display

n Configuration error (command / actual value channel)
With the configuration of the cyclic telegram data with the entries off the command - / actual on errors actual value channels occurred.

Reaction by SERC

Phase resetting in communication phase 0 .

A cause

There is too many is or actual value configures.
In the Y-0-0039 or Y-0-0040 actual the bit 15 settinged and in the Low byte the entered length actual too largely.

Remedial action

Reduce you the number of cyclic data (see parameter S-0-0016, S-0-0024 in the drives).
Reset you Y-0-0039 or Y-0-0040 or modify to you the length specification of the being or actual value channel.
o Error in the time slot calculation
With the calculation of the times for the SERCOS Transfer in phase 4 actual on errors occurred.

Reaction by SERC

Phase resetting in communication phase 0 .

A cause

The configured command soll-oder did not Istwerte become from at least one drive supports (see parameter $\mathrm{Y}-0-0021$ - to $\mathrm{Y}-0-0036$), because the parameter number not available actual or cannot be configured cyclically.
In SERC the command value generator was activated and an operating mode adjusted for SERC automatically cyclic parameters to configure does not want, those in the drive are available or cyclically to configure do not leave themselves. Thus support e.g.. some drives the operating mode, drive-internal interpolation „not.

Remedial action

It checks you whether the parameter entered in the suitable being actual value channel from the drive for the cyclic over conference is certified.
Command value generator switch off or other operating mode select.

5.4 Digital axis module SERC (continuation)

Status- Meaning of the error messages
display

P False phase specification of the numerical control
The NC as SERCOS phase a target phase gave not equal to $0,1,2,3$ or 4 .
Reaction by SERC
Phase resetting in communication phase 0 .
A cause
In the parameter, phase specification " $(\mathrm{Y}-0-0014)$ became a target phase not equal 0,1 , 2, 3 or 4 given and in more Interruptsteuerregister the instruction, "phase modifies " (value 0×2000) released.

Remedial action
Parameters, phase specification " (Y-0-0014) phase specification with valid value describe.

POSITIONING MODULES

6. Positioning modules
6.1 Positioning module POS 6-2
6.2 Positioning module POA 6-8
6.3 Step motor module SMM $\quad 6$-16

6.1 Positioning module POS

Active axis module
for 3 analogue-controlled axes with incremental measuring system

Standard version art. NR. 083545
CPU for automatic interpolation and position adjustment

High performance version art. NR. 083672
CPU with coprocessor
for automatic interpolation and position adjustment, Tool offset compensation and parameter calculation

Allocation of the 15 -pin HD Sub sockets 'measuring 1 ' to ' measuring 4

Pin $1 \quad$ T1
Pin 2 sensor line 0V
Pin $3 \quad / \mathrm{T} 2$
Pin 4 T0
Pin 5 sensor line 5V
Pin 6 screen
Pin 7 Uas (error signal)
Pin 8 -
Pin $9 \quad / \mathrm{T} 1$
Pin 10 T2
Pin 11 OV
Pin 12 / T0
Pin 13 -
Pin $14+5 \mathrm{~V}$
Pin 15 / Uas (error signal)

6.1 Positioning module POS (continued)

Allocation of the 9-pin Socket 'service‘

Pin 1	screen
Pin 2	TXD+
Pin 3	TXD
Pin 4	-
Pin 5	GND
Pin 6	VCC
Pin 7	RXD
Pin 8	RXD+
Pin 9	MSR

Allocation of the 10pol. Terminal strip with POS upper terminal strip

Pin 1	S1+	command value 1
Pin 2	S1-	
Pin 3	\perp	screen
Pin 4	S2+	command value 2
Pin 5	S2-	
Pin 6	\perp	screen
Pin 7	R1	reference 1
Pin 8	R2	reference 2
Pin 9	R3	reference 3
Pin 10	R-	$(0 \mathrm{~V})$

lower terminal strip

Pin 1	S3+	command value 3
Pin 2	S3-	
Pin 3	\perp	screen
Pin 4		-
Pin 5		-
Pin 6	MT1	sensor 1
Pin 7	MT2	sensor 2
Pin 8	MT3	sensor 3
Pin 9	MT-	(OV)
Pin 10	\perp	screen

6.1 Positioning module POS (continued)

Function

The positioning module POS has been designed for selecting three servo-motors having an incremental measuring system. Each channel has its own counter having a counting maximum frequency of 10 MHz (fourfold edge evaluation) as well as a 16bit D/A converter for writing out the scheduled value within a range of $\pm 10 \mathrm{~V}$.

Components

The module contains the following components:
Processor containing the operating system 'POS' (EEPROM)
Battery-buffered RAM memory for system data and NC programs
Memory for processing cycles (EEPROM)
System interface for the PLC
Servicing interface
Three analog outputs
Three path-measuring system inputs for incremental and reference signals
Three measuring signal inputs for connecting sensors

Connection

The whole of the peripheral signals are connected by means of plug-type connectors at the front side of the module. There are available three 15 -pin HD-Sub plug-type connectors for the incremental measuring systems. The scheduled values as well as the reference and sensor signals are connected by means of two 10-pin screwed plug-type connectors. A 9-pin D-Sub plug-type connector is provided for the servicing interface.

Power supply

The POS module is supplied via the system bus with the required operating voltages +5 V , +15 V , 15 V and the buffer voltage of $\pm 3.6 \mathrm{~V}$. The operating voltage for the measuring systems (+5 V) is available in the 15 -pin HD-Sub socket.

6.1 Positioning module POS (continued)

Technical data

Processor

Module identifier

Save

- for operating system
- for parameters and

NC programs

- for parameters
- for NC data

20 MHz clock frequency, additionally coprocessor during high performance version

10 H , requestable in address 80 H

EEPROM, 196kB

EEPROM, 60kB
RAM, $64 \mathrm{kB} \quad$, with back-up battery ($\mathrm{U}_{\text {battery. }}$ min. $2,4 \mathrm{~V}$)
RAM, $96 \mathrm{kB} \quad$, with back-up battery ($\mathrm{U}_{\text {battery. }}$ min. $2,4 \mathrm{~V}$) the data in RAM Saving remain also with out approx. 2 hours to pulled module receive.

Interfaces

- service
for operating system development and diagnosis
- BUS

RS422 snaps - interface, max. Data transmission rate 20Mbit/s, connection over 9pol. CD-Sub-plug at the front side.
the interface to the system bus consists off two 32bit-Registern over those the datentransfer between that central processing unit and the internal processor take place. the datentransfer runs interrupt-controlled over two handshake flag, those during writing and reading that register to be settinged automatically or reset.

Axes
the module knows 3 servo axes in different operating modes trigger:

- linear interpolation in 3 axes and
- circular interpolation in 2 axes.

Tool offset compensation
during high performance version possible

6.1 Positioning module POS (continued)

Technical data (continued)

Inputs

- path measuring system
- disturbance signal
- reference input
- sensor input

Outputs

Safety functions

- Watchdog
- +5V-Ueberwachung
$- \pm 15$ V-Ueberwachung
- battery monitoring
- NA signal
- end positions
- measuring system monitoring
interface for on incremental measuring system per axis (line receiver RS422 with differential inputs) max. Input frequency $2,5 \mathrm{MHz}$, analysis fourfold, max. Counting rate 10 MHz ; Input impedance 150Ω
of the measuring system (e.g. by contamination) optically decoupled 24 V -Eingang for each axis optically decoupled 24 V-Eingang for each axis
on analogue output per axis; Resolution 16bit; voltage range -10 V to +10 V (max. 5 mA)
monitors the internal processor and stops the axes in the event of an error
if $\mathrm{U}_{\mathrm{cc}}<4,65 \mathrm{~V}$ is created RESETS stops all axes in the event of an error, if message creates
message creates if $U_{\text {battery. }}<2,4 \mathrm{~V}$
stops all axes with power failure
per axis two software limit switches are programmable wire break
input frequency $\leq 2,5 \mathrm{MHz}$
input for disturbance signal (Uas) of the measuring system

6.1 Positioning module POS (continued)

Block diagram

6.2 Positioning module POA

Active axis module
for 3 analog triggered axes
with absolute measuring system

Standard version art. NR. 083673
CPU for automatic interpolation and position adjustment

High performance version art. NR. 083674
CPU with coprocessor
for automatic interpolation and position adjustment, Tool offset compensation and parameter calculation

Allocation of the 15 -pin HD Sub sockets 'measuring 1 ' to ' measuring 4

Pin 1 clock +
Pin 2 OV
Pin 3 clock -
Pin 4 -
Pin $5 \quad+5 \mathrm{~V}$
Pin 6 screen
Pin 7 -
Pin $8 \quad 24 v$ Encoder
Pin 9 data +
Pin 10 data -
Pin 11 OV
Pin 12 -
Pin 13 OV Encoder
Pin $14+5 \mathrm{~V}$
Pin 15 -

6.2 Positioning module POA (continued)

Allocation of the 9pol. Socket 'service '

Pin 1	screen
Pin 2	TXD+
Pin 3	TXD
Pin 4	-
Pin 5	GND
Pin 6	VCC
Pin 7	RXD
Pin 8	RXD+
Pin 9	MSR

Allocation of the 10pol. Terminal strip with POA upper terminal strip

Pin 1	S1+	command value 1	Pin 1	S3+	command value 3
Pin 2	S1-		Pin 2	S3-	
Pin 3	\perp	screen	Pin 3	\perp	screen
Pin 4	S2+	command value 2	Pin 4		-
Pin 5	S2-		Pin 5		-
Pin 6	\perp	screen	Pin 6	MT1	sensor 1
Pin 7		-	Pin 7	MT2	sensor 2
Pin 8		-	Pin 8	MT3	sensor 3
Pin 9	$24 v E$	24 v Encoder	Pin 9	MT-	(OV)
Pin 10	OV E	OV Encoder	Pin 10	\perp	screen

6.2 Positioning module POA (continued)

Function

The positioning module POA has been designed for selecting three servo-motors having an absolute measuring system with SSI interface. Each channel has a programmable synchronousserial interface. Outputting the scheduled value is performed via a 16 -bit D/A converter within a range of $\pm 10 \mathrm{~V}$.

Synchronous-serial transmission

The data transmission from the encoder to the control unit is regulated by a clock pulse that is generated in the positioning module. In the resting state, the signals clock pulse and data are 'high'. Upon the first clock pulse edge decreasing, the transmitter (in the encoder stores the current measured value. The data transmission is performed with increasing edges starting with the MSbit (max. of 32 clock pulses). As soon as the last (low-order) data bit is transmitted, the data line is switched to 'low' until the encoder is ready for a new measured value. The duration of this lowphase is depending on the internal monoflop time.

6.2 Positioning module POA (continued)

Components

The module contains the following components:
Processor containing the operating system 'POS' (EEPROM)
Battery-buffered RAM memory for system data and NC programs
Memory for processing cycles (EEPROM)
System interface for the PLC
Servicing interface
Three analog outputs
Three path-measuring system inputs for incremental and reference signals
Three measuring signal inputs for connecting sensors

Connection

The whole of the peripheral signals are connected by means of plug-type connectors at the front side of the module. There are available three 15 -pin HD-Sub plug-type connectors for the incremental measuring systems. The scheduled values as well as the reference and sensor signals are connected by means of two 10-pin screwed plug-type connectors. A 9-pin D-Sub plug-type connector is provided for the servicing interface.

Power supply

The POA module is supplied via the system bus with the required operating voltages $+5 \mathrm{~V},+15 \mathrm{~V}$, 15 V and the buffer voltage of $\pm 3.6 \mathrm{~V}$. The operating voltage for the measuring systems (+5 V) is available in the 15 -pin HD-Sub socket.

Power supply of the measuring systems

For supplying the measuring systems, an external voltage (operating voltage of the measuring systems) has to be fed through the terminals 24 VI and 0 VI .

