Leuze electronic

the sensor people

BPS 348i Barcode-Positionier-System

DE 2018/01 - 50124701 Technische Änderungen vorbehalten

▲ Leuze electronic

© 2018 Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com info@leuze.de

1	Zu diesem Dokument
	1.1 Verwendete Darstellungsmittel 6
2	Sicherheit
	2.1 Bestimmungsgemäße Verwendung 8
	2.2 Vorhersehbare Fehlanwendung 8
	2.3 Befähigte Personen
	2.4 Haftungsausschluss
	2.5 Laserwarnhinweise
3	Gerätebeschreibung
	3.1 Geräteübersicht
	3.1.1 Allgemeines
	3.1.2 Leistungsmerkmale
	3.1.3 Zubenor
	3.2 Anschlusstechnik 15
	3.2.1 Anschlusshaube MS 348 mit M12-Steckverbindern
	3.2.2 Anschlusshaube MK 348 mit Federkraftklemmen 15
	3.2.3 Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundstecker
	3.3 Anzeigeelemente
	3.3.1 LED-Anzeigen 77
	3.4 Barcodeband 21
	3.4.1 Allgemeines
	3.4.2 Steuerbarcodes
	3.4.3 Markenlabel
	3.4.4 TWIII-Dalluel
4	Funktionen
	4.1 Positionsmessung
	4.2 Geschwindigkeitsmessung 28
	4.3 Zeitverhalten
	4.4 Leuze webConfig-Tool
	4.5 Auswertung der Lesequalität 29
	4.6 Abstandsmessung zum Barcodeband 30
	4.7 Statusabfrage Positions-/Geschwindigkeitsmessung
5	Applikationen
	5.1 Regalbediengerät
	5.2 Elektrohängebahn
	5.3 Portalkräne
6	Montage und Installation
	6.1 Barcodeband montieren
	6.1.1 Montage- und Applikations-Hinweise
	6.1.2 Trennen von Barcodebändern
	6.1.3 Montage des BCB
	6.2 Barcode-Positioniersystem montieren
	6.2.1 wontageninweise
	6.2.3 Montage mit Befestigungsteil BTU 0300M-W
	6.2.4 Montage mit Befestigungswinkel BT 300 W 43
	6.2.5 Montage mit Befestigungsteil BT 56 43

	6.2.6 Montage mit Befestigungsteil BT 300-1					
7	7 Elektrischer Anschluss					
•	7 1 Externer Parametersneicher in der Anschlusshaube 45					
	7.2 Anschlusshaube MS 348 mit Steckverbindern					
	7.2 Anschlusshaube MS 348 mit Steckverblidern					
	7.4 Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundsteckern 47					
	7.5 Anschlussbelegung					
	7.5.1 PWR / SW IN/OUT (Power und Schaltein-/ausgang)					
	7.5.2 HUST / BUSTN (Host/Bus-Eingang, Ethernet)					
	7.5.5 DUS OUT (Host/Dus-Ausgalig, Ethemet)					
	7.0.4 Service-00D					
	7.6 PROFINE I - I opologien					
	7.0.1 Stern-Topologie					
	7.0.2 Linien-Topologie					
	7.7 Leitungelängen und Schirmung 54					
8	Basiskonfiguration					
	8.1 PROFINET-Schnittstelle konfigurieren 56					
	8.1.1 PROFINET-Kommunikationsprofil					
	8.1.2 Conformance Classes					
	8.2 Gerätestart					
	8.3 Projektierung für Siemens SIMATIC-S7-Steuerung 58					
	A DDOEINET Drojektierungemedule					
	6.4 FROFINET Flojektielungsmodule					
	8 4 2 DAP Modul – Fest definierte Parameter 62					
	8.4.3 Modul 1 – Positionswert					
	8.4.4 Modul 2 – Preset statisch					
	8.4.5 Modul 3 – Preset dynamisch					
	8.4.6 Modul 4 – Ein-/Ausgang IO 1					
	8.4.7 Modul 5 – Ein-/Ausgang IO 2 69					
	8.4.8 Modul 6 – Status und Steuerung					
	8.4.9 Modul 7 – Positions-Grenzwertbereich 1					
	8.4.10 Modul 8 – Positions-Grenzwertbereich 2					
	8.4. I I Modul 9 – Vernalten im Fenierrali					
	8.4.13Modul 11 – Geschwindigkeitsgrenzwert 1 statisch 75					
	8 4 14Modul 12 – Geschwindigkeitsgrenzwert 2 statisch 77					
	8.4.15Modul 13 – Geschwindigkeitsgrenzwert 3 statisch					
	8.4.16Modul 14 – Geschwindigkeitsgrenzwert 4 statisch					
	8.4.17Modul 15 – Geschwindigkeitsgrenzwert dynamisch					
	8.4.18Modul 16 – Geschwindigkeit Status					
	8.4.19Modul 20 – Freie Auflösung					
	8.4.20Modul 21 – Abstand zum Barcodeband (BCB) 81					
	8.4.21 Modul 22 – Steuer- und Markenbarcodes					
	8.4.22 Modul 23 – Bandwertkorrektur					
	o.4.201/100001124 – Lesequalitat					
	o					
	8.4.26 Modul 28 – 16-Bit Positionswert					
9	Leuze electronic webConfig-Tool – Erweiterte Konfiguration					
	9.1 Software installieren					
	9.1.1 Systemvoraussetzungen 86					
	9.1.2 USB-Treiber installieren					

▲ Leuze electronic

	9.2 webConfig-Tool starten	. 87
	9.3 Kurzbeschreibung des webConfig-Tools	. 88
	9.3.1 Übersicht	. 88
	9.3.2 Funktion KONFIGURATION	. 90 93
	9.3.4 Funktion <i>PROZESS</i> .	. 93 . 94
	9.3.5 Funktion <i>DIAGNOSE</i>	. 95
	9.3.6 Funktion <i>WARTUNG</i>	. 96
10	Diagnose und Fehler beheben	. 97
	10.1 Was tun im Fehlerfall?	. 97
	10.1.1PROFINET-spezifische Diagnose	. 97
	10.1.2Diagnose mit webConfig-Tool	. 98
	10.2 Betriebsanzeigen der Leuchtdioden	. 98
	10.3 Fehlermeldungen am Display	. 99
		. 99
11	Pflegen, Instand halten und Entsorgen	102
	11.1 Reinigen	102
	11.2 Instandhaltung	102
	11.2.1Firmware-Update	102
		102
		103
12	Service und Support	104
	12.1 Was tun im Servicefall?	104
13	Technische Daten	105
	13.1 Allgemeine Daten	105
	13.1.1BPS ohne Heizung	107
	13.1.2BPS mit Heizung	108
	13.2 Barcodeband	108
	13.3 Maßzeichnungen	110
	13.4 Maßzeichnungen Zubehör.	112
	13.5 Maßzeichnungen Barcodeband	116
14	Bestellhinweise und Zubehör	117
	14.1 Typenübersicht BPS 348i	117
	14.2 Anschlusshauben	117
	14.3 Leitungen-Zubehör	117
	14.4 Weiteres Zubehör	118
	14.5 Barcodebänder	119
15	EG-Konformitätserklärung	122
16	Anhang	123
-	16.1 Barcodeband BCB im 40 mm Raster	123
	16.2 Barcodeband BCB8 im 30 mm Raster	124

1 Zu diesem Dokument

1.1 Verwendete Darstellungsmittel

Tabelle 1.1: Warnsymbole und Signalwörter

Symbol bei Gefahren für Personen	
	Symbol bei Gefahren durch gesundheitsschädliche Laserstrahlung
HINWEIS	Signalwort für Sachschaden Gibt Gefahren an, durch die Sachschaden entstehen kann, wenn Sie die Maßnahmen zur Gefahrvermeidung nicht befolgen.

Tabelle 1.2: Weitere Symbole

°	Symbol für Tipps
1	Texte mit diesem Symbol geben Ihnen weiterführende Informationen.
Ψş	Symbol für Handlungsschritte Texte mit diesem Symbol leiten Sie zu Handlungen an.

Tabelle 1.3: Begriffe und Abkürzungen

BCB	Barcodeband (allgemein bzw. bestimmter BCB-Typ im 40 mm Raster)		
BCB8	Barcodeband (BCB-Typ im 30 mm Raster)		
BPS	Barcode-Positioniersystem		
CFR	Code of Federal Regulations (US-Regulierungsvorschriften)		
DAP	Device Access Point		
DCP	Discovery and Configuration Protocol		
EMV	Elektromagnetische Verträglichkeit		
EN	Europäische Norm		
FE	Funktionserde		
GSD	General Station Description		
GSDML	Generic Station Description Markup Language		
GUI	Grafische Benutzeroberfläche (Graphical User Interface)		
IO oder I/O	Eingang/Ausgang (Input/Output)		
I&M	Information & Maintenance		
IP	Internet Protocol		
LED	Leuchtdiode (Light Emitting Diode)		
MAC	Media Access Control		
MVS	Steuerbarcode-Typ		
MV0	Steuerbarcode-Typ		

NEC	National Electric Code	
OSI	Open Systems Interconnection Model	
PELV	Schutzkleinspannung (Protective Extra Low Voltage)	
RT	Real Time	
SNMP	Simple Network Management Protocol	
SPS	Speicherprogrammierbare Steuerung (gleichwertig mit programmable logic controller (PLC))	
ТСР	Transmission Control Protocol	
UDP	User Datagram Protocol	
USB	Universal Serial Bus	
UL	Underwriters Laboratories	
UV	Ultraviolett	
XML	Extensible Markup Language	

2 Sicherheit

Der vorliegende Sensor ist unter Beachtung der geltenden Sicherheitsnormen entwickelt, gefertigt und geprüft worden. Er entspricht dem Stand der Technik.

2.1 Bestimmungsgemäße Verwendung

Das Gerät ist ein optisches Messsystem, das mit sichtbarem Rotlichtlaser seine Position relativ zu einem fest montierten Barcodeband ermittelt.

Alle Genauigkeitsangaben des Messsystems BPS 300 beziehen sich auf die relative Position zum fest montierten Barcodeband.

Einsatzgebiete

Das BPS ist zur Positionierung für die folgenden Einsatzgebiete konzipiert:

- · Elektrohängebahn
- · Fahr- und Hubachse von Regalbediengeräten
- Verschiebeeinheiten
- Portalkranbrücken und deren Laufkatzen
- Aufzüge

Bestimmungsgemäße Verwendung beachten!

b Setzen Sie das Gerät nur entsprechend der bestimmungsgemäßen Verwendung ein.

Der Schutz von Betriebspersonal und Gerät ist nicht gewährleistet, wenn das Gerät nicht entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird.

Die Leuze electronic GmbH + Co. KG haftet nicht für Schäden, die durch nicht bestimmungsgemäße Verwendung entstehen.

b Lesen Sie die Betriebsanleitung vor der Inbetriebnahme des Geräts.

Die Kenntnis der Betriebsanleitung gehört zur bestimmungsgemäßen Verwendung.

HINWEIS

Bestimmungen und Vorschriften einhalten!

Beachten Sie die örtlich geltenden gesetzlichen Bestimmungen und die Vorschriften der Berufsgenossenschaften.

2.2 Vorhersehbare Fehlanwendung

Eine andere als die unter "Bestimmungsgemäße Verwendung" festgelegte oder eine darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß.

Unzulässig ist die Verwendung des Gerätes insbesondere in folgenden Fällen:

- in Räumen mit explosiver Atmosphäre
- zu medizinischen Zwecken
- als eigenes Sicherheitsbauteil im Sinn der Maschinenrichtlinie

HINWEIS

Keine Eingriffe und Veränderungen am Gerät!

b Nehmen Sie keine Eingriffe und Veränderungen am Gerät vor.

Eingriffe und Veränderungen am Gerät sind nicht zulässig.

Das Gerät darf nicht geöffnet werden. Es enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.

Eine Reparatur darf ausschließlich von Leuze electronic GmbH + Co. KG durchgeführt werden.

2.3 Befähigte Personen

Anschluss, Montage, Inbetriebnahme und Einstellung des Geräts dürfen nur durch befähigte Personen durchgeführt werden.

Voraussetzungen für befähigte Personen:

- Sie verfügen über eine geeignete technische Ausbildung.
- Sie kennen die Regeln und Vorschriften zu Arbeitsschutz und Arbeitssicherheit.
- Sie kennen die Original Bedienungsanleitung des Gerätes.
- Sie wurden vom Verantwortlichen in die Montage und Bedienung des Gerätes eingewiesen.

Elektrofachkräfte

Elektrische Arbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Elektrofachkräfte sind aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen und Bestimmungen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen.

In Deutschland müssen Elektrofachkräfte die Bestimmungen der Unfallverhütungsvorschrift DGUV Vorschrift 3 erfüllen (z. B. Elektroinstallateur-Meister). In anderen Ländern gelten entsprechende Vorschriften, die zu beachten sind.

2.4 Haftungsausschluss

Die Leuze electronic GmbH + Co. KG haftet nicht in folgenden Fällen:

- Das Gerät wird nicht bestimmungsgemäß verwendet.
- · Vernünftigerweise vorhersehbare Fehlanwendungen werden nicht berücksichtigt.
- Montage und elektrischer Anschluss werden nicht sachkundig durchgeführt.
- Veränderungen (z. B. baulich) am Gerät werden vorgenommen.

2.5 Laserwarnhinweise

ACHTUNG LASERSTRAHLUNG – LASER KLASSE 2

Nicht in den Strahl blicken!

Das Gerät erfüllt die Anforderungen gemäß IEC 60825-1:2007 (EN 60825-1:2007) für ein Produkt der **Laserklasse 2** sowie die Bestimmungen gemäß U.S. 21 CFR 1040.10 mit den Abweichungen entsprechend der "Laser Notice No. 50" vom 24.06.2007.

- b Schauen Sie niemals direkt in den Laserstrahl oder in die Richtung von reflektierten Laserstrahlen!
- Bei länger andauerndem Blick in den Strahlengang besteht die Gefahr von Netzhautverletzungen.
- Sichten Sie den Laserstrahl des Geräts nicht auf Personen!
- Unterbrechen Sie den Laserstrahl mit einem undurchsichtigen, nicht reflektierenden Objekt, wenn der Laserstrahl versehentlich auf einen Menschen gerichtet wird.
- Vermeiden Sie bei Montage und Ausrichtung des Geräts Reflexionen des Laserstrahls durch spiegelnde Oberflächen!
- VORSICHT! Wenn andere als die hier angegebenen Bedienungs- oder Justiereinrichtungen benutzt oder andere Verfahrensweisen ausgeführt werden, kann dies zu gefährlicher Strahlungsexposition führen.
- b Beachten Sie die geltenden gesetzlichen und örtlichen Laserschutzbestimmungen.
- Eingriffe und Veränderungen am Gerät sind nicht zulässig.
 - Das Gerät enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.

Eine Reparatur darf ausschließlich von Leuze electronic GmbH + Co. KG durchgeführt werden.

HINWEIS

Laserwarn- und Laserhinweisschilder anbringen!

Auf dem Gerät sind Laserwarn- und Laserhinweisschilder angebracht (siehe Bild 2.1). Zusätzlich sind dem Gerät selbstklebende Laserwarn- und Laserhinweisschilder (Aufkleber) in mehreren Sprachen beigelegt (siehe Bild 2.2).

b Bringen Sie das sprachlich zum Verwendungsort passende Laserhinweisschild am Gerät an.

Bei Verwendung des Geräts in den U.S.A. verwenden Sie den Aufkleber mit dem Hinweis "Complies with 21 CFR 1040.10".

Bringen Sie die Laserwarn- und Laserhinweisschilder in der N\u00e4he des Ger\u00e4ts an falls auf dem Ger\u00e4t keine Schilder angebracht sind (z. B. weil das Ger\u00e4t zu klein daf\u00fcr ist) oder falls die auf dem Ger\u00e4t angebrachten Laserwarn- und Laserhinweisschilder aufgrund der Einbausituation verdeckt werden.

Bringen Sie die Laserwarn- und Laserhinweisschilder so an, dass man sie lesen kann, ohne dass es notwendig ist, sich der Laserstrahlung des Geräts oder sonstiger optischer Strahlung auszusetzen.

- 1 2 3 Laseraustrittsöffnung
- Laserwarnschild
- Laserhinweisschild mit Laserparametern
- Bild 2.1: Laseraustrittsöffnung, Laserwarn- und Laserhinweisschilder

50120562-02	
LASERSTRAHLUNG	RADIAZIONE LASER
NICHT IN DEN STRAHL BLICKEN	NON FISSARE IL FASCIO
Max. Leistung (peak): 1,8 mW	Potenza max. (peak): 1,8 mW
Impulsdauer: <150 µs	Durata dell'impulso: <150 µs
Wellenlänge: 655 nm	Lunghezza d'onda: 655 nm
LASER KLASSE 2	APARRECCHIO LASER DI CLASSE 2
DIN EN 60825-1:2008-05	EN 60825-1:2007
LASER RADIATION	RAYONNEMENT LASER
DO NOT STARE INTO BEAM	<u>NE PAS REGARDER DANS LE FAISCEAU</u>
Maximum Output (peak): 1.8 mW	Puissance max. (crête): 1,8 mW
Pulse duration: <150 µs	Durée d'impulsion: <150 µs
Wavelength: 655 nm	Longueur d'onde: 655 nm
CLASS 2 LASER PRODUCT	APPAREIL À LASER DE CLASSE 2
EN 60825-1:2007	EN 60825-1:2007
AVOID EXPOSURE – LASER RADIATION	EXPOSITION DANGEREUSE – UN RAYONNEMENT
IS EMITTED FROM THIS APERTURE	LASER EST ÉMIS PAR CETTE OUVERTURE
RADIACIÓN LÁSER	RADIAÇÃO LASER
NO MIRAR FIJAMENTE AL HAZ	<u>NÃO OLHAR FIXAMENTE O FEIXE</u>
Potencia máx. (peak): 1,8 mW	Potência máx. (peak): 1,8 mW
Duración del impulso: <150 µs	Período de pulso: <150 µs
Longitud de onda: 655 nm	<u>Comprimento de onda: 655 nm</u>
PRODUCTO LÁSER DE CLASE 2	EQUIPAMENTO LASER CLASSE 2
EN 60825-1:2007	EN 60825-1:2007
LASER RADIATION DO NOT STARE INTO BEAM Maximum Output (avg): <1 mW Pulse duration: <150 µs Wavelength: 655 nm CLASS 2 LASER PRODUCT IEC 60825-1:2007 Complies with 21 CFR 1040.10	激光辐射 勿直视光束 最大输出(峰值): 1.8 mW 脉冲持续时间: <150 µs 波长: 655 nm 2 类激光产品 GB7247.1-2012

3 Gerätebeschreibung

3.1 Geräteübersicht

3.1.1 Allgemeines

Das Barcode-Positioniersystem BPS ermittelt mit einem sichtbaren Rotlicht-Laser seine Position und seinen Geschwindigkeitswert relativ zu einem Barcodeband, das entlang des Verfahrweges angebracht ist. Dies geschieht in folgenden Schritten:

- Lesen eines Codes auf dem Barcodeband (siehe Bild 3.1)
- Ermitteln der Position des gelesenen Codes im Scanstrahl
- Submillimeter-genaue Berechnung der Position aus Codeinformation und Codeposition bezogen auf die Gerätemitte.

Anschließend werden der Positionswert und der Geschwindigkeitswert über die Host-Schnittstelle an die Steuerung ausgegeben.

Das BPS besteht aus Gerätegehäuse und Schnittstellen-Anschlusshaube zur Anbindung an die Steuerung. Optional kann das BPS mit Display und Optikheizung geliefert werden.

Zum Anschluss der PROFINET-Schnittstelle stehen folgende Anschlusshauben zur Verfügung:

- Anschlusshaube MS 348 mit M12-Steckverbindern
- Anschlusshaube MK 348 mit Federkraftklemmen
- Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundstecker

- 1 Barcodeband
- 2 Anschlusshaube
- 3 Gerätegehäuse
- 4 Mitte des Scanstrahls (Gerätemitte, ausgegebener Positionswert)

Bild 3.1: Geräteaufbau, Geräteanordnung und Strahlaustritt

3.1.2 Leistungsmerkmale

Die wichtigsten Leistungsmerkmale des Barcode-Positioniersystems:

- Submillimeter-genaue Positionierung von 0 bis 10.000 m
- Zur Regelung bei hohen Verfahrgeschwindigkeiten von bis zu 10 m/s
- Simultane Positions- und Geschwindigkeitsmessung
- Arbeitsbereich: 50 bis 170 mm; ermöglicht flexible Montagepositionen
- Schnittstellen: PROFINET-Feldbus, PROFIBUS-Feldbus, SSI, RS 232/RS 422, RS 485
- Binäre Ein- und Ausgänge zur Steuerung und Prozessüberwachung
- Konfiguration über webConfig-Tool oder Feldbus
- Diagnose über webConfig-Tool oder optionales Display
- Optionale Variante mit Display
- Optionale Variante mit Heizung f
 ür den Einsatz bis -35 °C

3.1.3 Zubehör

Zum Barcode-Positioniersystem ist spezielles Zubehör verfügbar. Das Zubehör ist optimal auf das BPS abgestimmt:

- · Hochflexibles, kratz-, wisch- und UV-beständiges Barcodeband
- · Befestigungsteile für positionsgenaue Montage mit einer Schraube (easy-mount)
- Modulare Anschlusstechnik über Anschlusshauben mit M12-Steckverbindern, Federkraftklemmen oder mit Leitungen

3.1.4 Gerätevariante mit Heizung

Das Barcode-Positioniersystem kann optional als Variante mit integrierter Heizung bezogen werden. Die Heizung ist ab Werk fest eingebaut.

HINWEIS

Kein Selbsteinbau der Heizung!

b Ein Selbsteinbau der Heizung vor Ort durch den Anwender ist nicht möglich.

Die Heizung besteht aus zwei Teilen:

- Frontscheibenheizung
- Gehäuseheizung

Merkmale der integrierten Heizung:

- Erweiterung des Einsatzbereiches des BPS bis -35 °C
- Versorgungsspannung 18 ... 30 VDC
- Freigabe des BPS über internen Temperaturschalter (Einschaltverzögerung ca. 30 min bei 24 VDC und einer minimalen Umgebungstemperatur von -35 °C)
- Erforderlicher Leitungsquerschnitt für die Spannungsversorgung: mindestens 0,75 mm²

HINWEIS

Keine vorkonfektionierten Leitungen verwenden!

bie Verwendung vorkonfektionierter Leitungen ist nicht möglich.

Die Stromaufnahme des BPS ist zu hoch für die vorkonfektionierten Leitungen.

Funktion

Wird die Versorgungsspannung an das BPS angelegt, versorgt ein Temperaturschalter zuerst nur die Heizung mit Strom (Frontscheibenheizung und Gehäuseheizung). Steigt während der Dauer der Aufheizphase (ca. 30 min) die Innentemperatur über 15 °C, gibt der Temperaturschalter die Versorgungsspannung für das BPS frei. Es folgt der Selbsttest und der Übergang in den Lesebetrieb. Das Aufleuchten der LED PWR zeigt die allgemeine Betriebsbereitschaft an.

▲ Leuze electronic

Erreicht die Innentemperatur ca. 18 °C, schaltet ein weiterer Temperaturschalter die Gehäuseheizung ab und bei Bedarf wieder zu (wenn die Innentemperatur unter 15 °C fällt). Der Lesebetrieb wird dadurch nicht unterbrochen.

Die Frontscheibenheizung bleibt aktiviert bis zu einer Innentemperatur von 25 °C. Darüber schaltet sich die Frontscheibenheizung aus und mit einer Schalthysterese von 3 °C bei einer Innentemperatur von unter 22 °C wieder ein.

3.2 Anschlusstechnik

Für den elektrischen Anschluss des BPS stehen folgende Anschlussvarianten zur Verfügung:

- Anschlusshaube MS 348 mit M12-Steckverbindern
- Anschlusshaube MK 348 mit Federkraftklemmen
- Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundstecker

Die Spannungsversorgung (18 ... 30 VDC) wird gemäß der gewählten Anschlussart angeschlossen. Es stehen zwei frei programmierbare Schaltein-/ausgänge zur individuellen Anpassung an die jeweilige Applikation zur Verfügung.

3.2.1 Anschlusshaube MS 348 mit M12-Steckverbindern

Die Anschlusshaube MS 348 verfügt über drei M12-Anschlussstecker und eine USB-Buchse vom Typ Mini-B als Service-Schnittstelle zur Konfiguration und Diagnose des BPS.

- O In der MS 348 befindet sich der integrierte Parameterspeicher für den einfachen Austausch des
- BPS. Im integrierten Parameterspeicher werden sowohl die Einstellungen als auch der PROFI-
 - ^L NET-Name gespeichert und beim Gerätetausch automatisch an das neue Gerät übertragen.

- 1 PWR / SW IN/OUT: M12-Stecker (A-kodiert)
- 2 SERVICE: USB-Buchse Mini-B (hinter Schutzkappe)
- 3 HOST / BUS IN: M12-Buchse (D-kodiert), Ethernet 0
- 4 BUS OUT: M12-Buchse (D-kodiert), Ethernet 1
- Bild 3.2: Anschlusshaube MS 348, Anschlüsse

HINWEIS

Schirmanbindung

b Die Schirmanbindung erfolgt über das Gehäuse der M12-Steckverbinder.

3.2.2 Anschlusshaube MK 348 mit Federkraftklemmen

Die Anschlusshaube MK 348 ermöglicht es, das BPS direkt und ohne zusätzlichen Stecker anzuschließen. Die MK 348 verfügt über drei Kabeldurchführungen, in denen sich auch die Schirmanbindung für das Schnittstellenkabel befindet. Eine USB-Buchse vom Typ Mini-B dient zu Servicezwecken und zur Konfiguration und Diagnose des BPS.

- O In der MK 348 befindet sich der integrierte Parameterspeicher für den einfachen Austausch des
- BPS. Im integrierten Parameterspeicher werden sowohl die Einstellungen als auch der PROFI-
- [⊥] NET-Name gespeichert und beim Gerätetausch automatisch an das neue Gerät übertragen.

- 1 3x Leitungsdurchführung, M16 x 1,5
- 2 SERVICE: USB-Buchse Mini-B (hinter Schutzkappe)
- Bild 3.3: Anschlusshaube MK 348, Anschlüsse

Leitungskonfektionierung und Schirmanbindung

b Entfernen Sie den Mantel der Anschlussleitung auf einer Länge von ca. 78 mm.