6.2 Positioning module POA (continued)

Technical data

Processor

Module identifier

Save

- for operating system
- for parameters and

NC programs

- for parameters
- for NC data

20 MHz clock frequency, additionally coprocessor during high performance version

12 H , requestable in address 80 H

EEPROM, 196kB

EEPROM, 60kB
RAM, $64 \mathrm{kB} \quad$, with back-up battery ($\mathrm{U}_{\text {battery. }}$ min. $2,4 \mathrm{~V}$)
RAM, 96kB , with back-up battery ($U_{\text {battery. }}$ min. $2,4 \mathrm{~V}$) the data in RAM Saving remain also with out approx. 2 hours to pulled module receive.

Interfaces

- service

RS422 snaps - interface,
for operating system development and diagnosis connection over 9pol. CD-Sub-plug at the front side.

- BUS
the interface to the system bus consists off two 32bit-Registern over those the datentransfer between that central processing unit and the internal processor take place. the datentransfer runs interrupt-controlled over two handshake flag, those during writing and reading that register to be settinged automatically or reset.

Axes	the module knows 3 servo axes in different operating modes, among other things. Linear and circular interpolation trigger.
Tool offset compensation	only during high performance version possible

6.2 Positioning module POA (continued)

Technical data (continuation)

Inputs

- path measuring system
- sensor input

Outputs

Safety functions

- Watchdog
- +5V-Ueberwachung
- $\pm 15 \mathrm{~V}$-Ueberwachung
- battery monitoring
- NA signal
- end positions
interface for on absolute measuring system (SSI) per axis. programmable transfer frequencies $250 \mathrm{kHz}, 330 \mathrm{kHz}, 500 \mathrm{kHz}, 1 \mathrm{MHz}$. programmable data format max. 32Bit. software related switching Gray/Binaer code
optically decoupled 24V-Eingang for each axis
on analogue output per axis; Resolution 16bit; voltage range -10 V to +10 V (max. 5 mA)
monitors the internal processor and stops the axes in the event of an error
if $U_{c c}<4,65 \mathrm{~V}$ is created RESETS stops all axes in the event of an error, if message creates
message creates if $U_{\text {battery }}<2,4 \mathrm{~V}$
stops all axes with power failure
per axis two software limit switches are programmable

6.2 Positioning module POA (continued)

Switching level
Inputs
Measuring system signals Pulse+, pulse-
low: min. -1.0 V max. +1.2 V
high: min. +2.8 V max. +5.5 V
Reference potential $=0 \mathrm{~V}$ of the control unit
Measuring system signals Data+, data-
low: min. -1.0 V max. +1.2 V
high: min. +2.8 V max. +5.5 V
Reference potential $=0 \mathrm{~V}$ external
Sensor input
low: min. -1.0 V max. +14.0 V
high: min. +17.0 V max. +30.0 V

6.2 Positioning module POA (continued)

Block diagram

6.3 Step motor module SMM

Active axis module for 3 stepping motors

Standard version art. NR. 083676
CPU for automatic interpolation and position adjustment

High performance version art. NR. 083677
CPU with coprocessor
for automatic interpolation and position adjustment, Tool offset compensation and parameter calculation

6.3 Step motor module SMM (continued)

Allocation of the 9-pin Socket 'service‘

Pin 1	screen
Pin 2	TXD+
Pin 3	TXD-
Pin 4	-
Pin 5	GND
Pin 6	VCC
Pin 7	RXD-
Pin 8	RXD+
Pin 9	MSR

Allocation of the 10 -pin upper terminal strip with ASM
upper terminal strip

Pin 1	T1	clock 1
Pin 2	R1	direction 1
Pin 3	B1	Boost 1
Pin 4	\perp	screen
Pin 5	Ref1	reference switch 1
Pin 6	Ref2	reference switch 2
Pin 7	MT1	sensor 1
Pin 8	MT2	sensor 2
Pin 9	-	
Pin 10	OV	(externally 0V)

lower terminal strip

Pin 1	T2	clock 2
Pin 2	R2	direction 2
Pin 3	B2	Boost 2
Pin 4	\perp	screen
Pin 5	T3	clock 3
Pin 6	R3	direction 3
Pin 7	B3	Boost 3
Pin 8	Ref3	reference switch 3
Pin 9	MT3	sensor 3
Pin 10	OV	(externally 0V)

6.3 Step motor module SMM (continued)

Function

The step motor module SSM is designed for selecting the step motor power range out of three. Each channel has the control signals 'Clock pulse', 'Direction' and 'Boost' as well as inputs for reference and measuring sensors. All inputs and outputs are electrically isolated by means of an optical coupler.

Components

The module has the following components:
Processor containing the operating system 'POS' (EEPROM)
Battery-buffered RAM memory for system data and NC programs
Memory for processing cycles (EEPROM)
System interface for the PLC
Servicing interface
Three interfaces for step motor power unit
Three inputs for reference signals
Three measuring signal inputs for connecting sensors

Connection

The whole of the peripheral signals are connected by means of plug-type connectors at the front side of the module. The control signals for the step motor power units as well as the reference and sensor signals are connected by means of two 10-pin screwed plug-type connectors. There is provided a 9 -pin D-sub plug-type connector for the servicing interface.

Power supply

The SMM module is supplied via the system bus with the required operating voltages $+5 \mathrm{~V},+15 \mathrm{~V}$, -15 V and the buffer voltage of $\pm 3.6 \mathrm{~V}$.

6.3 Step motor module SMM (continued)

Technical data

Processor	20MHz clock frequency, additionally coprocessor during high performance version
Module identifier	16 H, requestable in address 80 H

Save

- for operating system

EEPROM, 196kB

- for parameters and

NC programs
EEPROM, 60kB

- for parameters
- for NC data

RAM, 64kB , with back-up battery ($U_{\text {battery. }}$ min. $2,4 \mathrm{~V}$)
RAM, 96kB , with back-up battery ($\mathrm{U}_{\text {battery. }}$ min. $2,4 \mathrm{~V}$) the data in RAM Saving remain also with out approx. 2 hours to pulled module receive.

Interfaces

- service for Operating system development and diagnosis
- BUS

RS422 snaps - interface,
max. Data transmission rate 20Mbit/s, connection over 9pol. CD-Sub-plug at the front side.
the interface to the system bus consists off two 32bit-Registern over those the datentransfer between that central processing unit and the internal processor take place. the datentransfer runs interrupt-controlled over two handshake flag, those during writing and reading that register to be settinged automatically or reset.

- to stepping motor service section The control signals ‘ clock ', ' direction ' and ' Boost ' are as visual separate open collector outputs ($28 \mathrm{~V}, 30 \mathrm{~mA}$) implements. The signals are connected through in each case to the pin $10(0 \mathrm{~V})$. The max. clock frequency is 60 kHz .

Tool offset compensation
only during high performance version possible.

6.3 Step motor module SMM (continued)

Technical data (continued)

Technical data (continuation)

Inputs

- reference input
- sensor input

Controlling outputs

‘ clock ', 'direction ' and ' Boost ‘
ein status: $\quad I_{\max }=30 \mathrm{~mA} / I_{\min }=5 \mathrm{~mA}, \mathrm{U}_{\text {cemax }}=2,2 \mathrm{~V}$
out status: $\quad \mathrm{I} \leq 1 \mathrm{~mA}, \mathrm{U}_{\text {cemax }}=28 \mathrm{~V}$
optically decoupled 24 V -Eingang for each axis optically decoupled 24V-Eingang for each axis

Safety functions

- Watchdog
- +5V-Ueberwachung
$- \pm 5 \mathrm{~V}$-Ueberwachung
- battery monitoring
- NA signal
- end positions

switching levels

Reference input

Sensor input
monitors the internal processor and stops the axes in the event of an error
if $U_{c c}<4,65 \mathrm{~V}$ is created RESETS
stops all axes in the event of an error, if message creates
message creates if $U_{\text {battery. }}<2,4 \mathrm{~V}$
stops all axes with power failure
per axis two software limit switches are programmable
low: min. -1.0V max. +14.0 V high: min. +17.0 V max. +30.0 V
low: min. -1.0 V max. +14.0 V
high: min. +17.0 V max. +30.0 V

6.3 Step motor module SMM (continued)

Block diagram

6.3 Step motor module SMM (continued)

Connection scheme (examples)

SSM module Power unit

A cable having screened pairs of wires is recommended for connecting. The cable screenings can be skinned and connected at the power unit or on both ends.
7. Digital input/output modules
7.1 Input/output module AEK 7-2
7.2 Input module EK 7-5
7.3 Output module AK 7-8
7.4 Output module AK2 7-11
7.5 Relay module AKR 7-14

7.1 Input/output module AEK / SEA

In / output module AEK / SEA
with 16 inputs and 16 outputs

Input delay
with AEK approx. 3ms
with SEA approx. $0,15 \mathrm{~ms}$

Allocation of the 10-pin Terminal strips of inputs

Allocation of the 10 -pin Terminal strips of outputs

	third terminal strip	fourth terminal strip
Pin 1	17 output	25 output
Pin 2	18 output	26 output
Pin 3	19 output	27 output
Pin 4	20 output	28 output
Pin 5	21 output	29 output
Pin 6	22 output	30 output
Pin 7	23 output	31 output
Pin 8	24 output	32 output
Pin 9	24 V for 3. Block	24 V for 4. Block
Pin 10	OV for 3. Block	OV for 4. Block

7.1 Input/output module AEK / SEA (continued)

Technical characteristics

Module identifier

Inputs

Inputs

Input voltage
Switching level of inputs with
Hysteresis of inputs
Input current

Per input
$\begin{array}{ll}\text { Input delay } & \text { AEK } \\ & \text { SEA }\end{array}$

Protection against negative voltage peaks
OV-Potential

07 H , requestable in address 80 H 16
max. 30V
approx. 5 V
approx. 1 V
7 mA
ever on filters
approx. 3ms
approx. $0,15 \mathrm{~ms}$
yes
internally separately in blocks to ever 8 inputs

7.1 Input/output module AEK / SEA (continued)

Technical characteristics

Outputs

Outputs 16

External supply voltage the output blocks

Admissible permanent current
Visual check
by LED
Galvanic separation
OV-Potential
over opto couplers

Short circuit proof
Current limiting
Over-temperature disconnection

Internal cut-off diode for inductive loads
Fuse protection

Output delay
max. 200mJ
ever 8 outputs over own inlet for separate fuse protection
approx. $7,5 \mu \mathrm{~s}$ when switching on on approx. 29μ s when switching off

Diagnosis

For 8 outputs each on diagnostic bit is 2 . at the disposal, altogether
Are monitored:

- undervoltage
- wire break
- short-circuit against 0 and 24 v
- over-temperature

7.1 Input/output module AEK / SEA (continued)

Block diagram

7.2 Input module EK

Input module

with 32 inputs

		terminal strip	fourth terminal strip		
Pin 1	17	input	25	input	
Pin 2	18	input	26	input	
Pin 3	19	input	27	input	
Pin 4	20	input	28	input	
Pin 5	21	input	29	input	
Pin 6	22	input	30	input	
Pin 7	23	input	31	input	
Pin 8	24	input	32	input	
Pin 9	-				
Pin 10	OV	for 3. Block		OV	B

Allocation of the 10 -pin Terminal strips of inputs

	first terminal strip		second terminal strip	
Pin 1		input	9	input
Pin 2	2	input	10	input
Pin 3	3	input	11	input
Pin 4	4	input	12	input
Pin 5	5	input	13	input
Pin 6	6	input	14	input
Pin 7	7	input	15	input
Pin 8	8	input	16	input
Pin 9	-		-	
Pin 10	OV	for 1. Block		OV for 2nd b