Das Schirmgeflecht muss 15 mm frei zugänglich sein.

♥ Führen Sie die einzelnen Litzen nach Plan in die Klemmen ein.

HINWEIS

Keine Aderendhülsen verwenden!

bir empfehlen, bei der Leitungskonfektionierung keine Aderendhülsen zu verwenden.

 Durch das Einführen der Leitung in die Metallverschraubung wird automatisch der Schirm kontaktiert und durch das Zudrehen der Zugentlastung fixiert.

1 Durchmesser Kontaktbereich Kabel: 6 ... 9,5 mm

2 Durchmesser Kontaktbereich Schirm: 5 ... 9,5 mm

3.2.3 Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundstecker

Die Anschlusshaube ME 348 103 verfügt über drei Leitungen mit M12-Anschlussstecker und eine USB-Buchse vom Typ Mini-B als Service-Schnittstelle zur Konfiguration und Diagnose des BPS.

- In der ME 348 103 befindet sich der integrierte Parameterspeicher für den einfachen Austausch Ο
- des BPS. Im integrierten Parameterspeicher werden sowohl die Einstellungen als auch der П PROFINET-Name gespeichert und beim Gerätetausch automatisch an das neue Gerät übertragen.

- PWR / SW IN/OUT: Leitung mit M12-Stecker (A-kodiert)
- 2 SERVICE USB: USB-Buchse Mini-B (hinter Schutzkappe)
- 3 BUS OUT: Leitung mit M12-Buchse (D-kodiert), Ethernet 1
- 4 HOST / BUS IN: Leitung mit M12-Buchse (D-kodiert), Ethernet 0
- 5 Schutzkappe (kein Anschluss)
- Bild 3.5: Anschlusshaube ME 348 103, Anschlüsse

3.3 Anzeigeelemente

Das BPS ist wahlweise mit Display, zwei Bedientasten und LEDs oder nur mit zwei LEDs als Anzeigeelemente am Gerätegehäuse verfügbar.

In der Anschlusshaube (MS 348, MK 348 bzw. ME 348 103) befinden sich zwei geteilt-zweifarbige LEDs als Statusanzeige für die PROFINET-Anschlüsse HOST / BUS IN und BUS OUT.

LED-Anzeigen 3.3.1

Das Gerätegehäuse verfügt über folgende Multicolor-LED-Anzeigen als primäres Anzeigeelement:

- PWR
- BUS

- 2 LED BUS 3 Display
- 4 Bedientasten
- Bild 3.6: Anzeigen am Gerätegehäuse

Tabelle 3.1:	Bedeutung	der LED-Anzeigen	am Gerätegehäuse
			· · · · · · · · · · · · · · · · · · ·

LED	Farbe, Zustand	Beschreibung	
LED 1 PWR	Aus	Gerät ist ausgeschaltet • keine Versorgungsspannung	
	grün blinkend	Gerät wird initialisiert • Versorgungsspannung angeschlossen • Initialisierung läuft • keine Messwertausgabe	
	grün Dauerlicht	Gerät arbeitet Initialisierung beendet Messwertausgabe 	
	rot blinkend	Warnung gesetzt • keine Messung (z. B. kein Barcodeband)	
	rot Dauerlicht	 Gerätefehler Funktion des Geräts ist eingeschränkt Details über Ereignisprotokoll (siehe Kapitel 10.1.2 "Diagnose mit webConfig-Tool") 	
	orange blinkend	PROFINET-Winkfunktion aktiviert	
	orange Dauerlicht	Service aktiv keine Daten auf der Host-Schnittstelle Konfiguration über USB-Serviceschnittstelle 	
LED 2	Aus	keine Versorgungsspannung	
BUS	grün blinkend	 Gerät wartet auf neuen Kommunikationsaufbau kein Datenaustausch 	
	grün Dauerlicht	 Kommunikation mit IO-Controller aufgebaut Datenaustausch aktiv 	
	orange blinkend	PROFINET-Winkfunktion aktiviert	
	rot blinkend	 Parametrierung oder Konfiguration fehlgeschlagen kein Datenaustausch 	

LED-Anzeigen an der Anschlusshaube

1 LED 0, ACT0/LINK0 2 LED 1, ACT1/LINK1

Bild 3.9: ME 348 103, LED-Anzeigen

Tabelle 3.2: Bedeutung der LED-Anzeigen an der Anschlusshaube

LED	Farbe, Zustand	Beschreibung
ACT0/LINK0	grün Dauerlicht	Ethernet verbunden (LINK)
	gelb flackernd	Datenverkehr (ACT)
ACT1/LINK1	grün Dauerlicht	Ethernet verbunden (LINK)
	gelb flackernd	Datenverkehr (ACT)

3.3.2 Display-Anzeigen

Das optionale Display des BPS wird nur als Anzeigeelement genutzt. Das Display hat folgende Eigenschaften:

- Monochrom mit weißer Hintergrundbeleuchtung
- Zweizeilig, 128 x 32 Pixel
- Anzeigesprache: Englisch

Über zwei Bedientasten kann gesteuert werden, welche Werte im Display angezeigt werden. Die Hintergrundbeleuchtung wird durch Drücken einer beliebigen Bedientaste aktiviert und nach einer Zeit von zehn Minuten automatisch deaktiviert.

Das Display zeigt den Inhalt in zwei Zeilen an:

- Die obere Display-Zeile zeigt die gewählte Funktion als englischen Begriff.
- Die untere Display-Zeile zeigt die Daten der gewählten Funktion an.

2 Bedientasten

Bild 3.10: Display am Gerätegehäuse

Displayfunktionen

Folgende Funktionen können im Display gewählt und angezeigt werden:

- Positionswert
 - Position Value
 - Positionswert in mm
 - Anzeige mit "." als Dezimal-Trennzeichen (z. B. + 34598.7 mm)
- Lesequalität
 - Quality
 - 0 ... 100 %
- Gerätestatus
 - BPS Info
 - System OK | Warning | Error
- I/O-Status

Status der Ein-/Ausgänge

- I/O Status
- IO1 In:0 | IO2 Out:0 In/Out je nach Konfiguration, 0/1 f
 ür Zustand des I/O
- Geräteadresse für Host-Kommunikation
 - BPS Address
 - Gerätename im PROFINET, z. B. *Messstation 2* Lauftext bis zu 240 Zeichen
- Versionsinformationen
 Software- und Hardware-Version des Gerätes
 - Version
 - SW: V1.3.0 HW:1

HINWEIS

Laser-Aktivierung durch Anwahl von Quality!

b Ist die Messung gestoppt, so wird der Laser durch Anwahl von Quality aktiviert.

Das Display wird über die Bedientasten gesteuert:

- — Enter: aktivieren bzw. deaktivieren der Display-Wechselfunktion
- **v** Abwärts: scrollen der Funktionen (nach unten)

Beispiel: Darstellung des I/O-Status auf dem Display

- 1. Drücken der Taste 山 : Anzeige blinkt
- 2. Drücken der Taste **v** : Anzeige wechselt von Positionswert (*Position Value*) zu Lesequalität (*Qualitv*)
- 3. Drücken der Taste 👿 : Anzeige wechselt von Lesequalität (*Quality*) zu Gerätestatus (*BPS Info*)
- 4. Drücken der Taste 👿 : Anzeige wechselt von Gerätestatus (*BPS Info*) zu I/O-Status (I/O Status)
- 5. Drücken der Taste 👝 : I/O-Status (I/O-Status) wird angezeigt; Anzeige hört auf zu blinken

Displayanzeige beim Gerätestart

Während des Gerätehochlaufs wird zuerst ein Startup-Display angezeigt und danach kurz das Display mit den Versionsinformationen.

Die Standard-Displayanzeige nach dem Hochlaufen des BPS ist *Position Value*.

3.4 Barcodeband

3.4.1 Allgemeines

Das Barcodeband (BCB) wird in unterschiedlichen Varianten geliefert:

- Barcodeband BCB im 40 mm Raster Code128 mit Zeichensatz C, um 4 Stellen aufsteigend (z. B. 000004, 000008, ...)
- Barcodeband BCB8 im 30 mm Raster Code128 mit Zeichensatz C, um 3 Stellen aufsteigend (z. B. 000003, 000006, ...)

Ein Barcodeband besteht aus aneinandergereihten einzelnen Positionslabels in einem der beiden Raster. Zum Trennen von BCB sind definierte Schnittkanten vorgesehen.

Das Barcodeband wird aufgerollt geliefert. Auf einer Rolle befinden sich bis zu 200 m BCB mit der Wickelrichtung von außen nach innen (kleinste Zahl außenliegend). Wird mehr als 200 m BCB bestellt, so wird die Gesamtlänge in Rollen von 200 m aufgeteilt.

Barcodebänder mit Sonderanforderungen bezüglich Höhe, Länge und Wertebereich können bei **Leuze electronic** bestellt werden (siehe Kapitel 14.5 "Barcodebänder").

HINWEIS

Wertebereich für BCB mit Sonderanforderungen!

Achten Sie bei der Bestellung von Barcodebändern mit Sonderanforderungen darauf, dass der Wertebereich nur durch drei (BCB8 im 30 mm Raster) bzw. vier (BCB im 40 mm Raster) teilbare Werte enthält.

Anderenfalls ist die Beschaffung und Verwendung von Reparaturbändern ggf. nicht möglich.

HINWEIS

Nur ein BCB-Typ pro Anlage!

Verwenden Sie in einer Anlage entweder nur BCB8 mit 30 mm Raster oder nur BCB mit 40 mm Raster.

Werden unterschiedliche BCB-Typen in einer Anlage verwendet, kann das BPS keine genaue Positionsbestimmung sicherstellen.

HINWEIS

BPS für den verwendeten BCB-Typ konfigurieren!

- Der verwendete BCB-Typ muss in der BPS-Konfiguration mit dem Parameter Bandauswah/eingestellt werden; siehe Kapitel 8.4.2 "DAP Modul – Fest definierte Parameter".
- bas BPS ist bei der Auslieferung für BCB mit 40 mm Raster eingestellt.
- Wird das BCB8 mit 30 mm Raster verwendet, muss die *Bandauswahl* in der BPS-Konfiguration angepasst werden.
- Entspricht der verwendete BCB-Typ nicht der im BPS konfigurierten Bandauswahl, kann das BPS keine genaue Positionsbestimmung vornehmen.

Barcodeband BCB im 40 mm Raster

- 2 Schnittkante
- Bild 3.11: Barcodeband im 40 mm Raster

Die Standardhöhe von 47 mm kann angepasst werden. Andere BCB-Höhe (25 mm) und Sonderhöhen auf Anfrage.

Bei einem Standard-Barcodeband und Reparaturband im 40 mm Raster sind die aufgedruckten
 Zahlenwerte durch vier ohne Rest teilbar.

Barcodeband BCB8 im 30 mm Raster

Bild 3.12: Barcodeband im 30 mm Raster

Die Standardhöhe von 47 mm kann angepasst werden. Andere BCB-Höhen (25 mm und 30 mm) und Sonderhöhen auf Anfrage.

O Bei einem Standard-Barcodeband und Reparaturband im 30 mm Raster sind die aufgedruckten

Zahlenwerte durch drei ohne Rest teilbar.

Bei Barcodebändern im 30 mm Raster ist zusätzlich zum Positionswert die Bezeichnung *BCB8* im Klartext aufgedruckt.

3.4.2 Steuerbarcodes

Mit Hilfe von Steuerbarcodes, die an den entsprechenden Stellen über das Barcodeband geklebt werden, lassen sich Funktionen im BPS aktivieren bzw. deaktivieren, z. B. Umschalten unterschiedlicher Positionswerte an Weichen.

Für die Steuerbarcodes wird der Codetyp Code128 mit Zeichensatz B eingesetzt.

Das *MVS*-Label ist ein Steuerbarcode zum richtungsunabhängigen Umschalten der Positionswerte von einem Barcodeband auf ein anderes in der Mitte des Steuerbarcode-Labels.

• Erfasst das BPS bei Erreichen der Umschaltposition in der Mitte des *MVS*-Labels den neuen BCB-Abschnitt nicht im Scanstrahl, wird ab der Mitte des *MVS*-Labels für die halbe Labelbreite noch der Positionswert des ersten BCB-Abschnitts ausgegeben.

Das MVO-Label ist ein Steuerbarcode zur Deaktivierung der Positionsausgabe.

• Erfasst das BPS die Mitte des *MVO*-Labels, wird ab der Mitte des *MVO*-Labels kein Positionswert mehr ausgegeben.

Anordnung der Steuerbarcodes

Der Steuerbarcode wird so angebracht, dass er einen Positionsbarcode ersetzt bzw. zwei Barcodebänder mit unterschiedlichen Wertebereichen miteinander verbindet (siehe Bild 3.13).

2 Ende der Positionsermittlung ab Mitte des Steuerbarcodes

Bild 3.14: Anordnung Steuerbarcode MV0

HINWEIS

Distanz zwischen zwei Steuerbarcodes!

b Stellen Sie sicher, dass sich immer nur ein Steuerbarcode (oder Markenlabel) im Scanstrahl befindet.

Die minimale Distanz zwischen zwei Steuerbarcodes ist durch den Abstand des BPS vom Barcodeband und die daraus resultierenden Länge des Scanstrahls festgelegt.

Die Steuerbarcodes werden auf das bestehende Barcodeband aufgeklebt.

Ein Steuerbarcode sollte einen ganzen Positionsbarcode überdecken und muss das korrekte Rastermaß einhalten (siehe Bild 3.15):

- 30 mm bei BCB8 Barcodebändern
- 40 mm bei BCB Barcodebändern

Ο Л

Halten Sie die Lücke zwischen den BCBs, zwischen denen umgeschaltet wird, möglichst klein.

1 Steuerbarcode ideal auf das Barcodeband aufgeklebt 2

- Steuerbarcode bei kleiner Lücke zwischen zwei Barcodebändern
- Bild 3.15: Richtige Anordnung des Steuerbarcodes

HINWEIS

Lücken im Barcodeband!

- b Vermeiden Sie blanke und hochglänzende Flächen.
- b Halten Sie die Lücke zwischen den beiden Barcodebändern und dem Steuerbarcode so gering wie möglich.

Messwertumschaltung zwischen zwei Barcodebändern mit unterschiedlichen Wertebereichen

Mit dem Steuerbarcode MVS bzw. MVO wird zwischen zwei Barcodebändern umgeschaltet.

HINWEIS

1 m Mindestabstand der Barcodewerte bei Messwertumschaltung!

🏷 Stellen Sie bei unterschiedlichen BCB-Wertebereichen sicher, dass zwischen dem vorlaufenden Positionsbarcode (vor dem Steuerbarcode) und dem nachfolgenden Positionsbarcode (nach dem Steuerbarcode) der Mindestabstand von 1 m eingehalten wird.

Beispiel (BCB im 40 mm Raster): Wenn der letze Positionsbarcode auf dem BCB vor dem Steuerbarcode 75120 ist, muss der nachfolgende Positionsbarcode auf dem BCB nach dem Steuerbarcode mindestens 75220 sein.

Wird der Mindestabstand zwischen den Barcodewerten nicht eingehalten, kann die Positionsermittlung gestört sein.

- Das Ende des vorlaufenden Barcodebandes und der Anfang des nachlaufenden Barcodebandes können mit völlig verschiedenen Positionsbarcodes enden bzw. beginnen.
- Die BCB-Umschaltung mittels Steuerbarcode erfolgt immer an der gleichen Position, d. h. sie funktioniert zur Umschaltung vom vorlaufenden auf das nachlaufende Band und umgekehrt.
- Erreicht die Mitte des BPS an der Übergangsposition den Steuerbarcode, wird auf das zweite BCB umgeschaltet, vorausgesetzt, das BPS hat das nächste Positionslabel im Scanstrahl (siehe Bild 3.16).

Damit ist der ausgegebene Positionswert immer einem BCB eindeutig zugeordnet.

○ Wenn das BPS bei Erreichen der Umschaltposition den neuen BCB-Abschnitt nicht erfasst,
 □ hängt die Positionswert-Ausgabe vom verwendeten Steuerbarcode ab.

Steuerbarcode *MVS*: Über die Mitte des *MVS*-Labels hinaus wird für die halbe Labelbreite der Positionswert des ersten BCB ausgegeben.

Steuerbarcode *MVO*. Ab der Mitte des *MVO*-Labels wird kein Positionswert mehr ausgegeben.

• Beim Überfahren des Steuerlabels wird der neue BCB-Wert in Bezug auf die Geräte- bzw. Label-Mitte ausgegeben.

- 1 Scanstrahl
- 2 Steuerbarcode Mitte
- 3 BPS Mitte
- 4 Bewegungsrichtung

3.4.3 Markenlabel

Markenlabel, die an den entsprechenden Stellen über das Barcodeband geklebt werden, lassen sich zum Auslösen unterschiedlicher Funktionen in der übergeordneten Steuerung einsetzen. Das BPS erkennt die definierten Markenlabel im Scanstrahl, dekodiert sie und stellt sie der Steuerung bereit.

HINWEIS

Distanz zwischen zwei Markenlabeln!

b Stellen Sie sicher, dass sich immer nur ein Markenlabel (oder Steuerbarcode) im Scanstrahl befindet.

Die minimale Distanz zwischen zwei Markenlabeln ist durch den Abstand des BPS vom Barcodeband und die daraus resultierenden Länge des Scanstrahls festgelegt.

Definition des Markenlabels

Als Markenlabel sind folgende Buchstaben-Zahlen-Kombinationen möglich:

Erstes Zeichen: A ... Z, a ... z

Zweites Zeichen: Ziffer von 0 ... 9

Drittes Zeichen: Ziffer von 0 ... 9

Aufbau der Markenlabel

Für die Markenlabel wird der Codetyp Code128 mit Zeichensatz B eingesetzt.

Anordnung bei Verwendung des Markenlabels mit Positionierung

Das Markenlabel muss im Raster der eigentlichen Kodierung auf das Barcodeband aufgebracht werden. Vor und nach dem Markenlabel sollte ein Positionscode erkennbar sein.

1 Markenlabel

Bild 3.17: Systemanordnung Markenlabel

Anordnung bei Verwendung des Markenlabels ohne Positionierung

Das Markenlabel muss im Erfassungsbereich des BPS liegen.

3.4.4 Twin-Bänder

Twin-Bänder sind zwei gemeinsam gefertigte Barcodebänder mit gleichem Wertebereich.

HINWEIS

Ein Twin-Band besteht immer aus zwei Barcodebändern!

bei Bestellung von einem Twin-Band werden immer zwei Barcodebänder geliefert.

Twin-Bänder werden eingesetzt, wenn eine Positionierung mit zwei Barcodebändern erforderlich ist, z. B. bei Krananlagen oder Aufzügen.

Durch die gemeinsame Fertigung weisen die beiden Bänder die gleiche Längentoleranz auf, so dass die Unterschiede in Länge und Codeposition nur minimal sind. Die gleiche Codeposition auf beiden Bändern ermöglicht einen verbesserten Gleichlauf bei der Positionierung im Vergleich zu separat gefertigten Barcodebändern.

- Twin-Barcodeband 1 1 2
 - Twin-Barcodeband 2

Bild 3.18: Twin-Band mit zweifacher Nummerierung

Twin-Bänder werden stets paarweise auf zwei Rollen geliefert.

Sollen Twin-Bänder getauscht werden, so sind beide Bänder zu tauschen.

Twin-Bänder können bei Leuze electronic bestellt werden (siehe Kapitel 14.5 "Barcodebänder").

Ο Л

4 Funktionen

Dieses Kapitel beschreibt die Funktionen des BPS und die Parameter für die Anpassung an die jeweiligen Einsatzbedingungen und -anforderungen.

Hauptfunktionen:

- Positionsmessung
- · Geschwindigkeitsmessung

Für das Zeitverhalten der Positions- und Geschwindigkeitsmessung sind folgende Parameter relevant:

- Messwertaufbereitung Konfigurierbare Ansprechzeit
- Messfehlertoleranz
 Konfigurierbare zeitliche Fehlerunterdrückung

4.1 Positionsmessung

Der Ausgabewert der Positionsmessung ergibt sich aus der Messung und den Einstellungen von Auflösung, Preset und Offset etc.

Die wichtigsten Einzelparameter zur Positionsmessung sind:

Parameter Beschreibung		Bereich/Werte
Auflösung Position	Der Parameter bestimmt die Auflösung des Positionswerts. Er wirkt nur auf die Host-Schnittstelle. Die Auflösung hat keine Auswirkung auf die eingestellten Parameterwerte wie Offset oder Preset.	0,001 mm 0,01 mm 0,1 mm 1 mm 10 mm oder freie Auflösung
Maßeinheit	Der Parameter bestimmt die Maßeinheit der gemessenen Position und Geschwindigkeit. Die Auswahl der Maßeinheit wirkt sich auf alle Parameter mit Maßeinheiten aus.	Metrisch (mm) oder Inch (1/100 in)
Offset	Der Offset dient der Korrekur des Positionswerts um einen festen Betrag. Ist der Offset aktivert, wird der Offset zum Positionswert addiert. Daraus ergibt sich ein neuer Ausgabewert: Ausgabewert = Positionswert + Offset	1 mm bzw. inch/100
Preset	Der Preset dient, wie der Offset, zur Korrekur des Positions- werts. Beim Preset wird ein Presetwert vorgegeben. Die Übernahme erfolgt bei einem entsprechenden Ereignis (Schalteingang oder Feldbus). Ist der Preset aktiviert, so hat dieser Prioriät vor dem Offset.	1 mm bzw. inch/100

4.2 Geschwindigkeitsmessung

Auf Basis der jeweiligen Positionswerte erfolgt die Ermittlung und Ausgabe der aktuellen Geschwindigkeit. Die wichtigsten Einzelparameter zur Geschwindigkeitsmessung sind:

Parameter	Beschreibung	Bereich/Werte
Auflösung Geschwin- digkeit	Der Parameter bestimmt die Auflösung des Geschwindig- keitswerts. Er wirkt nur auf die Feldbus-Ausgabe.	1 mm/s 10 mm/s 100 mm/s 1000 mm/s oder freie Auflösung
Mittelung	Der Parameter bestimmt die Mittelungszeit der berechneten Geschwindigkeitswerte in Schritten.	Schritte: 2 ms, 4 ms, 8 ms, 16 ms, 32 ms, 64 ms, 128 ms

4.3 Zeitverhalten

Die BPS der Baureihe 300i arbeiten mit einer Scanrate von 1000 Scans pro Sekunde. Alle 1 ms wird ein Messwert ermittelt.

Für das Zeitverhalten der Positions- und Geschwindigkeitsmessung sind folgende Parameter relevant:

Parameter	Beschreibung	Bereich/Werte
Integrationstiefe	Die Integrationstiefe wirkt sich auf die Messung von Posi- tion und Geschwindigkeit aus. Mit dem Parameter <i>Integrati-</i> <i>onstiefe</i> wird die Anzahl der aufeinanderfolgenden Messungen bezeichnet, die das BPS zur Positionsbestim- mung verwendet. Durch die Integration ergibt sich eine Glättung des ausge- gebenen Messwerts. Bei einer <i>Integrationstiefe</i> von 8 (Positionsbestimmung mit acht Messwerten) ergibt sich eine Ansprechzeit von 8 ms.	Werkseinstel- lung: 8
Fehlerverzögerungszeit	Auftretende Fehler werden für die konfigurierte Zeit unterdrückt. Kann in der konfigurierten <i>Fehlerverzögerungszeit</i> kein gültiger Positions- bzw. Geschwindigkeitswert ermittelt werden, wird immer der letzte gültige Wert ausgegeben. Liegt der Fehler nach Ablauf der <i>Fehlerverzögerungszeit</i> weiterhin an, so wird der Wert des Parameters <i>Positions-/</i> <i>Geschwindigkeitswert im Fehlerfall</i> ausgegeben (Stan- dard).	Werkseinstel- lung: 50 ms

4.4 Leuze webConfig-Tool

Das Konfigurationstool webConfig bietet eine grafische Benutzeroberfläche für Prozessdatenanzeige, Konfiguration und Diagnose des BPS über einen PC; siehe Kapitel 9 "Leuze electronic webConfig-Tool – Erweiterte Konfiguration".

4.5 Auswertung der Lesequalität

Das BPS kann die Lesequalität des BPS signalisieren. Die Anzeige der Lesequalität erfolgt in %-Werten. Die Parameter für die Auswertung der Lesequalität werden in der schnittstellenspezifischen Konfiguration eingestellt; siehe Kapitel 8.4.23 "Modul 24 – Lesequalität".

- O Die Werte der Lesequalität werden über das optionale Display (Quality), das serielle Kommuni-
- kationsprotokoll und über das webConfig-Tool angezeigt; siehe Kapitel 9.3.3 "Funktion JUSTAGE".

Die Auswertung der Lesequalität liefert z. B. folgende Informationen:

- · Die Lesequalität ist konstant schlecht: Verschmutzung der Optik des BPS
- Die Lesequalität ist immer an bestimmten Positionswerten schlecht: Verschmutzung des BCBs

4.6 Abstandsmessung zum Barcodeband

Das BPS kann innerhalb des Lesefeldes den aktuellen Abstand von Lesekopf zum BCB ausgeben. Ausgegeben wird der Abstand von dem Positionslabel, das am nächsten zum Bezugspunkt liegt.

siehe Kapitel 8.4.20 "Modul 21 – Abstand zum Barcodeband (BCB)"

Die Ausgabe des Abstandsmesswerts erfolgt über:

- die Funktion JUSTAGE (Menü Qualität) im webConfig-Tool (siehe Kapitel 9.3.3), die nur im Betriebsmodus Service verfügbar ist.
- die Host-Schnittstelle (Eingangsdaten)

4.7 Statusabfrage Positions-/Geschwindigkeitsmessung

Modul 6 (siehe Kapitel 8.4.8) und Modul 16 (siehe Kapitel 8.4.18) in der PROFINET-Konfiguration signalisieren Statusinformationen der Positions-/Geschwindigkeitsmessung.