Allocation of the 10-pin Terminal strips of inputs

Pin $1 \quad 17$ input
Pin 218 input
Pin $3 \quad 19$ input
Pin 420 input
Pin $5 \quad 21$ input
Pin 622 input
Pin 723 input
Pin 824 input
Pin 10 OV for 3. Block
OV for 4. Block

7.2 Input module EK (continued)

Technical characteristics

Module identifier
Inputs
Input voltage
Visual check
Galvanic separation
Switching level with
Hysteresis
Input current
Per channel ever on input filters
Input delay
Protection against negative voltage peaks
OV-Potential

00 H , requestable on Adesse 80 H 32
max. 30V
by LED
over opto couplers
approx. 5 V
approx. 1V
7 mA
approx. 3ms
yes
internally separately in blocks to ever 8 inputs
7.2 Input module EK (continued)

Block diagram

7.3 Output module AK

Output module

with 32 outputs with for each $0,5 \mathrm{~A}$

Allocation of the 10-pin Terminal strips of outputs

	first terminal strip	second terminal strip
Pin 1	1 output	9 output
Pin 2	2 output	10 output
Pin 3	3 output	11 output
Pin 4	4 output	12 output
Pin 5	5 output	13 output
Pin 6	6 output	14 output
Pin 7	7 output	15 output
Pin 8	8 output	16 output
Pin 9	24 V for 1. Block	24 V for 2. Block
Pin 10	OV for 1. Block	OV for 2. Block

ation of the 10-pin Terminal strips of outputs					(e23
	third	terminal strip	four	terminal strip	: ${ }^{24 \mathrm{av}}$
Pin 1	17	output	25	output	
Pin 2	18	output	26	output	
Pin 3	19	output	27	output	${ }^{\circ} \mathrm{O} 25$
Pin 4	20	output	28	output	-
Pin 5	21	output	29	output	-
Pin 6	22	output	30	output	(ex
Pin 7	23	output	31	output	24V
Pin 8	24	output	32	output	ov
Pin 9	24 V	for 3. Block		24 V for 4. Block	AK
Pin 10	OV	for 3. Block		OV for 4. Block	083942

7.3 Output module AK (continued)

Technically characteristics

Module identifier
Outputs
Fatigue strength for each output
External supply voltage
the output blocks
Visual check
Galvanic separation
Short circuit proof
Current limiting
Over-temperature disconnection
Internal cut-off diode
Fuse protection

Output delay

OV-Potential

08 H , requestable in address 80 H
$32,100 \%$ at the same time loadable
0,5A
min. 20 V
max. 30V
by LED
over opto couplers
yes
yes
yes
max. 200 mJ
ever 8 outputs over own inlet for separate fuse protection
approx. $7,5 \mu \mathrm{~s}$ when switching on on approx. 29μ s when switching off
internally separately in blocks to ever 8 outputs

Diagnosis

For 8 outputs each on diagnostic bit is to 4 at the disposal, altogether.
Are monitored:

- undervoltage
- wire break
- short-circuit against 0 and 24 V
- over-temperature

7.3 Output module AK (continued)

Block diagram

7.4 Output module AK2

Output module

with 16 outputs with for each 2A

	first terminal strip		second terminal strip	
Pin 1	9	Output	13	Output
Pin 2				
Pin 3	10	Output	14	Output
Pin 4				
Pin 5	11	Output	15	Output
Pin 6		Output		
Pin 7	12	Output	16	Output
Pin 8				
Pin 9	24 V	for 3. Block	24 V	for 4. Block
Pin 10	0 V	for 3. Block	0 V	for 4. Block

7.4 Output module AK2 (continued)

Technical characteristics

Module identifier	$0 A$
Outputs	16

Fatigue strength for each output 2A
Per plug (4 outputs)
max. 8A
External supply voltage
the output blocks
Visual check
Galvanic separation
Short circuit proof
Current limiting
Over-temperature disconnection
Internal cut-off diode
Fuse protection ever 4 outputs over own inlet for separate fuse protection

Output delay
approx. $7,5 \mu \mathrm{~s}$ when switching on on approx. $29 \mu \mathrm{~s}$ when switching off

Note: \quad Pin $1+2,3+4,5+6,7+8$ the plug are connected.

Diagnosis

For 4 outputs each on diagnostic bit is 4 . at the disposal, altogether
Are monitored:

- undervoltage
- wire break
- short-circuit against 0 and 24 v
- over-temperature

7.4 Output module AK2 (continued)

Block diagram

7.5 Relay module AKR

Output module

with 16 relay outtputs
with for each 2A

Allocation of the $10-\mathrm{pin}$ Terminal strips of outputs first terminal strip second terminal strip
Pin 1
Pin 2
1 Relay
5 Relay
Pin 3
Pin 4
2 Relay
6 Relay
Pin 5
Pin 6
Pin 7
Pin 8
4 Relay
8 Relay
Pin 9
Pin 10

Allocation of the 10 -pin Terminal strips of outputs
first terminal strip second terminal strip

Pin 1	9	Relay	13	Relay
Pin 2				
Pin 3	10	Relay	14	Relay
Pin 4				
Pin 5	11	Relay	15	Relay
Pin 6				
Pin 7	12	Relay	16	Relay
Pin 8			24 V	for Relay
Pin 9	-		$0 V$	for Relay
Pin 10	-			

7.5 Relay module AKR (continued)

The relay module actual suitably for machine couplings and general switching from low voltages (max. 35 V) with absolute galvanic separation.

The pins 9 (24 v externally) as well as the pins $10(0 \mathrm{~V})$ the front plug are among themselves bridged.

In case of failure of supply voltages both for the control and for the relays falls the normally open contact off.

Technically characteristics

Module identifier
Outputs
Visual check
Galvanic separation
Admissible permanent current with $24 \mathrm{~V} \cong$
Admissible crest current with 10\% OD (max. 4s)

Admissible max. Bias-reducing potential
External supply voltage min. 20V the output blocks

Output delay

Current consumption with 5 V
(all outputs switched on)
Current consumption 24V (external)
(all outputs switched on)

2A 15A 35 V
0 CH , requestable in address 80 H 16
by LED
over opto couplers and relays
max. 30V
approx. 6 ms when switching on on approx. $2,5 \mathrm{~ms}$ when switching off

250 mA

300 mA

7.5 Relay module AKR (continued)

Block diagram

Reset

8. Analog input/output modules
8.1 Digital-analog converter DAW2 / DAW4 8-2
8.2 Analog-digital converter ADW4 8-6

8.1 Digital-analog converter DAW2 / DAW4

Output module with
2 analog outputs with DAW2
and
4 analog outputs with DAW4

ANALOG INPUT/OUTPUT MODULES

8.1 Digital-analog converter DAW2 / DAW4 (continued)

Allocation of the 10-pin Terminal strip with DAW2
Pin $1 \quad \mathrm{~S} 1+\quad$ command value 1
Pin 2 S1-
Pin $3 \perp \perp$ screen
Pin $4 \quad$ S2+ command value 2
Pin 5 S2-
Pin $6 \perp$ screen
Pin 7 -
Pin 8 -
Pin 9 -
Pin 10 -

Allocation of the 10-pin Terminal strip with DAW4 upper terminal strip

Pin $1 \quad$ S1+ command value 1
Pin $2 \quad$ S1-
Pin $3 \perp$ screen
Pin $4 \quad$ S2+ command value 2
Pin 5 S2-
Pin $6 \perp$ screen
Pin 7 -
Pin 8
Pin 9
Pin 10

ANALOG INPUT/OUTPUT MODULES

8.1 Digital-analog converter DAW2 / DAW4

Technical characteristics

Outputs

2 analog outputs with DAW2
4 analog outputs with DAW4
to the analog output of a digital signal
Voltage range
-10 V to +10 V
Output current
max. 5mA
Output impedance
0.1Ω

Accuracy

Resolution 16Bit
max. linearity errors $\pm 4 \mathrm{LSB}$
max. offset errors $\pm 0,3 \mathrm{mV}$

Protective functions

- protective circuit	against positive and negative voltage peaks as well as against external voltage
- safety disconnection	the outputs with power failure by power Good signal
- safety disconnection	the outputs by CPU Watchdog

8.1 Digital-analog converter DAW2 / DAW4 (continued)

Block diagram

DAW4

8.2 Analog-digital converter ADW4 / ADW4E / ADWI4

Input module

with 4 differential inputs
to the digitization
an analog voltage with ADW4 / ADWÊ or an analog current with ADWI4

8.2 Analog-digital converter ADW4 / ADW4E / ADWI4 (continued)

allocation of the 10-pin Terminal strip with ADW4 / ADWE
upper terminal strip

Pin 1	S1+	analogue value 1
Pin 2	S1-	
Pin 3	\perp	screen
Pin 4	S2+	analogue value 2
Pin 5	S2-	
Pin 6	\perp	screen
Pin 7	+15 V	supply
Pin 8	-15 V	for ext. Devices
Pin 9	5 V	
Pin 10	OV	

lower terminal strip

Pin 1	S3+	analogue value 3
Pin 2	S3-	
Pin 3	\perp	screen
Pin 4	S4+	analogue value 4
Pin 5	S4-	
Pin 6	\perp	screen
Pin 7	+15 V	supply
Pin 8	-15 V	for ext. Devices
Pin 9	5 V	
Pin 10	0 V	

Allocation of the 10-pin Terminal strip with ADWI4

upper terminal strip			lower terminal strip		
Pin 1	+15V		Pin 1	+15V	
Pin 2	11	analogue value 1	Pin 2	13	analogue value 3
Pin 3	\perp	screen	Pin 3	\perp	screen
Pin 4	+15V		Pin 4	+15V	
Pin 5	12	analogue value 2	Pin 5	14	analogue value 4
Pin 6	\perp	screen	Pin 6	\perp	screen
Pin 7	+15V	supply	Pin 7	+15V	supply
Pin 8	-15V	for ext. Devices	Pin 8	-15V	for ext. Devices
Pin 9	5 V		Pin 9	5 V	
Pin 10	OV		Pin 10	OV	

8.2 Analog-digital converter ADW4 / ADW4E / ADWI4 (continued)

Technical characteristics ADW4 / ADWÊ

Inputs

4 differential inputs	to the digitization of an analog voltage
Voltage range	-10 V to +10 V
Input impedance with U+	$100 \mathrm{k} \Omega$
	$10 \mathrm{k} \Omega$
Transformation time per channel	$50 \mu \mathrm{~s}$

Accuracy ADW4

Resolution 12Bit
max. linearity errors $\pm 1,5 \mathrm{LSB}$

Accuracy ADWÊ

Resolution
16Bit

Protective functions

Overvoltage protection
at the inputs

Supply voltages

Led additionally outward
Supply voltages
$+5 \mathrm{~V}, \pm 15 \mathrm{~V}, \quad 50 \mathrm{~mA}$

8.2 Analog-digital converter ADW4 / ADW4E / ADWI4 (continued)

technical characteristics ADWI4

Inputs

4 differential inputs	to the digitization of an analog current
Current area	$0-20 \mathrm{~mA}$
Transformation time per channel	$50 \mu \mathrm{~s}$

Accuracy ADWI4

Resolution 12Bit
max. linearity errors
$\pm 1,5 \mathrm{LSB}$

Protective functions

Overvoltage protection

Supply voltages

Led additionally outward Supply voltages
at the inputs
$+5 \mathrm{~V}, \pm 15 \mathrm{~V}, 50 \mathrm{~mA}$
8.2 Analog-digital converter ADW4 / ADW4E / ADWI4 (continued)

Block diagram

8.2 Analog-digital converter ADW4 / ADW4E / ADWI4 (continued)

9. Communication modules
9.1 Communication processor COM 9-1
9.2 Active EtherNet connection ETH 9-9
9.3 Decentral peripheral Interface AS-I 9-14
9.4 Module for CAN applications 9-19
9.5 Module for CAN applications 4-way aktiv 9-23
9.6 Module for CAN applications 4-way aktiv, optical fibre 9-30

9.1 Communication module COM

Module for user specific Logs

Light emitting diode ST Status indication

Service Allocation of the 9-pin Socket ' service ‘

Pin 1	screen
Pin 2	TXD+
Pin 3	TXD
Pin 4	-
Pin 5	GND
Pin 6	VCC
Pin 7	RXD-
Pin 8	RXD+
Pin 9	MSR

COM Allocation of the 9-pin Sockets ‘COM1 ', ‘COM2 ‘ and ‘COM3 ‘ with TTY - 20mA - adapter,
Transmitter and acceptor alternatively
in plugs bridge actively or passively
Pin 1 screen
Pin 2 Sender+
Pin 3 Sender-
Pin $4 \quad 20 \mathrm{~mA}$ Power source
Pin 5 GND
Pin $6 \quad$ 20mA Power source
Pin 7 acceptor -
Pin 8 acceptor +
Pin 9 GND

Allocation of the 9-pin Sockets ‘ COM1 ', ‘ COM2 ‘ and ' COM3 ‘
with V24-RS232-adapter
Pin 1 screen
Pin $2 \quad$ Rx
Pin 3 Tx
Pin 4 DTR
Pin 5 GND
Pin 6 DCD
Pin 7 RTS
Pin 8 CTS
Pin 9

9.1 Communication module COM (continued)

Function

COM is programmable processor module for the customer's specific applications such as for connecting bar code readers
for special serial interconnections

Components

The module contains the following components:
EEPROM memory for the operating system
RAM memory (buffered)
EEPROM memory
Interface COM1 asynchronous
Interfaces COM2 and COM3 switchable asynchronous / synchronous
Interface for developing an operating system (serivicing)
System interface PLC \leftrightarrow COM 32bit

Data safeguarding

The RAM memory is supplied by the power unit from the central buffer when the module is plugged into the chassis. When the module is plugged out, the built-in buffer continues the supply of the RAM memory for a short time.

9.1 Communication module COM (continued)

Technical data

Processor
Memory for operating system Memory for free availability Memory for system data

Interface COM1 asynchronous

Interfaces COM2 and COM3 asynchronous or synchronous

Servicing interface for developing an operating system and diagnostics

BUS interface
NA signal

Power supply

20 MHz clock pulse
EEPROM, 128kB
EEPROM, 256kB
RAM, 256kB
can be optionally provided with 20 mA or V24 adapter, transmission rate max. 38400 baud
can be optionally provided with 20 mA or V24 adapter, transmission rate max. 38400 baud

Fast RS422 interface
It is possible to load a program that is compiled with
Turbo Pascal 6.0 and converted with Romcode into the EEPROM by means of the servicing interface.
to the PLC
Stops the program in case of power failure and safeguards the memory contents
$+5 \mathrm{~V}(\pm 5 \%), 980 \mathrm{~mA}$

The COM module is supplied without peripheral interface adapter.

9.1 Communication module COM (continued)

Status display

The light-emitting diode shows the program and hardware status.

Lamp is lit

Lamp is off

Lamp is flashing System error
Flash frequency of 1 s
Flash frequency of $1 / 4 \mathrm{~s}$

Flash frequency of $1 / 10$ s

Everything in order

CPU is defective, no voltage or lamp is defective

Buffer battery is defective, to be exchanged
Voltage of $\pm 15 \mathrm{~V}$ is defective
(The AD converter and the operating panels do not work anymore)

Hardware error
(Module or network has failed)

9.1 Communication module COM (continued)

Block diagram

9.1 Communication module COM (continued)

Components layout

9.1 Communication module COM (continued)

Peripheral interface adapter for the connecting socket of the operating panel

TTY / 20mA interface

See for pin assignment also on page A4-2.

Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

RS232 / V24 interface

See for pin assignment also on page A4-2.

Circuit diagram

Components layout
The plugs of the peripheral interface adapters are protected against being interchanged erroneously.

This page shows to the module front.

9.2 Active EtherNet connection ETH

Module for active EtherNet Connection for all logs for all logs, usual with EterNet connection RJ45

Light emitting diodes

ST status indication
BS reading/write access
internal Przessor on EtherNet Controllers
LK distance check with RJ45
TX module transmits
RX module receives

Allocation of the 9-pin Socket ' service '

Pin 1
Pin 2 TXD+
Pin 3 TXD
Pin 4
Pin 5 GND
Pin $6 \quad$ VCC
Pin 7 RXD-
Pin 8 RXD+
Pin 9 MSR

9.2 Active EtherNet connection ETH (continued)

Allocation of the socket ' RJ45 ‘
Pin 1 TPETXP+TPETXDP
Pin 2 TPETXN+TPETXDN
Pin 3 TPERXP
Pin 4
Pin 5
Pin 6 TPERXN
Pin 7
Pin 8

Allocation of the 15-pin Socket ' AUI ‘
Pin 1 screen
Pin 2 COLP
Pin 3 TXP
Pin 4 screen
Pin 5 RECP
Pin 6 GND
Pin 7 -
Pin 8 screen
Pin 9 COLN
Pin10 TXN
Pin11 screen
Pin12 RECN
Pin13 +12V
Pin14 screen
Pin15 -

9.2 Active EtherNet connection ETH (continued)

Function

In PLC controls for the exchange of the data blocks and the user programs. In CNC controls also for the management of the work piece programs.

Hardware construction

Connection of a 8-pin socket RJ45 (10BASE-T) for EtherNet.

Connections at the module:

- Service 9pin socket of the BWO service interface
- AUI 25pin socket for EtherNet (only by ETH 084309)
- BNC (10BASE-2) 2pin socket for EtherNet (only by ETH 084309)
- RJ45 (10BASE-T) 8pin socket for EtherNet

Status and diagnostic display:

- ST Status display
- BS Read or write access of the internal processor
- LK Line section check by RJ45
-TX Module is transmitting
- RX Module is receiving

9.2 Active EtherNet connection ETH (continued)

Software interface

The data interface to ETH is defined from the systemcall number 26.

CMD command

$$
0 \text { write on ETH }
$$

1 read of ETH

LL length low data 16Bit (L=0 : not data)
LH length high data 16Bit (L=0 : not data)

DATA data with variable length

9.2 Active EtherNet connection ETH (continued)

Software interface

Reports
PN = 0 initiational report connection construction

PN = 1...N
Data

Connection number
connection datas

9.3 Decentral peripheral Interface AS-I

Module AS I (084187) with 1 master circuit board for 124 inputs and outputs

Module AS2-I (084425) with 2 master circuit boards for 248 inputs and outputs

9.3 Decentral peripheral Interface AS-I (continued)

General information

The actuator sensor interface, briefly AS i, replaces the cable harness in the machine and equipment construction in the automation level, i.e. simple, machine-oriented binary cells are interlaced such as push-buttons, reed switches, valves and relays with the control.
AS i consists off a master module (master), Slave modules (Slaves), a AS i power pack for voltage supply with approx. 30V DC, and the ungeschirmten 2-Leiter-Kabel, which interconnects the AS i Items.

To a AS i masters can be connected max. 31 Slaves with the 2-Leiter cable. The master can transfer e.g. four output and four up to four data bits, thus initial conditions per Slave. Thus on master module $31^{*} 4=124$ output or input cards replaces and ensprechend many cables.

The AS i Slaves are available in differently versions, e.g. as control cabinet modules or as " intelligent " sensor/actuators. Your function is enough from the simple bi-directional I/O module (4 inputs, 4 outputs) up to complex system approaches, e.g. to the control of three-phase current synchronous engines. The 2-Leiter-Kabel transmits data and energy between the modules. It actual geometrically coded and is installed by means of penetration technique. AS i requires 5 ms per data exchange cycle in the maximum configuration (31 Slaves at the master) max.. Data security actual by continuous monitoring of network and peripheral devices as well as by special diagnostic possibilities ensures. Actual no programming work on master or Slave necessarily, verdrahtungsfehler are to a large extent impossible.

Actuator sensor interface for BWO system 900

AS i for system 900 is supported by the central processing units CEA and PLC. The coupling of the control at AS i is made hardware related by the BWO hardware Modules ASI (with a AS i master) and ASI2 (with two AS i mastern). Depending upon hardware module 124 or 248 inputs and outputs will transfer to the control. Master modules can be tied up up to four AS i, i.e. the system 900 supports up to four ASI or two ASI2 cards. The addresses Eingaenge-und of outputs can be determined by the user arbitrarily within the I/O area of the control, likewise the data area to the diagnosis of AS i within the flag area. Closer information in addition is in the paragraph PLC900, 9,4 process.

9.3 Decentral peripheral Interface AS-I (continued)

System structure for example

The following components are needed for an Aktuator-Sensor-Interface with BWO System 900:

- Board AS-I with one AS-i master module for connection of 31 slave modules or board AS-12 with two AS-i master modules for connection of 62 slave modules
- AS-i pin connection with stress relief for the connection of 2 AS-i flat cables
- AS-i power supply for AS-i standard *
- AS-i 2 conductor cable for AS-i standard *
- ever for application up to 31 AS-i slave modules, e.g. with ever 4 inputs and 4 outputs *

The with '*' marked hardware components are deliverable from other producer.

Occupation of AS-I pin connection with AS-I flat cable

AS-I - blue
AS-I + brown
AS-I - blue
AS-I + brown

9.3 Decentral peripheral Interface AS-I (continued)

Exemplary system structure

Since each AS i master module supports 124 Eíngaenge and 124 outputs, by the ASI card the initially or output images is occupied by four INPUT CLUTCH or AK modules. This address area can be defined over the SPS program by specification of the first initially or original address freely.

Example: Input address E1.1.1 is determined as base address.
Thus the input addresses E1.1.1 to E1.8.16 are occupied.
In this area no EK module may naturally be.
For the next AS i module may do as base address only E1.9.1 will use.

Closer information for the definition Eingangs-und original addresses as well as to the diagnosis of AS i bus systems with PLC 900 is in the paragraph PLC900, 9,4 process.

9.3 Decentral peripheral Interface AS-I (continued)

Binding actuator sensor Interface to the system 900

For the binding of the AS I must be indicated to the control, in which area AS I data or write may read. In addition four defined storage areas in the central processing unit must be reserved:

- input image for 124 inputs per AS I master module
- output image for 124 outputs per AS I master module
- status flag image for AS I diagnosis
- controlling flags, which release or lock certain functions on the AS I

The reserved storage areas start with a symbolic address, which is defined by those the user.

- AS__EB for the input image
- ASI_AB for the output image
- ASI_MB for the status and controlling flags

These three symbolic addresses must be created in the flag area starting with the symbolic address ASI_SC (defined in the example of flags, Mg.n"), as follows:

Mg.n	AS__SC
Mg.n +1	ASI_EB
Mg.n +2	-
Mg.n +3	-
Mg.n +4	-
Mg.n +5	ASI OFF
Mg.n +6	-
Mg.n +7	-
Mg.n +8	-
Mg.n +9	ASI_MB
Mg.n +10	-
Mg.n +11	-
Mg.n +12	-

The three base addresses can be defined now over a functional module by the SPS user freely.

9.4 Module for CAN Applications

Light emitting diodes
ST1 status indication CAN1
ST2 status indication CAN2
LED on CAN of ok
LED off error

CAN1 0 and CAN1 I as well as CAN2 0 and CAN2 I are internally interconnected in each case 1:1

$\begin{array}{ll}\text { pin } 1 & \text { can low } \\ \text { pin } 2 & \text { CAN }\end{array}$
pin 3 CAN GND
pin 4 -
pin 5 screen
pin 6 CAN GND
pin $7 \quad$ CAN high
pin 8 -
pin 9 -
housing Screen

9.4 Module for CAN Applications (continuation)

CAN Functions

That, CONTROLLER AREA network ' (CAN) actual internationally standardized (150 11898).
With CAN equal stations (controllers, sensors and actuators) are interconnected by a serial bus.
The bus actual a symmetrical or asymmetric two-wire line, which is protected depending upon request or designed ungeschirmt. The electrical parameters of the physical transfer are likewise in ISO 11898 determined.