Folgende Statusinformationen können an den PROFINET-Master übertragen werden:

- Statusinformation zur Positionsmessung: Eingangsdaten 0.0 ... 1.7; siehe Kapitel 8.4.8 "Modul 6 Status und Steuerung"
- Statusinformation zur Geschwindigkeitsmessung: Eingangsdaten 0.0 ... 1.5; siehe Kapitel 8.4.18 "Modul 16 – Geschwindigkeit Status"

5 Applikationen

Überall dort wo Systeme automatisch bewegt werden, ist es notwendig, deren Position eindeutig zu bestimmen. Neben mechanischen Messwertaufnehmern eignen sich besonders optische Verfahren zur Positionsbestimmung, da hier ohne mechanischen Verschleiß und Schlupf die Position ermittelt wird. Im Vergleich zu bekannten optischen Messverfahren ist das Leuze electronic Barcode-Positioniersystem (BPS) in der Lage, eine Position submillimeter-genau und absolut, d. h. unabhängig von Referenzpunkten zu messen und so zu jedem Zeitpunkt eine eindeutige Positionsaussage zu treffen. Durch das hochflexible und strapazierfähige Barcodeband (BCB) kann das System auch bei kurvengängigen Systemen oder Führungstoleranzen problemlos eingesetzt werden. Und das bis zu einer Länge von 10.000 Meter.

Die Produktfamilie der Leuze electronic Barcode-Positioniersysteme überzeugt durch eine Vielzahl von Vorteilen:

- Der Laser scannt gleichzeitig drei Barcodes und kann somit die Position submillimeter-genau ermitteln. Das breite Lesefeld ermöglicht auch bei kleinen Beschädigungen des Bandes eine einwandfreie Positionsbestimmung.
- Durch die flexible Schärfentiefe der Systeme können auch mechanische Abweichungen überbrückt werden.
- Die große Lesedistanz, verbunden mit einer sehr hohen Schärfentiefe und einem großen Öffnungswinkel, bei einer sehr kompakten Bauform, ermöglicht den optimalen Einsatz in der Förderund Lagertechnik.
- Die BPS sind in der Lage, gleichzeitig Position und Geschwindigkeit zu messen und lassen sich so für Regelaufgaben in Ihrer Automatisierung einsetzen.
- Über ein Befestigungsteil kann das BPS mit einer Schraube millimetergenau montiert werden. Bei der Montage über ein Befestigungsteil ist bei einem Gerätetausch das neue Gerät automatisch richtig ausgerichtet (easy-mount).
- Durch die eindeutige Beschriftung des Barcodebandes kann die Anlage selbst nach einem kurzzeitigen Spannungsabfall problemlos weiter betrieben werden, ohne z. B. auf einen Referenzpunkt zurückgreifen zu müssen.
- Das Leuze electronic Barcodeband ist sehr robust, hochflexibel und durch die selbstklebende Rückseite überall unproblematisch in Ihre Gesamtmechanik zu integrieren. Es passt sich sowohl vertikalen wie horizontalen Kurvenverläufen optimal an und stellt so die störungsfreie und reproduzierbare Messwertaufnahme an jedem beliebigen Punkt Ihrer Anlage submillimeter-genau sicher.

Für das BPS gibt es folgende typische Applikationen:

- Regalbediengerät (siehe Kapitel 5.1)
- Elektrohängebahn (siehe Kapitel 5.2)
- Portalkräne (siehe Kapitel 5.3)

5.1 Regalbediengerät

Bild 5.1: Regalbediengerät

- ♥ Simultane Positions- und Geschwindigkeitsmessung f
 ür Regelaufgaben
- ♥ Präzise Positionierung mit einer Reproduzierbarkeit von ± 0,15 mm
- Regelung bei hohen Verfahrgeschwindigkeiten von bis zu 10 m/s

5.2 Elektrohängebahn

Bild 5.2: Elektrohängebahn

- Der Arbeitsbereich von 50 170 mm ermöglicht flexible Montagepositionen und sichere Positionserfassung bei variierendem Abstand
- 🗞 Steuercodes zur Umschaltung von unterschiedlichen Positionswerten an Weichen

5.3 Portalkräne

Bild 5.3: Portalkräne

- ♦ Positionierung von 0 bis 10.000 Meter
- ⅍ Kratz- und wischfeste, UV-beständige Barcodebänder
- ♥ Synchrone Positionierung mit Twin-Bändern an beiden Schienen
- Note: Sefestigungsteil für schnelle, positionsgenaue Montage mit einer Schraube

6 Montage und Installation

6.1 Barcodeband montieren

6.1.1 Montage- und Applikations-Hinweise

HINWEIS

BCB-Montage

✤ Beachten Sie beim Verarbeiten von BCBs die spezifizierten Verarbeitungstemperaturen.

Beim Verarbeiten von BCBs in Kühllagern muss das BCB vor Kühlung des Lagers angebracht werden.

Sollte ein Verarbeiten bei Temperaturen außerhalb der spezifizierten BCB-Verarbeitungstemperatur notwendig werden, stellen Sie sicher, dass die Klebestelle sowie das BCB Verarbeitungstemperatur haben.

♥ Vermeiden Sie Schmutzablagerungen auf dem BCB.

Kleben Sie das BCB, wenn möglich, senkrecht (vertikal) an.

Kleben Sie das BCB, wenn möglich, unter einer Überdachung an.

Das BCB darf auf keinen Fall dauerhaft von mitfahrenden Reinigungsgeräten wie Pinsel oder Schwämmen gereinigt werden. Das BCB wird durch die ständig mitfahrenden Reinigungsgeräte poliert und hochglänzend. Dadurch verschlechtert sich die Lesequalität.

Vermeiden Sie, dass sich nach dem Anbringen der BCBs blanke, hochglänzende Flächen im Scanstrahl befinden (z. B. glänzendes Metall bei Lücken zwischen einzelnen BCBs), da es sonst zur Beeinträchtigung der Messwertqualität des BPS kommen kann.

Kleben Sie BCBs auf einen diffus reflektierenden Bandträger, z. B. auf eine lackierte Fläche.

♥ Vermeiden Sie Fremdlichteinflüsse und Reflektionen auf das BCB.

Achten Sie darauf, dass im Bereich des BPS-Scanstrahls weder starke Fremdlichteinflüsse noch Reflektionen des Bandträgers, auf den das BCB aufgeklebt wurde, auftreten.

♥ Überkleben Sie Dehnungsfugen bis zu einer Breite von mehreren Millimetern.

Das BCB muss an dieser Stelle nicht unterbrochen werden.

- berkleben Sie hervorstehende Schraubenköpfe mit dem BCB.
- ♦ Achten Sie auf zugfreies Anbringen des BCB.

Das BCB ist ein Kunststoffband, das durch starken mechanischen Zug gedehnt werden kann. Übermäßige mechanische Dehnung führt zu einer Verlängerung des Bandes und zur Verzerrung der Positionswerte.

HINWEIS

BCB-Applikation

Achten Sie darauf, dass sich das BCB während des gesamten Verfahrweges im Scanstrahl des BPS befindet.

Das BPS kann die Position auf BCBs mit beliebiger Orientierung ermitteln.

barcodebänder mit unterschiedlichen Wertebereichen dürfen nicht direkt aufeinander folgen.

Bei unterschiedlichen Wertebereichen muss eine Lücke zwischen dem letzten Positionsbarcode des vorlaufenden BCBs und dem ersten Positionsbarcode des nachlaufenden BCBs von mindestens 1 m eingehalten werden (siehe Kapitel 3.4.2).

- Bei Steuerbarcodes MVSIMV0 (siehe Kapitel 3.4.2) muss der Mindestabstand von 1 m zwischen dem letzten Positionsbarcode vor dem Steuerbarcode und dem ersten Positionsbarcode nach dem Steuerbarcode eingehalten werden.
- Bei Barcodebändern mit unterschiedlichen Wertebereichen müssen beide BCBs dem im BPS konfigurierten BCB-Typ entsprechen (siehe Kapitel 3.4.1).
- & Vermeiden Sie Positionsbarcode-Label mit dem Wert 00000.

Messungen links der Mitte von einem 00000-Label erzeugen negative Positionswerte, die ggf. nicht dargestellt werden können.

6.1.2 Trennen von Barcodebändern

HINWEIS

BCB-Trennung vermeiden!

- b Vermeiden Sie möglichst das Trennen von Barcodebändern.
- Bei durchgängiger Verklebung des BCB ist die Positionswertbestimmung des BPS optimal.
- Bei mechanischen Lücken verkleben Sie das BCB zunächst durchgängig. Danach trennen Sie das BCB auf.

Das BCB wird an den aufgebrachten Schnittkanten aufgetrennt; siehe Bild 6.1.

1 Schnittkante

Soll direkt an das vorlaufende BCB ein nachfolgendes BCB angeklebt werden, so muss der nachfolgende Barcodewert mindestens 1 m vom vorlaufenden BCB abweichen; siehe Bild 6.2.

3 nachlaufendes Barcodeband, Wertebereich + 1 m

Bild 6.2: Aufgetrenntes Barcodeband

Soll nach dem vorlaufenden BCB eine Lücke ohne Band auftreten, so muss diese mindestens 300 mm breit sein bevor das nachfolgende BCB geklebt wird; siehe Bild 6.3. Der erste Barcodewert des nachfolgenden BCB muss mindestens um den Wert 20 (200 mm) vom letzten Barcodewert des vorlaufenden BCB abweichen.

Bild 6.3: Lücke im getrennten Barcodeband, um Doppelpositionen zu vermeiden

HINWEIS

Keine blanken Lücken im getrennen Barcodeband!

b Sorgen Sie für matte, helle Flächen hinter den Lücken im BCB.

Blanke, spiegelnde, bzw. hochglänzende Flächen im Scanstrahl können die Messwertqualität des BPS beeinträchtigen.

6.1.3 Montage des BCB

Montieren Sie das BCB wie folgt:

- ♥ Überprüfen Sie den Untergrund.
- Er muss eben, fettfrei, staubfrei und trocken sein.
- bestimmen Sie eine Bezugskante (z. B. Blechkante der Stromschiene).
- b Entfernen Sie die hintere Deckschicht und bringen Sie das BCB entlang der Bezugskante zugfrei an.
- brücken Sie das BCB mit dem Handballen fest an den Untergrund.

Achten Sie beim Ankleben darauf, dass das BCB falten- und knitterfrei ist und dass sich keine Luftblasen bilden.

HINWEIS

BCB bei der Montage nicht ziehen!

Das BCB ist ein Kunststoffband, das durch starken mechanischen Zug gedehnt werden kann. Die Dehnung führt zu einer Verlängerung des Barcodebandes und zu einer Verzerrung der Positionswerte auf dem BCB.

Das BPS kann die Positionsberechnung bei Verzerrungen zwar trotzdem noch vornehmen; die Absolutgenauigkeit ist in diesem Fall aber nicht mehr gegeben. Falls die Werte durch ein Teach-in-Verfahren eingelernt werden, spielt die Verlängerung des BCB keine Rolle.

Verwenden Sie das mit dem Reparaturkit erzeugte Barcodeband nur vorübergehend als Notlösung.

BCB-Montage in horizontalen Kurven

HINWEIS

Eingeschränkte Absolutgenauigkeit und Reproduzierbarkeit!

- Die BCB-Montage in Kurven verschlechtert die Absolutgenauigkeit des BPS, da der Abstand zwischen zwei Barcodes nicht mehr genau 40 mm bzw. 30 mm ist.
- the Halten Sie bei horizontalen Kurven einen minimalen Biegeradius von 300 mm ein (siehe Bild 6.4).

- 1 BPS
- 2 Leseabstand
- 3 Radius Barcodeband, R_{min} = 300 mm
- Bild 6.4: Montage des Barcodebandes in horizontalen Kurven

BCB-Montage in vertikalen Kurven

HINWEIS

Eingeschränkte Absolutgenauigkeit und Reproduzierbarkeit!

- Die BCB-Montage in Kurven verschlechtert die Absolutgenauigkeit des BPS, da der Abstand zwischen zwei Barcodes nicht mehr genau 40 mm bzw. 30 mm ist.
- Im Bereich des BCB-Kurvenfächers muss mit Einschränkungen der Reproduzierbarkeit gerechnet werden.

- ♥ Schneiden Sie das BCB an der Schnittkante nur teilweise ein.
- Skleben Sie das BCB wie einen Fächer entlang der Kurve (siehe Bild 6.5).
- Achten Sie auf mechanisch zugfreies Anbringen des BCB.

Keine blanken Lücken im Barcodeband!

Sorgen Sie für matte, helle Flächen hinter dem BCB-Kurvenfächer.

Blanke, spiegelnde, bzw. hochglänzende Flächen im Scanstrahl können die Messwertqualität des BPS beeinträchtigen.

Bild 6.5: Verarbeiten des Barcodebandes in vertikalen Kurven

Montage von Twin-Bändern

Werden zur Positionierung zwei Barcodebänder mit gleichem Wertebereich eingesetzt, z. B. bei Krananlagen oder Aufzügen, wird der Einsatz von Twin-Bändern empfohlen (siehe Kapitel 3.4.4 "Twin-Bänder"). Twin-Bänder sind mit zweifacher Numerierung versehen, so dass kein "auf Kopf kleben" der BCBs erforderlich ist, um gleiche Werte an der gleichen Position zu haben (siehe Bild 6.6).

Ein Twin-Band besteht immer aus zwei Barcodebändern.