The CAN Log corresponds to the real time request. In contrast to the cable harness and corrects the network protokol detects transfer errors, which are caused by electromagnetic irradiation.

The serial bus system is suitable in particular for the networking of, intelligent ' on - / output units as well as sensors and actuators in a system or a machine, which communicate with modular control systems in real time.

The CAN System can be used today everywhere favourably, where high safety requirements are to be fulfilled.

9.4

 Module for CAN Applications (continuation)
Components layout

CAN1 0

CAN1 I

CAN2 0

CAN2 I

9.4 Module for CAN Applications (continuation)

leads for AMK drives with CAN Bus

Important: Use only Twisted-Pair-cable or Fire-Wire-cable
BWO CAN Module
AMK regulators (X136 / X236)
(X137 / X237)

9pin D-SUB bush-type plugs and pin-type plugs
viewing from the front

Allocation 9pol. Socket / pin-type plug
Pin 1
Pin 2 CAN-low
Pin 3 CAN-GND
Pin 4 SYNC-low
Pin 5 shield
Pin 6 CAN-GND
Pin 7 CAN-high
Pin 8 SYNC-high
Pin 9 -
Housing shield

Allocation of the plug X136 / X236
Pin 1
Pin 2 CAN-GND
Pin 3 SYNC-high
Pin 4 SYNC-low
Pin 5 CAN-high
Pin 6 CAN-low
Housing shield

Allocation of the plug X137 / X237
Pin 1
Pin 2 CAN-GND
Pin 3 CAN-high
Pin 4 CAN-low
Pin 5 SYNC-high
Pin 6 SYNC-low
Housing shield

9.5 Module for CAN applications, 4-way active

CAN funktions

The Controller Area Network (CAN) is subject to international standards (ISO11898).

A CAN links stations with equal rights (control devices, sensors and actuators) using a serial bus.

The CAN protocol corresponds to real-time requirements.
Unlike a cable harness, the network protocol detects and corrects transfer errors caused by electromagnetic interference.

The serial bus system is particularly suitable for networking "intelligent" input / output units, sensors and actuators inside a system or machine which communicate in real time using modular control systems.

The expenditure for the wiring is small thereby and it can at any time further components be attached.

Nowadays the CAN system can be used to advantage wherever there are stringent security requirements.

4 way active CAN Module (800304)

- 4 CAN connections (DSUB or IEEE-1394)
- arm 7 microcontrollers 32 bits
- up to 32 Axes per CAN module
- 8 Axes per CAN channel possible
- up to 20 CAN I/O nodes per CAN module
- up to 5 CAN I/O nodes per channel
- 32 bits of data bus
- protocol CANopen
- diagnosis over 7 segment display
- firmware about WINBV programmable newly
- CAN Connectors with DSUB and IEEE-1394
are internally $1: 1$ connected

9.5 Module for CAN applications, 4-way active (continuation)

7-segment status displays

8. CAN module in reset

4 No hardware synchronisation
8 CAN module waiting for approval from CNC
5 CAN module waiting for one or more interfaces to initialise
b CAN module ready for operation (operating state)
If "F" and „I" appear alternately in the display, the firmware is defective and needs to be reprogrammed. The firmware can be transferred by WINBV. For this to happen, the "canfirmware" file must be saved in the root directory. If this is done, the CAN module loads the "latest firmware" every time the CNC control system is booted up.
To prevent the firmware from being reloaded every time the system is booted, remove the "canfirmware" file from the root directory after programming is complete.

In pre-operational state the following characters are displayed one after the other with a time difference of around one second:

P2c1 where:
P: Pre- operational
2: state
c: channel
1: channel / plug number between $1 . . .4$

In the event of an error, the display is similar. The following characters are displayed one after the other with a time difference of around one second:

F1c1 where:
F: error
1: error state Cyclical CAN communication interrupted
c: channel
1: channel / plug number between $1 . . .4$

CAN Pin Configuration 9 pins Connector
Pin 1
Pin 2 CAN low
Pin $3 \quad$ CAN ground
Pin 4 -
Pin $5 \quad$ Shielding
Pin $6 \quad$ CAN ground
Pin $7 \quad$ CAN high
Pin 8 -
Pin 9 -
Casing Shielding

9.5 Module for CAN applications, 4-way active (continuation)

Layout diagram

9.5 Module for CAN applications, 4-way active (continuation)

Connection cable for AMK Drives with CAN Bus system
Caution: Excluding protected Twisted Pair cable or cable IEEE-1394 from that AMK final drive accessories use!
BWO CAN Module
AMK Drive Controller (X136 / X236)
(X137 / X237)

Pin Configuration 9 pins Connector
Pin 1
Pin 2 CAN low
Pin 3 CAN ground
Pin 4 Sync low
Pin $5 \quad$ Shielding
Pin $6 \quad$ CAN ground
Pin 7 CAN high
Pin 8 Sync high
Pin 9 -
Casing Shielding

Pin Configuration X136 / X236 AMK
Pin 1
Pin $2 \quad$ CAN ground
Pin 3 Sync high
Pin 4 Sync low
Pin 5 CAN high
Pin 6 CAN low
Casing Shielding

6 Pins Connector
IEEE-1394

Top view

Pin Configuration X137 / X237 AMK
Pin 1
Pin $2 \quad$ CAN ground
Pin 3 CAN high
Pin 4 CAN low
Pin 5 Sync high
Pin 6 Sync low
Casing Shielding

9.5 Module for CAN applications, 4-way active (continuation)

Jumper

J1, J2, J3, J4 5 V on the plug P1... 4 (DSUB9) pin 9
Switch SW1, SW2, SW3, SW4
SW1: 120 Ohm Termination Resistor at Pin two and Pin seven (Timing data bus)

Caution: realize that a 120 Ohm Termination at both sides
of the cable (only there) causes an impedance of 60 Ohm to be measured!
SW2: Release galvanic isolation CAN-GND (Pin3, Pin6) = GND
SW3: Sync Low at Pin 4
SW4: Sync High at Pin 8
The Sync signal for the axles is insertable over switches 3 and 4.
Thus the synchronisation impulses for the AMK- drive- modules take place.

CAN Module as CAN I/O module

CAN module can be used also to the control of CAN I/O modules (input/output modules).

Here the following is valid:

- up to 20 CAN- I/O nodes per CAN module
- up to 5 CAN- I/O nodes per channel

For each nodes are supported:

- max. 64 digital inputs
- max. 64 digital outputs
or
- 2 input module analogous (AD- transducer)
- 2 autput module analogous (DA- transducer)

Cable lengths and Baud rates

With drives data transmission rates of $1 \mathrm{Mbits} / \mathrm{s}$ and 40 m cable length are possible. With I/O modules are possible for data transmission rates of $500 \mathrm{Kbits} / \mathrm{s}$ and 130 m cable length.

Master / Slave

The BWO CAN module represents the master in the network.
All other data- bus participants is to be regarded than Slave.

9.5 Module for CAN applications, 4-way active (continuation)

canconf

In the file " canconf" the configuration of the BUS- system is put down.
This file is processed when starting of application.
Here the values stand for the data, data transmission rate, the sync timer (I/O) and the number of the nodes and their addresses.

```
#################################################
## Manufacturer : BWO Technik Gmbh und CoKG ##
## Machine-No. : AZ65 ##
## Date : 29.05.2008 bz. ##
## ##
## CAN-Konfiguration for WAGO-IO-Module ##
## =============================================== ##
## Nodes 1 - Machine / Switchboard - ##
## 5 Input-Module 750-401 (2 Inputs) ##
## 5 Output-Module 750-501 (2 Outputs) ##
## ##
## ##
#################################################
#
## Baudrate 0=1000kB, 1=800kB, 2=500kB, 3=250kB, 4=125kB, 5=100kB ##
[baudrate]
2
#
## Sync timer (ms) to heading for the outputs and reading the inputs in. ##
[synctimer]
10
#
## Nodeguardtimer, (ms) to the monitoring of the CAN modules. ##
## SDO (0x100c), Guard-Time ##
[nodeguardtimer]
20
#
## Nodes 1-20, Disable Nodeguarding)
[disablenodeguardingfor]
#1
#
## Nodes 1-20, PDO addresses digital inputs ##
## Input-PDO: slot, socket ##
[input_pdos]
1:4,1
#2:4,2
#
## Nodes 1-20, PDO addresses digital outputs ##
```


9.5 Module for CAN applications, 4-way active (continuation)

```
## Output PDO: slot, socket ##
[output_pdos]
1:4,1
#2:4,2
#
## Nodes 1-20, digital inputs and outputs ##
## Allocation of the BWO I/O addresses ##
##
#
## Switchboard
## WAGO-Clamp
## 5 WAGO-Clamp 750-401 (2 Inputs)
## 5 WAGO-Clamp 750-501 (2 Outputs)
#
[pdo_1_io]
i2,E1.1.1
i2,E1.1.3
i2,E1.1.5
i2,E1.1.7
i2,E1.1.9
#
02,A1.1.1
02,A1.1.3
02,A1.1.5
02,A1.1.7
02,A1.1.9
#
## Nodes 1-20, SDO addresses ##
## node,idx,subidx,lun,value ##
[sdo_io]
#WAGO
1,0x100c,0,2,400 ## Guard-Time(ms) = Nodeguardtimer * Maximum number of
nodes(20)
1,0x100d,0,1,2 ## Life-Time-Faktor
#
#
## Nodes 1-20, SDO addresses ##
## node,idx,subidx,lun,value ##
#[sdo_io]
#WAGO
#2,0x100c,0,2,400 ## Guard-Time(ms) = Nodeguardtimer * Maximum number of
nodes (20)
#2,0x100d,0,1,2 ## Life-Time-Faktor
#
#
```


9.6 Module for CAN applications, 4-way active, optical fibre

CAN functions

The Controller Area Network (CAN) is subject to international standards (ISO11898).

A CAN links stations with equal rights (control devices, sensors and actuators) using a serial bus.

The CAN protocol corresponds to real-time requirements.
Unlike a cable harness, the network protocol detects and corrects transfer errors caused by electromagnetic interference.

The serial bus system is particularly suitable for networking "intelligent" input / output units, sensors and actuators inside a system or machine which communicate in real time using modular control systems.

Nowadays the CAN system can be used to advantage wherever there are stringent security requirements.

The advantage of a opticl fibre- connection is the potential separation of the equipment components.

Opticl fibre are insensitive in relation to electrical and magnetic influences of noise.

CAN module 4-way active, optical fibre (800323)

- 4 CAN connections light wave conductor (toslink)
- 1 Sync connection light wave conductor
- arm 7 microcontrollers 32 bits
- up to 32 axes per CAN module
- 8 axes per CAN channel possible
- up to 20 CAN-EA knots per CAN module
- up to 5 CAN-EA knots per channel
- 32 bits of data bus
- protocol CANopen
- diagnosis over 7 segment display
- firmware about WINBV programmable newly

9.6 Module for CAN applications, 4-way active, optical fibre (continuation.)

7-segment status displays

8. CAN module in reset

4 No hardware synchronisation
8 CAN module waiting for approval from CNC
5 CAN module waiting for one or more interfaces to initialise
b CAN module ready for operation (operating state)
If „F" and „I" appear alternately in the display, the firmware is defective and needs to be reprogrammed.
The firmware can be transferred by WINBV. For this to happen, the "canfirmware" file must be saved in the root directory. If this is done, the CAN module loads the "latest firmware" every time the CNC control system is booted up.
To prevent the firmware from being reloaded every time the system is booted, remove the "canfirmware" file from the root directory after programming is complete.

In pre-operational state the following characters are displayed one after the other with a time difference of around one second:

P2c1 where:
P: Pre-operational
2: state
c: channel
1: channel / plug number between 1 ... 4
In the event of an error, the display is similar. The following characters are displayed one after the other with a time difference of around one second:

F1c1 where:
F : error
1: error state Cyclical CAN cummunication interruptet
c: channel
1: channel / plug number between 1 ... 4

9.6 Module for CAN applications, 4-way active, optical fibre (continuation.)

Optical fibre baud rates
Optical fibre is for optical signal transmissions and works at BWO with $1 \mathrm{Mb} / \mathrm{s}$.

Optical fibre lengths
The Optical fibre length is co-ordinated with the light achievement of the transmitter and amounts to minimum 0.20 meters and maximally 15 meters.

Master / Slave

The BWO CAN module optical fibre represents the master in the network. All other data- bus participants is to be regarded than Slave.

10. Operating panels

10.1	Operating panel CNC 910	$10-2$
10.2	Operating panel CNC 920	$10-7$
10.3	Operating panel CNC 930	$10-13$
10.4	Operating panel RC 910	$10-23$
10.5	Touch screen calibration with CNC $910 /$ CNC $920 /$ RC 910	$10-27$
10.6	Operating panel CNC 900	$10-30$
10.7	Operating panel CNC 900C	$10-38$
10.8	Teachpanel	$10-47$
10.9	Power pack for no-break current supply USV for CNC 900C	$10-51$

10.1 Operating panels CNC910

Mass and weight

Dimensions
max. depth of the rear edge of the front plate to the rear
max. depth of the front edge of the front plate forward
Strength of the front plate
Weight
,
(width x height)
approx.
approx.. $1,6 \mathrm{~kg}$
55 mm
25 mm
4 mm
$277 \mathrm{~mm} \times 227 \mathrm{~mm}$

10.1 Operating panels CNC910 (continuation)

Panel cut out $\quad 247 \mathrm{~mm} \times 197 \mathrm{~mm}$ (width \times height)
Mounting with 10 threaded bolts M4x8, grounding rear side M4

Nr.	X	Y	Nr	X	Y
1	10,0	10,0	6	267,0	217,0
2	95,7	10,0	7	181,3	217,0
3	181,3	10,0	8	95,7	217,0
4	267,0	10,0	9	10,0	217,0
5	267,0	113,5	10	10,0	113,5

10.1 Operating panels CNC910 (continuation)

Plug contacts

DUIIV

St1	3 pin plug	Power supply
P3	9 pin D-SUB pin-type plug	RS422 or RS232 interface
J14, J15, J16	Selection of the interface P3	1 with 2 bridged = RS422 (preset) 2 with 3 bridged = RS232
JP3	8 pin socket	Connection with host over RJ45
JP10	5 pin plug	Connection handwheel (option)

10.1 Operating panels CNC910 (continuation)

Plug contacts

Allocation cable connection CNC Control - Operating panel CNC910

CNC Control Operating panel
(only with CPU with Art. Nr.
CNC910
088671 / 083671 / 084564)

10.1 Operating panels CNC910 (continuation)

Data

Display

LCD Display TFT 640×480
256 off 4096 colours
Touch screen with resolution 1024×1024
Size
6.5 "

Save

Run-time memory DRAM 16MB
Flash disk memory 8MB
for operating system and control surface

Switch

1 emergency stop switch
1 key-operated switsch
2 potentiometers

Keys

42 function keys, of it 15 freely shapable PLC Keys with display on LCD Display

Interfaces

1 EtherNet RJ45
1 Serial interface (RS232 / RS422)

10.2 Operating panels CNC920

Mass and weight

Dimensions (width x height)
max. depth of the rear edge of the front plate to the rear Strength of the front plate

Weight
$328 \mathrm{~mm} \times 310 \mathrm{~mm}$ 55 mm
4 mm
approx.
approx. 2 kg

10.2 Operating panels CNC920 (continuation)

Mounting cut out $300 \mathrm{~mm} \times 282 \mathrm{~mm}$ (width \times height).
Fixing with 12 threaded bolts M4x8, grounding rear side M4

No.	X	Y	Nr.	X	Y
1	54,0	10,0	7	274,0	300,0
2	164,0	10,0	8	164,0	300,0
3	274,0	10,0	9	54,0	300,0
4	318,0	50,0	10	10,0	250,0
5	318,0	155,0	11	10,0	155,0
6	318,0	250,0	12	10,0	50,0

10.2 Operating panels CNC920 (continuation)

Mounting cut out $50 \mathrm{~mm} \times 280 \mathrm{~mm}$ (width \times height).
Fixing with 12 threaded bolts $\mathrm{M} 4 \times 8$, grounding threaded bolt 9

Nr.	X	Y	Nr.	X	Y
1	40,0	10,0			
2	70,0	50,0	6	40,0	300,0
3	70,0	155,0	70,0	250,0	
4	70,0	250,0	8	10,0	155,0
			10,0	50,0	

10.2 Operating panels CNC920 (continuation)

Plug contacts

JP4 / JP6	10 pin terminal strip	externel potentiometers and key-operated switches	
P3	9 pin D-SUB pin-type plug	RS422 or RS232 interface	

10.2 Operating panels CNC920 (continuation)

Plug contacts

	10 pin terminal strip JP4	10 pin terminal strip JP6	
1	Screen	Screen	
2	Spindle GND	key-operated switch GND	
3	Spindle 5V	5 V	
4	Suppl. poti slider (free)	key-operated switch	
5	Suppl. poti slider (free)	-	
6	Spindle slider	Handwheel T1	
7	Screen	Screen	
8	Feed GND	GND	
9	Feed slider	HandwheelT2	
10	Feed 5V	5 V	

10.2 Operating panels CNC920 (continuation)

Data

Display

LCD Display TFT 640×480
256 off 4096 colours
Touch screen with resolution 1024×1024
Size
10,4"

Memory

Run-time memory DRAM 16MB
Flash disk memory 8MB
for operating system and control surface

Connections for external items:
1 key-operated switsch
4 potentiometers
1 handwheel

Keys

42 function keys, of it 15 freely shapable PLC Keys with display on LCD Display

Interfaces

1 EtherNet RJ45
1 Serial interface (RS232 / RS422)

10.3 Operating panel CNC930

The operating panels CNC930 are available in two versions, which differ only by the different sceen size and concomitantly by the dimensions:
$\begin{array}{ll}\text { CNC930/10 } & \text { Sceen size 10" } \\ \text { CNC930/15 } & \text { Sceen size 15" }\end{array}$
Dimensions B $\times \mathrm{H}$ in mm 328×310
Dimensions $\mathrm{B} \times \mathrm{H}$ in mm
430×370

CNC $930 / 10$

CNC $930 / 15$

10.3 Operating panel CNC930/10

Mass and weight CNC930/10

Dimensions
Deep one
approx. 4 mm
Strength of the front plate
Weight
(of the rear side of the mother board after rear up to the end of the dust cover)
(width x height)

10.3 Operating panel CNC930/10 (continuation)

Panel cutout CNC930/10 (width x height) $\quad 300 \mathrm{~mm} \times 282 \mathrm{~mm}$
Mounting with 12 threaded bolts $\mathrm{M} 4 \times 8$, grounding rear side M4

No.	X	Y	No.	X	Y
1	54,0	10,0	7	274,0	300,0
2	164,0	10,0	8	164,0	300,0
3	274,0	10,0	9	54,0	300,0
4	318,0	50,0	10	10,0	250,0
5	318,0	155,0	11	10,0	155,0
6	318,0	250,0	12	10,0	50,0

10.3 Operating panel CNC930/10 (continuation)

Panel cutout machine operating panel (width \times height) $\quad 50 \mathrm{~mm} \times 280 \mathrm{~mm}$
Mounting with 8 threaded bolts $\mathrm{M} 4 \times 8$, grounding threaded bolt 9

No.	X	Y	No.	X	Y
1	40,0	10,0	5	40,0	300,0
2	70,0	50,0	6	10,0	250,0
3	70,0	155,0	7	10,0	155,0
4	70,0	250,0	8	10,0	50,0

10.3 Operating panel CNC930/10 (continuation)

Plug allocation

JP4 / JP7	10 pin terminal strip	External potentiometers and key-operated switsches
P1	9 pin CD-SUB-pin-type plug	COM 1/RS232 Interface
JP17	PS / 2	Mouse / Keyboard
	$4 \times$ USB	
JP1	ETHERNET	
P2	15-poliger CD-SUB-bush-type plug	SVGA
JP2	$3,5 "-$ Stecker	IDE 2

10.3 Operating panel CNC930/15

Mass and weight CNC930/15

Dimensions
(width x height)
Deep one (of the rear side of the mother board after rear up to the end of the dust cover)
$430 \mathrm{~mm} \times 370 \mathrm{~mm}$

100 mm
Strength of the front plate
approx. 4 mm
Weight
approx. $\quad 3 \mathrm{~kg}$

10.3 Operating panel CNC930/15 (continuation)

Panel cutout CNC930/15 (width x height) $\quad 400 \mathrm{~mm} \times 340 \mathrm{~mm}$
Mounting with 16 threaded bolts M4×8, grounding rear side M4

No.	X	Y	No.	X	Y
1	50	10	9	380	360
2	160	10	10	270	360
3	270	10	11	160	360
4	380	10	12	50	360
5	420	50	13	10	320
6	420	140	14	10	230
7	420	230	15	10	140
8	420	320	16	10	50

10.3 Operating panel CNC930/15 (continuation)

Panel cutout machine operating panel (width x height) $\quad 50 \mathrm{~mm} \times 340 \mathrm{~mm}$
Mounting with 10 threaded bolts M4 x 8, grounding threaded bolt 11

No.	X	Y	No.	X	Y
1	40,0	10,0	6	40,0	360,0
2	70,0	50,0	7	10,0	320,0
3	70,0	140,0	8	10,0	230,0
4	70,0	230,0	9	10,0	140,0
5	70,0	320,0	10	10,0	50,0

10.3 Operating panel CNC930/15 (continuation)

Plug allocation

10.3 Operating panel CNC930

Data

Operating panels in two versions

CNC 930/10 LCD-Bildschirm TFT 10"	
Resolution / colours	$640 \times 480 / 16$ Bit
Touch screen resolution	1024×1024

CNC 930/15 LCD-Bildschirm TFT 15"
Resolution / colours 1024×768 /16Bit
Touch screen resolution 1024×1024

Dimensions
Operating panel
($\mathrm{B} \times \mathrm{H}$ in mm)

Machine operating panel

Operating panel
Machine operating panel
430×370
328×310
80×310
80×370

Processor
CPU Pentium compatibly $\quad 1,50 \mathrm{GHz}$

Memory

RAM memory 512 MB / 32MB shared Memory for Graphic
Hard disk

2,00 GB Flash Drive or = > 120 GB Harddisk

Keys

42 function keys, of it 15 freely shapable
PLC Keys with display on the LCD Display

Connections

1 Ethernet 10/100 Mbit
1 serial interface
4 USB 2.0
1 PS/2 mouse / keyboard
Potentiometer / handwheel / key-operated switsch
SVGA monitor / onboard Graphiccontroller
Operating system: Windows XP embedded
Machine operating panel (optional)
1 emergency stop
1 key-operated switsch with CNC 930/10
2 key-operated switsches with CNC 930/15
2 potentiometers
1 illuminated push button

10.4 Operating panels RC910

Mass and weight

Dimensions (width x height x depth)
Weight
$310 \mathrm{~mm} \times 240 \mathrm{~mm} \times 60 \mathrm{~mm}$
approx. 2 kg

10.4 Operating panels RC910 (continuation)

Plug contacts

DUIV)

RJ45 / RS422 / RS232
Interface

1	ON	-	-
2	-	-	RX
3	-	S+	TX
4	IP	-	-
5	-	S-	GND
6	OP	-	-
7	-	E-	-
8	-	E+	-
9	IN	-	-

D-SUB 9pin

$\stackrel{\text { P3 }}{1 \bullet \bullet \bullet \bullet \bullet}$

St1	3 pin plug	Power supply
P3	9 pin D-SUB pin-type plug	RS422 or RS232 interface
J14, J15, J16	Selection of the interface P3	1 with 2 bridged $=$ RS422 (preset) 2 with 3 bridged $=$ RS232

10.4 Operating panels RC910 (continuation)

Plug contacts

10.4 Operating panels RC910 (continuation)

Data

Display

LCD Display TFT 640×480
256 off 4096 colours
Touch screen with resolution 1024×1024
Size
6.5 "

Memory

Run-time memory DRAM 16MB
Flash disk memory 8MB
for operating system and control surface

Switch

1 emergency stop switch
1 key-operated switsch
1 release button
1 potentiometer

Keys

42 function keys, of it 15 freely shapable PLC Keys with display on LCD Display

Interfaces

1 EtherNet RJ45
1 Serial interface (RS232 / RS422)

10.5 Touch-Screen calibration

The Touch screen is calibrated in the factory before the distribution. Being after some time malfunctions occur, can be repeated the calibration.