- bei Bestellung von Twin-Bändern werden immer zwei Barcodebänder mit einer Bestellung geliefert.
- ♦ Achten Sie auf zugfreies Anbringen des BCB.

Das BCB ist ein Kunststoffband, das durch starken mechanischen Zug gedehnt werden kann. Übermäßige mechanische Dehnung führt zu einer Verlängerung des Bandes und zur Verzerrung der Positionswerte.

Montage von zwei Barcodebändern mit gleichem Wertebereich

Bei Krananlagen oder Aufzügen werden zur Positionierung zwei Barcodebänder mit gleichem Wertebereich eingesetzt.

Werden zwei Barcodebänder mit gleichem Wertebereich benötigt, wird die Verwendung von Twin-Bändern empfohlen (siehe Kapitel 3.4.4 "Twin-Bänder").

Wenn kein Twin-Band eingesetzt wird: Um gleiche Werte an der gleichen Position zu haben, muss ein Barcodeband mit den Zahlen auf Kopf geklebt werden, während das zweite Barcodeband normal geklebt wird (siehe Bild 6.7).

- 1 BCB auf Kopf geklebt
- 2 BCB normal geklebt

Bild 6.7: Kleben von zwei Barcodebändern mit gleichem Wertebereich

6.2 Barcode-Positioniersystem montieren

Das BPS kann auf folgende Arten montiert werden:

- · Montage über ein Befestigungsteil an den Befestigungsnuten
 - BTU 0300M-W: Wandmontage
 - BT 56: Montage an Rundstange
- · Montage über ein Befestigungsteil an den M4-Befestigungsgewinden auf der Geräterückseite
 - BT 300 W: Montage an Befestigungswinkel
 - BT 300-1: Montage an Rundstange

• Montage über vier M4-Befestigungsgewinde auf der Geräterückseite

6.2.1 Montagehinweise

NWEIS
swahl des Montageorts.
Achten Sie auf die Einhaltung der zulässigen Umgebungsbedingungen (Feuchte, Temperatur).
Stellen Sie sicher, dass der Abstand zwischen BPS und Barcodeband groß genug ist.
Der Scanstrahl des BPS soll drei Barcodes oder mehr überdecken.
Der Abstand zwischen BPS und Barcodeband muss im Arbeitsbereich der Lesefeldkurve liegen.
Achten Sie darauf, dass das Austrittsfenster nicht verschmutzt wird, z. B. durch austretende Flüssigkeiten, Abrieb von Kartonagen oder Rückstände von Verpackungsmaterial.
Nontage des BPS im Freien bzw. bei BPS mit integrierter Heizung:
Nontieren Sie das BPS möglichst thermisch isoliert, z. B. über Schwingmetalle.
Nontieren Sie das BPS vor Fahrtwind geschützt, z. B. in einem Schutzgehäuse.
Nontage des BPS in einem Schutzgehäuse:
Achten Sie beim Einbau des BPS in ein Schutzgehäuse darauf, dass der Scanstrahl ungehindert aus dem Schutzgehäuse austreten kann.
Achten Sie darauf, dass der sich aus der Abtastkurve ergebende Arbeitsbereich an allen Stellen, an den den eine Positionsbestimmung erfolgen soll, eingehalten wird.
Achten Sie darauf, dass der Scanstrahl während der Anlagenbewegung immer auf dem BCB liegt.
Der Scanstrahl des BPS muss zur Positionsberechnung unterbrechungsfrei auf das BCB treffen.
Für beste Funktionalität muss das BPS parallel am BCB entlang geführt werden. Der zugelassene Arbeitsbereich des BPS (50 … 170 mm) darf während der Anlagenbewegung nicht verlassen werden.
Stellen Sie sicher, dass sich immer nur ein Steuerbarcode (oder Markenlabel) im Scanstrahl befindet.
Die minimale Distanz zwischen zwei Steuerbarcodes ist durch den Abstand des BPS vom Barcode- band und der daraus resultierenden Länge des Scanstrahls festgelegt.
ndestahstand hei Parallelmontage einhalten!

rallelmon einhalten!

b Halten Sie den Mindestabstand von 300 mm ein, wenn Sie zwei BPS nebeneinander oder übereinander montieren.

Bild 6.8: Mindestabstand bei Parallelmontage

HINWEIS

Anschlusshaube vor Montage des BPS anbringen!

- Is Schrauben Sie die Anschlusshaube MS 348, MK 348 bzw. ME 348 103 mit zwei M4-Schrauben am Gerätegehäuse an.
- b Ziehen Sie die Schrauben der Anschlusshaube mit einem Anzugsmoment von 1,4 Nm an.

6.2.2 Orientierung des BPS zum Barcodeband

Das BPS muss mit seinem Strahl schräg um 7 ° zum Barcoceband orientiert sein (siehe Bild 6.9). Dabei ist sicherzustellen, dass der Abstrahlwinkel zur Gehäuserückseite 90 ° beträgt und der Leseabstand zum Barcodeband eingehalten wird.

- Bezugspunkt Barcodeposition
- 2 Scanstrahl 3

Bild 6.9: Strahlaustritt

6.2.3 Montage mit Befestigungsteil BTU 0300M-W

Die Montage des BPS mit einem Befestigungsteil BTU 0300M-W ist für eine Wandmontage vorgesehen. Für Bestellhinweise siehe Kapitel 14; für die Maßzeichnung siehe Bild 13.9.

- 1 Klemmprofil
- 2 Klemmbacken
- 3 Klemmschraube

Bild 6.10: Montage des BPS mit Befestigungsteil BTU 0300M-W

- Montieren Sie das BTU 0300M-W anlagenseitig mit Befestigungsschrauben M6 (nicht im Lieferumfang).
- Montieren Sie das BPS mit den Schwalbenschwanz-Befestigungsnuten auf den Klemmbacken des BTU 0300M-W mit Anschlag am Ende.
- Sixieren Sie das BPS mit der Klemmschraube M6.

Maximales Anzugsmoment für die Klemmschraube M6: 8 Nm

6.2.4 Montage mit Befestigungswinkel BT 300 W

Die Montage des BPS mit einem Befestigungswinkel BT 300 W ist für eine Wandmontage vorgesehen. Für Bestellhinweise siehe Kapitel 14; für die Maßzeichnung siehe Bild 13.10.

- Montieren Sie den Befestigungswinkel BT 0300 W anlagenseitig mit Befestigungsschrauben M6 (im Lieferumfang enthalten).
- Montieren Sie das BPS mit Befestigungsschrauben M4 (im Lieferumfang enthalten) am Befestigungswinkel.

Maximales Anzugsmoment der Befestigungsschrauben M4: 2 Nm

6.2.5 Montage mit Befestigungsteil BT 56

Die Montage des BPS mit einem Befestigungsteil BT 56 ist für eine Stangenbefestigung vorgesehen. Für Bestellhinweise siehe Kapitel 14; für die Maßzeichnung siehe Bild 13.11.

- b Montieren Sie das BT 56 mit dem Klemmprofil an der Stange (anlagenseitig).
- Montieren Sie das BPS mit den Befestigungsnuten auf den Klemmbacken des BT 56 mit Anschlag am Ende.
- Sixieren Sie das BPS mit der Klemmschraube M6.

Maximales Anzugsmoment für die Klemmschraube M6: 8 Nm

6.2.6 Montage mit Befestigungsteil BT 300-1

Die Montage des BPS mit einem Befestigungsteil BT 300-1 ist für eine Stangenbefestigung vorgesehen. Für Bestellhinweise siehe Kapitel 14; für die Maßzeichnung siehe Bild 13.12.

- b Montieren Sie das Befestigungsteil BT 300-1 mit dem Klemmprofil an der Stange (anlagenseitig).
- Montieren Sie das BPS mit Befestigungsschrauben M4 (im Lieferumfang enthalten) am Befestigungswinkel des BT 300-1.

Maximales Anzugsmoment der Befestigungsschrauben M4: 2 Nm

6.2.7 Montage mit Befestigungsschrauben M4

alle Maße in mm

Bild 6.11: Maßzeichnung BPS Geräterückseite

Wontieren Sie das BPS mit Befestigungsschrauben M4 (nicht im Lieferumfang enthalten) an der Anlage.

Maximales Anzugsmoment der Befestigungsschrauben: 2 Nm

7 Elektrischer Anschluss

Sicherheitshinweise!

- Vergewissern Sie sich vor dem Anschließen, dass die Versorgungsspannung mit dem angegebenen Wert auf dem Typenschild übereinstimmt.
- ♥ Lassen Sie den elektrischen Anschluss nur durch befähigte Personen durchführen.
- ♦ Achten Sie auf korrekten Anschluss der Funktionserde (FE).
 - Ein störungsfreier Betrieb ist nur bei ordnungsgemäß angeschlossener Funktionserde gewährleistet.
- Können Störungen nicht beseitigt werden, setzen Sie das Gerät außer Betrieb. Schützen Sie das Gerät gegen versehentliche Inbetriebnahme.

UL-Applikationen!

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

HINWEIS

Protective Extra Low Voltage (PELV)

Das BPS ist in Schutzklasse III zur Versorgung durch PELV (Protective Extra Low Voltage) ausgelegt (Schutzkleinspannung mit sicherer Trennung).

HINWEIS

Anschlusshaube und Schutzart IP 65

b Montieren Sie vor dem Anschließen die Anschlusshaube am BPS Gerätegehäuse.

- Zur Sicherstellung der Schutzart IP 65 müssen die Schrauben der Anschlusshaube zur Verbindung mit dem BPS mit einem Anzugsmoment von 1,4 Nm angezogen werden.
- Die Schutzart IP 65 wird nur mit verschraubten Steckverbindern bzw. mit verschraubten Leitungsdurchführungen und installierten Abdeckkappen erreicht.

Verwenden Sie f
ür alle Anschl
üsse (Anschlussleitung, Verbindungsleitung, etc.) nur die im
 Zubeh
ör aufgef
ührten Leitungen (siehe Kapitel 14).

7.1 Externer Parameterspeicher in der Anschlusshaube

Der Parameterspeicher in der Anschlusshaube MS 348, MK 348, bzw. ME 348 103 speichert den Gerätenamen und hält eine Kopie des aktuellen Parametersatzes des BPS bereit.

- Beim BPS-Gerätetausch vor Ort wird der Gerätename für das neue BPS automatisch übernommen. Die manuelle Konfiguration des getauschten Gerätes und ein erneutes "Taufen" auf den Gerätenamen entfallen.
- Die Steuerung kann sofort auf das ausgetauschte BPS zugreifen.

7.2 Anschlusshaube MS 348 mit Steckverbindern

Die Anschlusshaube MS 348 verfügt über drei M12-Anschlussstecker und eine USB-Buchse vom Typ Mini-B als Service-Schnittstelle.

- 1 PWR / SW IN/OUT: M12-Stecker (A-kodiert)
- 2 SERVICE: USB-Buchse Mini-B (hinter Schutzkappe)
- 3 HOST / BUS IN: M12-Buchse (D-kodiert), Ethernet 0
- BUS OUT: M12-Buchse (D-kodiert), Ethernet 1

Bild 7.1: Anschlusshaube MS 348, Anschlüsse

HINWEIS

Schirmanbindung und Funktionserde-Anschluss!

b Die Schirmanbindung erfolgt über das Gehäuse der M12-Steckverbinder.

Achten Sie auf den korrekten Anschluss der Funktionserde (FE). Nur bei ordnungsgemäß angeschlossener Funktionserde ist der störungsfreie Betrieb gewährleistet. Alle elektrischen Störeinflüsse (EMV-Einkopplungen) werden über den Funktionserde-Anschluss abgeleitet.

HINWEIS

Netzwerkunterbrechung bei BPS in PROFINET Linien-Topologie!

bei einem Gerätetausch wird das PROFINET-Netzwerk an dieser Stelle unterbrochen.

Das PROFINET-Netzwerk wird unterbrochen, wenn das BPS von der Anschlusshaube abgezogen wird.

bas PROFINET-Netzwerk wird bei fehlender Spannungsversorgung des BPS unterbrochen.

Schließen Sie den Anschluss PWR / SW IN/OUT mit der Anschlussleitung an die Versorgungsspannung bzw. die Schaltein-/ausgänge an.

♥ PROFINET-Stern-Topologie:

Schließen Sie den Anschluss HOST / BUS IN mit der Verbindungsleitung an einen Switch an.

♥ PROFINET-Linien-Topologie:

Schließen Sie den Anschluss HOST / BUS IN mit der Verbindungsleitung an den Anschluss BUS OUT des vorausgehenden BPS an.

Schließen Sie den Anschluss BUS OUT mit der Verbindungsleitung an den Anschluss HOST / BUS IN des nachfolgenden BPS an.

7.3 Anschlusshaube MK 348 mit Federkraftklemmen

Mit der Anschlusshaube MK 348 wird das BPS direkt und ohne zusätzliche Stecker angeschlossen. Die MK 348 verfügt über drei Kabeldurchführungen, in denen sich auch die Schirmanbindung für das Schnittstellenkabel befindet. Eine USB-Buchse vom Typ Mini-B dient als Service-Schnittstelle.

1 3x Leitungsdurchführung, M16 x 1,5

2 SERVICE: USB-Buchse Mini-B (hinter Schutzkappe)

Bild 7.2: Anschlusshaube MK 348, Anschlüsse

HINWEIS

Leitungskonfektionierung!

⇔ Wir empfehlen keine Aderendhülsen zu verwenden.

HINWEIS

Funktionserde-Anschluss!

Achten Sie auf den korrekten Anschluss der Funktionserde (FE). Nur bei ordnungsgemäß angeschlossener Funktionserde ist der störungsfreie Betrieb gewährleistet. Alle elektrischen Störeinflüsse (EMV-Einkopplungen) werden über den Funktionserde-Anschluss abgeleitet.

- Schließen Sie den Anschluss PWR / SW IN/OUT mit der Anschlussleitung an die Versorgungsspannung bzw. die Schaltein-/ausgänge an.
- ♥ PROFINET-Stern-Topologie:

Schließen Sie den Anschluss HOST / BUS IN mit der Verbindungsleitung an einen Switch an.

♥ PROFINET-Linien-Topologie:

Schließen Sie den Anschluss HOST / BUS IN mit der Verbindungsleitung an den Anschluss BUS OUT des vorausgehenden BPS an.

Schließen Sie den Anschluss BUS OUT mit der Verbindungsleitung an den Anschluss HOST / BUS IN des nachfolgenden BPS an.

7.4 Anschlusshaube ME 348 103 mit Leitungen mit M12-Rundsteckern

Die Anschlusshaube ME 348 103 verfügt über drei Leitungen mit M12-Anschlussstecker und eine USB-Buchse vom Typ Mini-B als Service-Schnittstelle.

- PWR / SW IN/OUT: Leitung mit M12-Stecker (A-kodiert)
- 2 SERVICE USB: USB-Buchse Mini-B (hinter Schutzkappe)
- 3 BUS OUT: Leitung mit M12-Buchse (D-kodiert), Ethernet 1
- 4 HOST / BUS IN: Leitung mit M12-Buchse (D-kodiert), Ethernet 0
- 5 Schutzkappe (kein Anschluss)

Bild 7.3: Anschlusshaube ME 348 103, Anschlüsse

Netzwerkunterbrechung bei BPS in PROFINET Linien-Topologie!

- bei einem Gerätetausch wird das PROFINET-Netzwerk an dieser Stelle unterbrochen.
- Das PROFINET-Netzwerk wird unterbrochen, wenn das BPS von der Anschlusshaube abgezogen wird.

bas PROFINET-Netzwerk wird bei fehlender Spannungsversorgung des BPS unterbrochen.

- Schließen Sie die Leitung PWR / SW IN/OUT an die Versorgungsspannung bzw. die Schaltein-/ ausgänge an.
- ♥ PROFINET-Stern-Topologie:

Schließen Sie die Leitung HOST / BUS IN an einen Switch an.

♥ PROFINET-Linien-Topologie:

Schließen Sie die Leitung HOST / BUS IN an den Anschluss BUS OUT des vorausgehenden BPS an. Schließen Sie die Leitung BUS OUT an den Anschluss HOST / BUS IN des nachfolgenden BPS an.

7.5 Anschlussbelegung

7.5.1 PWR / SW IN/OUT (Power und Schaltein-/ausgang)

5-poliger M12-Stecker (A-kodiert) oder Klemmenblock zum Anschluss an PWR / SW IN/OUT.

Bild 7.4: PWR / SW IN/OUT-Anschluss

Pin/Klemme	Bezeichnung	Belegung				
1	VIN	+18 +30 VDC Versorgungsspannung				
2	SWIO1	Schaltein-/ausgang 1 (konfigurierbar)				
3	GNDIN	Negative Versorgungsspannung (0 VDC)				
4	SWIO2	Schaltein-/ausgang 2 (konfigurierbar)				
5	FE	Funktionserde				
Gewinde (M12-Stecker) Kabelverschraubung	Funktionserde	Schirmung der Anschlussleitung. Die Schirmung der Anschlussleitung liegt auf dem Gewinde des M12-Steckers bzw. auf der Verschrau- bung der Kabeldurchführung. Das Gewinde bzw. die Verschraubung ist Bestandteil des metallischen Gehäuses. Das Gehäuse liegt über Pin 5 auf dem Potenzial der Funktionserde.				

Tabelle 7.1: PWR / SW IN/OUT-Anschlussbelegung

Anschlussleitungen: siehe Tabelle 14.3

/ VORSICHT

UL-Applikationen!

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

Schaltein-/ausgang

Das BPS verfügt über zwei frei programmierbare, opto-entkoppelte Schaltein-/ausgänge SWIO1 und SWIO2.

- Mit den Schalteingängen lassen sich verschiedene interne Funktionen des BPS aktivieren (z. B. Messung Stopp/Start, Preset Teach, Preset Reset).
- Die Schaltausgänge dienen zur Zustandssignalisierung des BPS und zur Realisierung externer Funktionen unabhängig von der übergeordneten Steuerung (z. B. Positionswert-/Geschwindigkeitswert ungültig, außerhalb Positions-und Geschwindigkeitsgrenzwert, Gerätefehler).
- Die Steuerung kann Schaltein-/ausgänge als digitale I/Os verwenden.
 Wenn keine interne BPS Funktion mit den Schaltein-/ausgängen verbunden ist, können die Ports wie zwei Eingänge, zwei Ausgänge oder wie ein Eingang und ein Ausgang einer digitalen I/O-Baugruppe angesprochen werden.
- Die Funktion als Eingang oder Ausgang wird über PROFINET-Parameter (siehe Kapitel 8.4)
 bzw. mithilfe des Konfigurations-Tools webConfig (KONFIGURATION > GERÄT > Schaltein-/ ausgänge, siehe Kapitel 9.3.2) eingestellt.

Wenn SWIO1 oder SWIO2 als digitaler Eingang bzw. Ausgang verwendet werden soll, muss die Konfiguration in Modul 4 (siehe Kapitel 8.4.6) bzw. Modul 5 (siehe Kapitel 8.4.7) vorgenommen werden.

HINWEIS

Maximaler Eingangsstrom

ber Eingangsstrom des jeweiligen Schalteingangs beträgt maximal 8 mA.

Maximale Belastung der Schaltausgänge

Belasten Sie den jeweiligen Schaltausgang des BPS im Normalbetrieb maximal mit 60 mA bei + 18 … 30 VDC.

b Jeder konfigurierte Schaltausgang ist kurzschlussfest.

Schalteingang SWIO2: Preset Teach

HINWEIS

SWIO1 und SWIO2 als Schaltausgang

An die Ausgänge des BPS (SWIO1 und SWIO2) dürfen keine Schaltausgänge von externen Sensoren/Geräten angeschlossen werden.

Andernfalls kann es zum Fehlverhalten des Schaltausgangs des BPS kommen.

7.5.2 HOST / BUS IN (Host/Bus-Eingang, Ethernet)

Zum Aufbau eines PROFINET-Netzwerks mit mehreren Teilnehmern verfügt das BPS über die ankommende PROFINET-Schnittstelle HOST / BUS IN.

- 4-polige M12-Buchse (D-kodiert) zum Anschluss an HOST / BUS IN.
- Leitung mit 4-poliger M12-Buchse (D-kodiert) zum Anschluss an HOST / BUS IN.
- Klemmenblock zum Anschluss an HOST / BUS IN.

Bild 7.5: HOST / BUS IN-Anschluss

Tabelle 7.2:	HOST / BUS IN-Anschlussbelegung	J
--------------	---------------------------------	---

Pin/Klemme	Bezeichnung	Belegung				
1	TD+	Transmit Data +				
2 RD+		Receive Data +				
3	TD-	Transmit Data -				
4	RD-	Receive Data -				
5	-	not connected				

HINWEIS

Vorkonfektionierte Leitungen verwenden!

Verwenden Sie bevorzugt die vorkonfektionierten Leitungen von Leuze electronic (siehe Tabelle 14.4 bzw. siehe Tabelle 14.5).

PROFINET-Leitungsbelegung

Bild 7.6: Kabelbelegung HOST / BUS IN auf RJ-45

Ausführung als geschirmte Leitung max. 100 m.

Pin (M12)	Bezeichnung	Pin/Aderfarbe (RJ45)				
1	TD+	1/gelb				
2	RD+	3/weiß				
3	TD-	2/orange				
4	RD-	6/blau				

HINWEIS

Selbstkonfigurierte Leitungen mit PROFINET-Schnittstelle!

Schten Sie auf ausreichende Schirmung.

bie gesamte Verbindungsleitung muss geschirmt und geerdet sein.

bie Adern RD+/RD- und TD+/TD- müssen paarig verseilt sein.

& Verwenden Sie CAT 5-Kabel zur Verbindung.

7.5.3 BUS OUT (Host/Bus-Ausgang, Ethernet)

Zum Aufbau eines PROFINET-Netzwerks mit mehreren Teilnehmern verfügt das BPS über die abgehende PROFINET-Schnittstelle BUS OUT. Die Verwendung der BUS OUT Schnittstelle verringert den Verkabelungsaufwand, da nur das erste BPS eine direkte Verbindung zum Switch benötigt, über den es mit dem Host kommunizieren kann. Alle anderen BPS werden in Serie an das erste BPS angeschlossen (siehe Kapitel 7.6).

- 4-polige M12-Buchse (D-kodiert) zum Anschluss an BUS OUT.
- · Leitung mit 4-poliger M12-Buchse (D-kodiert) zum Anschluss an BUS OUT.
- · Klemmenblock zum Anschluss an BUS OUT.

Bild 7.7: **BUS OUT-Anschluss**

Tabelle 7.3: **BUS OUT-Anschlussbelegung**

Pin/Klemme	Bezeichnung	Belegung		
1	TD+	Transmit Data +		
2	RD+	Receive Data +		

Pin/Klemme	Bezeichnung	Belegung		
3	TD-	Transmit Data -		
4	RD-	Receive Data -		
5	-	not connected		

Vorkonfektionierte Leitungen verwenden!

Verwenden Sie bevorzugt die vorkonfektionierten Leitungen von Leuze electronic (siehe Tabelle 14.6).

HINWEIS

Selbstkonfigurierte Leitungen mit PROFINET-Schnittstelle!

♦ Achten Sie auf ausreichende Schirmung.

Die gesamte Verbindungsleitung muss geschirmt und geerdet sein.

bie Signalleitungen müssen paarig verseilt sein.

HINWEIS

Keine BUS OUT Terminierung erforderlich!

Für den BPS als Stand-Alone-Gerät oder als letzten Teilnehmer in einer PROFINET-Linien-Topologie ist keine Terminierung an der Buchse BUS OUT erforderlich.

7.5.4 Service-USB

HINWEIS

Anschluss an PC mit Standard-USB-Leitung!

Die Service-USB-Schnittstelle des BPS wird an der PC-seitigen USB-Schnittstelle mit einer Standard-USB-Leitung (Steckerkombination Typ Mini-B/Typ A) angeschlossen.

5-poliger Mini-B-Stecker zum Anschluss an Service-USB.

Bild 7.8: Service-USB-Anschluss

Tabelle 7.4: Service-USB-Anschlussbelegung

Pin	Bezeichnung	Belegung				
1	VB	Sense-Eingang				
2	D-	Data -				
3	D+	Data +				
4	ID	not connected				
5	GND	Masse (Ground)				

HINWEIS

Vorkonfektionierte Anschlussleitungen verwenden!

b Verwenden Sie bevorzugt die vorkonfektionierten Leitungen von Leuze electronic; siehe Tabelle 14.8.

Selbstkonfigurierte Leitungen!

Schten Sie auf ausreichende Schirmung.

Die maximale Leitungslänge von 3 m darf nicht überschritten werden.

7.6 PROFINET-Topologien

7.6.1 Stern-Topologie

Das BPS kann als Einzelgerät (Stand-Alone) in einer PROFINET-Stern-Topologie mit individuellem Gerätenamen betrieben werden. Dieser Gerätename muss dem Teilnehmer mit der "Gerätetaufe" von der SPS mitgeteilt werden; siehe Kapitel 8.3.

- 4 Host-Schnittstelle PC / SPS
- 5 weitere Netzwerkteilnehmer

7.6.2 Linien-Topologie

Die integrierte Switch-Funktionalität des BPS bietet die Möglichkeit, mehrere BPS miteinander zu vernetzen. Neben der klassischen Stern-Topologie ist auch eine Linien-Topologie möglich. Die Verdrahtung des Netzwerks in Linien-Topologie ist einfach und kostengünstig, da die Netzwerkverbindung von einem zum nächsten Teilnehmer durchgeschleift wird. Die maximale Länge eines Segments (Verbindung von einem zum nächsten Teilnehmer) ist auf 100 m begrenzt.

1 Host-Schnittstelle PC / SPS

2 weitere Netzwerkteilnehmer

Bild 7.10: PROFINET in Linien-Topologie

Es können bis zu 254 BPS, die sich alle im gleichen Subnetz befinden müssen, vernetzt werden. Dazu wird jedem teilnehmenden BPS mit Hilfe des Konfigurationswerkzeugs der Steuerung der individuelle "Gerätename" mittels der "Gerätetaufe" zugeordnet; siehe Kapitel 8.3.

7.6.3 PROFINET-Verdrahtung

HINWEIS

Bei PROFINET-Verdrahtung unbedingt beachten!

- Verwenden Sie die vorkonfektionierten Leitungen von Leuze electronic (siehe Kapitel 14.3) oder die empfohlenen Stecker/Buchsen.
- b Verwenden Sie zur Verdrahtung in jedem Fall eine CAT 5 Ethernet-Leitung.
- Verwenden Sie f
 ür die Umsetzung der Anschlusstechnik von M12 auf RJ45 den Adapter KDS ET M12 / RJ 45 W - 4P; siehe Tabelle 14.7. In den Adapter k
 önnen Standard-Netzwerkleitungen eingesteckt werden.
- Falls keine Standard-Netzwerkleitungen zum Einsatz kommen (z. B. wegen fehlender Schutzart IP...), können Sie auf Seite des BPS die selbstkonfektionierbaren Leitungen KB ET - ... - SA verwenden; siehe Tabelle 0.7.
- Die Verbindung zwischen den einzelnen BPS-Geräten in einer Linien-Topologie erfolgt mit der Leitung KB ET - ... - SSA; siehe Tabelle 14.6.

HINWEIS

Bei selbstkonfigurierten oder vorkonfektionierten Leitungen beachten!

b Für nicht lieferbare Leitungslängen können Sie Ihre Leitungen selbst konfektionieren.

- Verwenden Sie die empfohlenen Stecker bzw. Buchsen oder die vorkonfektionierten Leitungen; siehe Kapitel 14 "Bestellhinweise und Zubehör".
- ♥ Verbinden Sie jeweils TD+ am M12-Stecker mit RD+ am RJ-45-Stecker.
- 以 Verbinden Sie jeweils TD- am M12-Stecker mit RD- am RJ-45-Stecker, usw.

7.7 Leitungslängen und Schirmung

Beachten Sie die maximalen Leitungslängen und die Schirmungsarten:

Verbindung	Schnittstelle	max. Leitungslänge	Schirmung
BPS-Service	USB	3 m	Schirmung zwingend erforderlich gemäß USB- Spezifikation
BPS-Host	entsprechend BPS 300i Gerätevariante	100 m	Schirmung zwingend erforderlich
Netzwerk vom ersten BPS bis zum letzten BPS	entsprechend BPS 300i Gerätevariante	max. Segmentlänge: 100 m bei 100Base-TX Twisted Pair (min. CAT 5)	Schirmung zwingend erforderlich
Schalteingang		10 m	nicht erforderlich
Schaltausgang		10 m	nicht erforderlich
BPS-Netzteil		30 m	nicht erforderlich

8 Basiskonfiguration

Die Konfiguration des BPS erfolgt grundsätzlich über die PROFINET-Schnittstelle.

Parameteränderungen zu Testzwecken und erweiterte Konfigurationen zum Zeitverhalten bei der Positions- und Geschwindigkeitsmessung können über das webConfig-Tool (siehe Kapitel 9) vorgenommen werden.

HINWEIS

Bei Konfiguration von PROFINET Geräten beachten!

Nehmen Sie die Basiskonfiguration grundsätzlich über die Generic Station Description Markup Language (GSDML)-Datei vor.

Laden Sie die passende Datei aus dem Internet herunter.

Im Prozess-Betrieb sind ausschließlich die über die GSDML-Datei oder über das webConfig-Tool (HOME > INSTALLATION > GSDML-Datei) eingestellten Parameter in den PROFINET-Modulen bzw. PROFINET-Default-Vorgaben wirksam. Die über das webConfig-Tool (siehe Kapitel 9) vorgenommenen Parameteränderungen sind am PROFINET nicht wirksam.

Wenn Sie das BPS über das webConfig-Tool in den Betriebsmodus *Service* umschalten, wird das BPS vom PROFINET getrennt. Alle über die GSDML-Datei eingestellten Parameter sind zunächst weiter wirksam. Über das webConfig-Tool können nun Parameteränderungen zu Testzwecken vorgenommen werden.

Mit dem webConfig-Tool konfigurierte Einstellungen werden beim Einbinden in PROFINET bzw. nach Deaktivierung des Betriebsmodus *Service* vom PROFINET-Master mit den über die GSDML-Datei gemachten Einstellungen überschrieben.

b Konfigurationsdaten werden im Gerät **und** in der Anschlusshaube gespeichert.

8.1 PROFINET-Schnittstelle konfigurieren

Das BPS ist als PROFINET-RT Gerät (Real Time; gemäß IEEE 802.3) konzipiert. Es unterstützt eine Übertragungsrate von bis zu 100 Mbit/s (100 Base TX/FX), Vollduplex, sowie Auto-Negotiation und Auto-Crossover.

- Die Funktionalität des BPS wird über Parameter definiert, die in Modulen organisiert sind. Die Module sind Bestandteil der Generic Station Description Markup Language (GSDML)-Datei.
- Jedes BPS verfügt über eine eindeutige MAC-Adresse (Media Access Control), die auf dem Typenschild angegeben ist. Die MAC-Adresse (MAC-ID) wird im Laufe der Konfiguration mit einer IP-Adresse verknüpft.
- Der SIMATIC-Manager zur Erstellung von PROFINET-Netzwerken koppelt die IP-Adresse mit einem frei zu wählenden, aber je Netzwerk nur einmalig vorhandenen Gerätenamen.

Address Link Label

Das "Address Link Label" ist ein zusätzlich am Gerät angebrachter Aufkleber.

BPS 348i MAC 00:15:7B:20:00:15

Name

IP

Bild 8.1: Beispiel eines "Address Link Label"; der Gerätetyp variiert je nach Baureihe

- Das "Address Link Label" enthält die MAC-Adresse (Media Access Control-Adresse) des Geräts und bietet die Möglichkeit, handschriftlich die IP-Adresse und den Gerätenamen einzutragen. Der Bereich des "Address Link Label", auf dem die MAC-Adresse gedruckt ist, kann bei Bedarf mittels Perforierung vom Rest des Aufklebers getrennt werden.
- Zur Verwendung wird das "Address Link Label" vom Gerät abgezogen und kann zur Kennzeichnung des Geräts in Installations- und Lagepläne eingeklebt werden.

 Eingeklebt in die Unterlagen stellt das "Address Link Label" einen eindeutigen Bezug zwischen Montageort, MAC-Adresse bzw. Gerät, sowie dem zugehörigen Steuerungsprogramm her. Das zeitaufwendige Suchen, das Ablesen und das handschriftliche Notieren der MAC-Adressen aller in der Anlage verbauten Geräte entfällt.

Jedes Gerät mit Ethernet-Schnittstelle ist über die in der Produktion zugewiesene MAC-Adresse eindeutig identifiziert. Die MAC-Adresse ist zusätzlich auf dem Typenschild des Geräts angegeben.

Werden in einer Anlage mehrere Geräte in Betrieb genommen, muss z. B. bei der Programmierung der Steuerung die MAC-Adresse für jedes verbaute Gerät korrekt zugewiesen werden.

- ♥ Lösen Sie das "Address Link Label" vom Gerät ab.
- b Ergänzen Sie ggf. die IP-Adresse und den Gerätenamen auf dem "Address Link Label".
- Kleben Sie das "Address Link Label" entsprechend der Position des Geräts in die Unterlagen, z. B. in den Installationsplan.

8.1.1 PROFINET-Kommunikationsprofil

Das PROFINET-Kommunikationsprofil legt fest, wie Teilnehmer ihre Daten seriell über das Übertragungsmedium übertragen. Der Datenaustausch mit den Geräten erfolgt vorwiegend zyklisch. Zur Konfiguration, Bedienung, Beobachtung und Alarmbehandlung werden jedoch auch azyklische Kommunikationsdienste verwendet.

Je nach Kommunikationsanforderung bietet PROFINET passende Protokolle bzw. Übertragungsverfahren:

- Real Time (RT)-Kommunikation über priorisierte Ethernet-Frames:
 - zyklische Prozessdaten (im I/O-Bereich der Steuerung abgelegte I/O-Daten)
 - Alarme
 - Taktsynchronisation
 - Nachbarschaftsinformationen
 - Adressvergabe/Adressauflösung über DCP
- TCP/UDP/IP-Kommunikation mittels Standard Ethernet TCP/UDP/IP Frames:
 - Aufbau der Kommunikation
 - Azyklischer Datenaustausch, d. h. Übertragung verschiedener Informationsarten: Parameter für die Modul-Konfiguration während des Aufbaus der Kommunikation I&M-Daten (Identification & Maintenance Funktionen) Lesen von Diagnoseinformationen Auslesen von I/O-Daten Schreiben von Gerätedaten

8.1.2 Conformance Classes

PROFINET-Geräte werden in Conformance Classes eingeteilt, um die Beurteilung und Auswahl der Geräte für die Anwender zu vereinfachen.

Das BPS entspricht der Conformance Class B (CC-B) und kann eine bestehende Ethernet-Netzwerk Infrastruktur nutzen.

Das BPS unterstützt die folgenden Eigenschaften:

- Zyklische RT-Kommunikation
- Azyklische TCP/IP-Kommunikation
- Alarme/Diagnose
- Automatische Adressvergabe
- I&M 0-Funktionalität
- Nachbarschaftserkennung Basis-Funktionalität
- FAST Ethernet 100 Base-TX/FX
- Komfortabler Gerätetausch ohne Engineeringtool
- SNMP-Unterstützung

8.2 Gerätestart

Starten Sie das BPS wie folgt:

- ♦ Legen Sie die Versorgungsspannung an.
 - Das BPS läuft hoch und bei Geräten mit Display wird der Gerätestatus angezeigt.
- b Projektieren Sie das BPS, z. B. für eine Siemens SIMATIC-S7-Steuerung.
- b Weisen Sie dem BPS seinen individuellen Gerätenamen zu und taufen Sie das Gerät.

Hochlauf des Geräts

- O Der Standardwert der Eingangsdatenbits nach dem Einschalten des Geräts entspricht dem spezifizierten Initwert (im Regelfall NULL).
- $_{
 m O}$ Für Ausgangsdaten mit dem Status IOPS=Bad werden die nachgelagerten Funktionen in einen
- sicheren Zustand geschaltet. Zum Beispiel wird ein aktiviertes Gerät oder ein Ausgang deaktiviert. Dies ist beispielsweise der Fall, wenn die Steuerung in den STOP-Mode geschaltet wird.

Bei einem Verbindungsabbruch verhält sich das Gerät identisch.

Während des Gerätehochlaufs sind die Ausgänge deaktiviert.

8.3 Projektierung für Siemens SIMATIC-S7-Steuerung

Die Funktionalität des BPS wird über Parametersätze definiert, die in Modulen organisiert sind. Die Module sind Bestandteil der GSDML (Generic Station Description Markup Language), die als fester Bestandteil des Geräts mit zum Lieferumfang gehört.

Mit einem anwenderspezifischen Projektierungtool, wie z. B. SIMATIC-Manager für die Siemens-SPS werden bei der Inbetriebnahme die jeweils benötigten Module in ein Projekt eingebunden und entsprechend eingestellt bzw. parametriert. Diese Module werden durch die GSDML-Datei bereitgestellt.

HINWEIS

SIMATIC-Manager Version beachten!

Für die Siemens SIMATIC-S7-Steuerung benötigen Sie mindestens die SIMATIC-Manager Version 5.4 + Servicepack 5 (V5.4+SP5). Zur Inbetriebnahme sind die folgenden Schritte notwendig:

- Vorbereitung der Steuerung (SPS-S7)
- Installation der GSDML-Datei
- Hardware-Konfiguration der SPS-S7
- Übertragen der PROFINET-Projektierung an den IO-Controller (SPS-S7)
- Gerätetaufe
- Gerätenamen-Überprüfung

Gehen Sie wie folgt vor:

♦ Bereiten Sie die Steuerung (SPS-S7) vor:

Eine IP-Adresse an den IO-Controller (SPS-S7) zuweisen

Die Steuerung auf die konsistente Datenübertragung vorbereiten.

b Installieren Sie die GSDML-Datei für die spätere Projektierung des BPS.

Die GSDML-Datei finden Sie unter www.leuze.de > Produkte > Messende Sensoren > Sensoren zur Positionierung > BPS 300i > (Name des BPS) > Register Downloads > Software/Treiber > GSDML-Datei.

 Alternativ kann die GSDML-Datei mit dem webConfig-Tool (siehe Kapitel 9) aus dem BPS geladen werden:

HOME > INSTALLATION > GSDML-Datei

Die im BPS hinterlegte GSDML-Datei ist immer passend zur Firmwareversion des BPS.

о]]

Allgemeine Informationen zur GSDML-Datei

Der Begriff GSD (Generic Station Description) steht für die textuelle Beschreibung eines PRO-FINET-Gerätemodells. Für die Beschreibung des komplexen PROFINET-Gerätemodells, wurde die XML-basierte sogenannte GSDML (Generic Station Description Markup Language) eingeführt. Wenn im folgenden der Begriff "GSD" oder "GSD-Datei" verwendet wird, so bezieht sich dieser immer auf die GSDML-basierte Form. Die GSDML-Datei kann beliebig viele Sprachen in einer Datei unterstützen. Jede GSDML-Datei enthält eine Version des BPS-Gerätemodells. Dies wird auch über den Dateinamen reflektiert.

In der GSDML-Datei sind alle Daten in Modulen beschrieben, die für den Betrieb des BPS nötig sind: Ein- und Ausgangsdaten, Geräteparameter, Definition der Steuer- bzw. Statusbits.

Werden z. B. im Projekt-Tool Parameter geändert, werden diese