For calibrating the two keys simultaneous press. Then this picture appears.

10.5 Touch-Screen calibration

In this picture the calibration points appear. The total area actual into 16 subranges divided. The markings (crosses) of the subranges with a pointed soft item touched lightly in the order

$$
\begin{aligned}
& 1-2-7-6-1 \\
& 2-3-8-7-2 \\
& 3-4-9-8-3 \\
& 4-5-10-9-4 \\
& \text { etc. }
\end{aligned}
$$

10.5 Touch-Screen calibration

It is recorded when each touching lightly on cross. This cross command as close ones as possible at the given mark point (cross) is situated.
The marking process can be repeated, in order to keep the dispersion as small as possible.

To net curtain aborted with key 'Quit' the process without saving.

$10.6 \quad$ Operating panel CNC 900

Mounting view

$10.6 \quad$ Operating panel CNC 900 (continued)

Side view

Front plate

$10.6 \quad$ Operating panel CNC 900 (continued)

Technical data

Processor	CPU 80C188 / 20MHz
Graphics	For selecting a passive color LCD-(STN)
Color LCD	Color VGA (640×480) with function keys in the display frame
Memory	256 kbyte EEPROM for PROMA pictures 256 kbyte operating system EEPROM 256 kbyte S-RAM
Inputs/outputs	3 override inputs 1 input for manual operating panel 4 switch inputs 1 serial input/output 20 mA , connection of manual operating panel 1 serial input/output 20 mA , connection of control unit 1 serial input/output 20 mA or V24 input/output for periphery interface, IO-traffic CNC or programming interface for flash EEPROM 1 serial input/output RS422 for servicing purposes

Keyboard For control functions with cursor keys and numerical key field
Front In IP65 design with 2 potentiometers and emergency power-off switch

Power unit Operating voltage $24 \mathrm{~V}=$ or 22 V ~, admissible range from 22 V to 35 V , current consumption 1.6 A for $24 \mathrm{~V}=$.
The primary and secondary voltages are electrically isolated in the power unit. Therefore, an isolating transformer is not required.

Working temperature up to $+40^{\circ} \mathrm{C}$

10.6 Operating panel CNC 900 (continued)

Operational characteristics

The operating panel CNC 900 offers the possibility of operating the CNC by means of a graphical surface created in PROMA.
It is possible to switch from the PROMA pictures to the CNC masks (surface of the mask PROM) and vice versa by means of the graphic / normal key after running through the CNC switch-on routine.

Loading the PROMA surface into the operating panel

the individual pictures of the PROMA project are united in a file upon generating them. This file has the name: SHOW_E
The file SHOW_E is loaded within the PROMA program by means of the function Load into the operating panel via the serial interface of the PC and saved in a flash EEPROM. For this purpose, a V24 connecting cable having a bridge (pin 15 to pin 21) and leading from the PC to the periphery socket of the operating panel has to be plugged in before switching on the unit. When being switched on, the operating panel recognized this bridge and initializes the periphery interface as a programming interface and waits within a CNC diagnostic picture. In this state, the CNC can be attended, too. With the CNC being active, it is possible to switch to the new PROMA pictures after loading a new SHOW_E file into the operating panel by means of the graphic / normal key. By doing so, the programming interface is reprogrammed for the IO interface of the CNC.

By pressing the keys F6 and F7 simultaneously, it is possible to switch from a PROMA picture to the CNC mask. By pressing the keys F6 and F7 once more simultaneously, it is possible to switch from the CNC mask to the CNC diagnostic picture in the text mode. Various diagnostic windows can be overlaid and various hardware tests can be called in this picture.

$10.6 \quad$ Operating panel CNC 900 (continued)

Motherboard

3 serial interfaces:	BWO - I/O periphery control BWO - control unit connection	25-pin SUB-D socket 9-pin SUB-D PLUG 9-pin SUB-D socket
	BWO - servicing connection	

$10.6 \quad$ Operating panel CNC 900 (continued)

Connections

$10.6 \quad$ Operating panel CNC 900 (continued)

Plug/socket document viewing from device internal side (pointer: direction of the signals)

Service 9 pole SUB-D socket

CNC control (20 mA) 9 pole SUB-D plug

Transmitter active -
receiver passive
fixed adjusted

Peripherie interface (V24) 25 pole SUB-D socket

Teach panel
16 pole plug pin bar
Off emergency switch and consent key 4 pole plug pin bar

Peripherie interface (20 mA) 25 pole SUB-D socket

Transmitter active or passivereceiver active or passive ever for cable circuit

$10.6 \quad$ Operating panel CNC 900 (continued)

Layout of the CNC keyboard (key codes that are sent to PROMA)

Numerical key field 0 to $9 / \pm$ / .
'fkey' F8 to F13

'ckey' 1 to 51

standard keys
10.7 Operating panel CNC 900 C

10.7 Operating panel CNC 900 C (continued)

10.7 Operating panel CNC 900 C (continued)

Technical data

Power unit	Operating voltag permissible rang permissible rang current consump fuse 6,3AT,
	galvanic separa
Work temperature	up to $+40^{\circ}$
Front	in IP65 design

PC-compatible hardware

Processor module
Color display
RAM memory
Hard disk
Disk drive
PC plastic-poil keyboard
Mouse
Interfaces

Free slots

BWO specific hardware

ISA 16Bit module with
PIC keyboard control ic board
Keyboard
Interfaces

Software
CPU ETX ETE Module, 400 MHz clock rate
TFT, 640×480, Execution TTL and LVDS, integrated function keys
256 MB gross; The restriction is under MS-DOS on 640K ≥ 40 GByte, 2,50 Zoll
$1.44 \mathrm{MB}, 3,5^{\prime \prime}$
MF2 5 pole circular connector
Option
COM1 9 pole SUB-D plug (V24)
COM2 25 pole SUB-D plug (V24)
COM3 $\quad 15$ pole SUB-D socket (V24 + 20mA)
LPT1 25 pole SUB-D socket,
Execution in PCl or ISA
0-1 x ISA 16Bit dependent on LPT1
$2-3 \times \mathrm{PCI}$ dependent on LPT1
$8 \times$ A/D converter 8Bit for override potentiometer $8 \times$ key switch

Cursor keys, numerical key field
CNC control 9 pole SUB-D plug ($20 \mathrm{~mA} / \mathrm{RS} 422$)
Teach panel $\quad 16$ pole plug pin bar
Off emergency switch and consent key 4 pole plug pin bar

MS DOS 6.22, WIN 98

10.7 Operating panel CNC 900 C (continued)

Position of the plugs and sockets

The marked components (with *) are already lay wires.

10.7 Operating panel CNC 900 C (continued)

Plug/socket document viewing from device internal side (pointer: direction of the signals)

CNC control
9 pole SUB-D plug

20 mA or
Transmitter active -
receiver passive
fixed adjusted

10.7 Operating panel CNC 900 C (continued)

Interface of operating panel CNC 900C

The Interface of operating panel supports 3 different standards of interfaces (siehe auch 10-30):

- TTY (TTY active / passive fixed)
- RS422
- RS485

A Jumper block switch over between the interfaces TTY and RS422/485.
If block J[8..12] on Pin $1<\longrightarrow$ Pin 2 , than TTY interface.
If block J[8..12] on Pin $2<\longrightarrow$ Pin 3 , than RS422/485 inteerface.
If jumper J13on Pin 2 — P Pin 3, than RS422 (084539) with perception.
If J 14 on Pin $1<\longrightarrow$ Pin 2 , than conclusion for RS485.
If J 14 on Pin $2<>$ Pin 3 , than conclusion for RS422.

Jumper	TTY	RS422/485	Abschluß		
			Jumper	RS485	RS422
J8	1-2	2-3			
J9	1-2	2-3	J14	1-2	2-3
J10	1-2	2-3			
J11	1-2	2-3			
J12	1-2	2-3			
J13	1-2	2-3			
J13	DCD-Bit	Interface	Transfer	RS422	
$1<\longrightarrow>2$	0	TTY/RS422	9600B	without per	ception
$2 \ll>3$	1	RS422/485	115KB	with perce	tion

10.7 Operating panel CNC 900 C (continued)

Plug/socket document viewing from device internal side (pointer: direction of the signals)

COM 1 (V24)
9 pole SUB-D plug

LPT 1
25 pole SUB-D socket

COM 2 (V24)
25 pole SUB-D plug

COM 3 (V24)
15 pole SUB-D socket

COM 3 (20mA)
15 pole SUB-D socket
Transmitter active or passivereceiver active or passive ever for cable circuit

10.7 Operating panel CNC 900 C (continued)

Plug/socket document viewing from device internal side (pointer: direction of the signals)

Schlüssel- schalter	1	2	3	4	5	6	7	8
Pin	1	3	5	7	9	11	13	15
Pin	2	4	6	8	10	12	14	16

key switch connection
16 pole plug

Potentio- meter	1	2	3	4^{*}	5	6	7	8
+5 V	1	4	7	10	13	16	19	22
Analog	2	5	8	11	14	17	20	23
GND	3	6	9	12	15	18	21	24

Potentiometer connection
26 pole plug

* Attention:

When a teach panel is connected, then it is internal on pin 4.

teach panel control 20 mA

teach panel on

potentometer

Teach panel 16 pole plug pin bar

Off emergency switch and consent key 4 pole plug pin bar

10.7 Operating panel CNC 900 C (continued)

Layout of the CNC keyboard (key codes that are sent to PROMA)

10.8 Teachpanel

Depth 94

Teachpanel provided with handwheel

Teachpanel without handwheel

10.8 Teachpanel (continued)

Connection schedule for the teachpanel

Operating panel CNC900/900C

Teachpanel:
16-pin plug-type binding post Art.-no. 002151

10.8 Teachpanel (continued)

Teachpanel

Id.Nr. 948 289

10.8 Teachpanel (continued)

Technical data

LCD display Alphanumeric display of 8 digits
Keyboard Function keys, keys for the axes, operating mode keys
Design Compact in a metal housing

Front	In IP65 design, okay key, emergency power-off switch, detachable-key switch and override potentiometer
Current supply	$20 \mathrm{~V} \sim$ from Operating panels CNC 900 and CNC 900 C
Connections	Operating panels and current supply via hybrid cable at the Operating panels CNC 900 and CNC 900 C, handwheel via transmitting cable to the sensing element
Working temperature	up to $+40^{\circ} \mathrm{C}$

Note!

Off safety reasons may the manual operating console only with switched off machine to the main operating console to be connected or from it separated.

10.9 Power pack for no-break current supply USV for CNC 900C

The buffered power pack USV enables also with power failure a controlled termination of the programs, like it required for the operating systems Windows 95 / 98, Windows NT, Unix or similar networkable program products to actual.
All files can be closed and the initial position be started.
The operating voltage is only then switched off by the computer.

Function description

The power pack USV consists the off following organs:

- input 24V DC / 21V AC
- undervoltage monitor
- lead akku buffering
- charging circuit for akku
- switching logic with service section for akku charge / on supply
- serial communication interface to the computer

24V AC/DC input

The power supply unit is supplied with $24 v$ DC or 21 V AC.
DC/DC transducers provide for galvanic separation between primary - and secondarily circle.

Undervoltage monitor

Starting from DC voltage $<19 \mathrm{~V}$ signals the monitoring circuit a mains failure.
The Akkus is switched into buffering.
If the load operation actively actual, these interrupted.

Lead akku

As Akku 2 lead akku blocks with $12 \mathrm{~V} / 1,2 \mathrm{Ah}$ are used.
In the load operation they are situated parallel; in the buffering in series.

Charging circuit for akku

The load management is organized by a PIC processor in connection with a drawer IC. Further functions of the sequence control are integrated.

10.9 Power pack for no-break current supply USV (continuation)

Switching logic with service section for akku charge / on supply

For the circuit there are 4 different operating conditions:

- line operation
- line operation with supporting buffering
- test operation (pure buffering)
- load operation

The respective operating condition becomes in Abhaenigkeit of the input voltage in connection with monentan called program between the computer and the PIC processor coordinates. The PIC controls over on in its program determined timing the suitable BUZ transistors and relay contacts of the power stage.

Serial communication interface to the computer

Data exchange between USV and computer is made by a serial interface on the USV and in the 1. Quilt over the COM 3 the BWO plugging in card. In 2. Quilt COM3 by on registers on this card one replaces, in order to be able to use these for other applications again. The signals are galvanically separately transferred. The following status information is processed:

- mains failure
- akku charges was entitled (fully loaded)
- akku test (capacity examination, inlet i.O.?)
- buffering actively
- buffering terminate (controlled or after fixed time of 2 min)

10.9 Power pack for no-break current supply USV (continuation)

Technical data

Input	$24 \mathrm{~V} D \mathrm{DC}$ or 21 V AC
Output	$5 \mathrm{~V} / 8 \mathrm{~A} \quad \pm 0,2 \%$
	$+12 \mathrm{~V} / 3 \mathrm{~A}$
	$-12 \mathrm{~V} / 0,5 \mathrm{~A}$

Akku	Dryfit A 512
Nominal voltage	12 V
Connections	plug
Float	max. 8min
Standard	2min with 4 repeating rates within 8 min, then 6 h loading time
Mains failures	max. 4 one on the other following

10.9 Power pack for no-break current supply USV (continuation)

Block diagram

11. Connection cables
11.1 Networking 11-2
11.2 Connector cables 11-6
11.2.1 Operating panel 11-6
11.2.2 Extension cables 11-7
11.2.3 Programming device 11-8
11.2.4 Service 11-14
11.2.5 Peripheral devices 11-15
11.2.6 Measuring system 11-16
11.2.7 ADW / DAW 11-18
11.2.8 Coupling of chassis groups 11-19

11.1 Networking

The individual stations of the control system 900 can interconnected by means of the highperformance network BWO-NET. The data transmission rate at which the I/O states and the data of the individual stations are transmitted, is $1 \mathrm{MBit} / \mathrm{s}$. In one network segment there are allowed up to 128 logical participants. For the purpose of operating the network sockets of CEA / PLC and CNC, a network adapter board (with transformer and adaptation) has to be installed in the individual modules (art. no. 083796). The modules CEA , PLC and CNC are supplied without network adapter boards.

T-pieces

The network sockets of the individual stations (CEA / PLC / CNC) are parallelly interconnected by means of a cable. For plugging in two cable ends in one network socket, there are used special Tpieces having two sockets.

Bus terminal

The bus cable (twin core twisted, surge impedance $=78 \Omega$) is occluded at the first and at the last station by means of a terminal resistor. This terminal is realized by means of a bridge between pins 5 and 9 in the terminal plug of the first and the last station.

Cable screening

The cable screening is connected conductively to the housing potential at the first station by means of the bridge between pins 1 and 4 in the terminal plug. For doing so, the terminal plug has to plugged into the left socket of the T-piece (on the left side, pin 4 has the screening potential). In all other stations, the cable screening is connected through conductively in the T-piece and is only electrostatically coupled to the housing potential. Thus a potential transient current is prevented from flowing through the cable screening of the data cable. It has to be taken care that the cable screenings are not connected to the shells of the D-Sub plugs (do not use any conductive caps; connect the screening only to pin 1). The terminal plug has to be plugged into the right socket of the T-piece at the last station (on the right side, pin 4 is not assigned).

If there is soldered a bridge between pins 5 and 9 in the plug of the data cable at the first station, the cable can be plugged into the net socket directly. In this case, the T-piece and the terminal plug can be dispensed with at the first station.

11.1 Networking (continued)

Example for interconnecting a network

$\stackrel{\odot}{\text { (HIU) }}$		\% ¢		(${ }^{\text {® }}$			$\stackrel{\text { © }}{\text { @IIU }}$
- st	Screening via bridge in plug to machine neutral	O st					
	Network terminal by means of bridge in plug						
	Connection via T-piece					Network terminal by means of bridge in plug	
	or direct connection without T-piece		Connection via T-piece		Connection via T-piece	Connection via T-piece	\%
	Screening via plug shell to machine neutral			$\left[\begin{array}{ll} \vdots & 017 \\ \vdots & 17 \\ 0 & 18 \\ 0 & 20 \\ 0 & 21 \\ 0 & 22 \\ 0 & 23 \\ 0 & 24 \\ 204 \\ 006 \end{array}\right]$			
(\%83671		(10ct		(1) CEA			$\underset{\substack{\text { CEA } \\ 08543}}{ }$ ©

11.1 Networking (continued)

BWO-NET connector cable and interfaces

Composition of the connector cable
Article
Article number

Data cable twin-core twisted, surge impedance 78W, screened, yard ware
002670
T-piece for plugging in 2 data cables
083878
(2 sockets for data cable, 1 plug for socket networking)
including 29 -pin D-Sub-plugs and 2 caps
$\begin{array}{ll}\text { 9-pin S-SUB pin plug (single) } & 001305 \\ \text { Cap (single) } & 001415\end{array}$

11.1 Networking (continued)

BWO-NET connector cable and interfaces (enlarged section)

11.2 Connector cables

11.2.1 Operating panel

Connector cable

from module CNC / PLC / CEA socket 'Operating panel'
to operating panel MT60 / MT90 / CNC900 / CNC 900C

9-pin D-SUB pin plug
9-pin D-SUB female plug

Article
Length of cable
Article number

Connector cable central unit - operating panel

$1 m$	083864
3 m	083816
10 m	083887
20 m	083881

11.2.2 Extension cable for programming device

Extension cable

If there is a larger distance between the switch cupboard and the machine (operating panel), an extension cable may be used resp. embedded for connecting the programming device.

From module CNC / PLC / CEA socket 'Programming device'
to the switch cupboard
9-pin D-SUB pin plug 9-pin D-SUB female plug

Article
Length of cable
Article number

Connector cable central unit - switch cupboard
10m
083910
25m
083911

11.2.3 Programming device (continued)

Converter set

consisting of
Interface converter 20mA / V24 BWO

Connector cable

from module CNC / PLC / CEA socket 'Programming device' to the interface converter

> 9-pin D-SUB pin plug 9-pinD-SUB female plug

Article
Length of cable
Article number

Converter set contains
083839
Interface converter 20mA / V24 BWO
(083782)

Connector cable central unit - converter $3 m$
(083818)

11.2.3 Programming device (continued)

Transducer set galvanically not separately
consisting off

- Interface transducers 20mA / V24 BWO on the module CNC / PLC / CEA are plugged in
- Connection cable
from interfaces the transducer to the 'programmer "

Item
Cable length Article number

Transducer set contains
084469

- Interface transducers 20 mA / V24 BWO
(084466)
- Connection cable central processing unit - transducers
$3 m$
(084468)

11.2.3 Programming device (continued)

Converter set

consisting of
Interface converter 20 mA / V24 with plug-in power unit 220 V

Connector cable
from module CNC / PLC / CEA socket 'Programming device’ to the interface converter
Connector cable
from the interface converter to the programming device

Article

Converter set contains
Interface converter 20 mA / V24 with plug-in power unit 220 V
Connector cable CPU - interface converter
Cable interface converter - programming device $3 m$
0.4 m 083840
(002115)
(083819)
(082861)

9-pin D-SUB pin plug 25-pinD-SUB pin plug

25-pin D-SUB female plug 9-pin D-SUB female plug

Article number

11.2.3 Programming device (continued)

Connector cable

from module CNC / PLC / CEA socket 'Programming device'	9-pin D-SUB pin plug	
to the programming device		15-pin D-SUB pin plug
Article	Length of cable	Article number
Cable central unit - programming device	3 m	083821
	5 m	084120
	20 m	083846

11.2.3 Programming device (continued)

Connector cable

from module CNC / PLC / CEA socket ‘Programming device’	9-pin D-SUB pin plug	
to the internal interface converter plug	25-pin D-SUB female	
Article	Length of cable	Article number
Cable central unit - interface converter	$3 m$	083820

11.2.3 Programming device (continued)

Connector cable

| from module CNC / PLC / CEA socket 'Programming device’ | 9-pin D-SUB pin plug |
| :--- | :--- | :--- |
| to the Siemens PG 730 | 25-pin D-SUB pin plug |

11.2.4 Service

Converter set

consisting of
P - LINK 900
Connector cable
from module CNC / PLC / CEA socket 'Service’ to the P - LINK 900

9-pin D-SUB pin plug 9 -pinD-SUB female plug

Article

Converter set contains 083841
Length of cable
Article number

P-LINK 900
Connector cable MODULE - P - LINK 900
1.8 m
(083767)
(083823)

11.2.5 Peripheral devices

Connector cable V24

from operating panel MT60 / MT70/80 / MT90 / CNC900 / CNC 900C
to peripheral device - data input / output

Article

Cable operating panel - peripheral device

$3 m$	083817
$5 m$	083861

25-pin D-SUB pin plug 9-pin D-SUB female plug

Article number

11.2.6 Measuring system

Incremental measuring system

15-001. HOSUB

Connection cable

of axis modules AAZ, POS	CD-Sub-pin-type plug 15pin
to the incrementalen measuring system	open end
Item	Cable length \quad Article number

Cable axis module - measuring system
$5 m$
083921

Allocation of the 15 pin sockets on AAZ and POS
Pin1
Pin2
Pin3
T1

Pin4
Pin5
Pin6
Pin7 Uas (error signal)
Pin8
Pin9
/T1
Pin10T2
Pin110V
Pin12/T0
Pin13-
Pin14+5V
Pin15/Uas (error signal)

11.2.6 Measuring system (continuation)

Absolute measuring system

Cable connection

11.2.7 ADW / DAW

Cable connection

of axis modules ADW / DAW		plug 10polig open end
to the machine		
Item	cable length	article number
Cables ADW / DAW - machine	3 m	083888
	5 m	083898

11.2.8 Coupling of groups of chassis

Cable connection

of module CNC / PLC socket ' service ‘
to the couple module KOP socket 'input ‘ or.
of the couple module KOP socket ' output '
to the next couple module KOP socket " input "

Item

Cable connection central processing unit - couple module $0,7 \mathrm{~m}$
084077 or couple module - couple module

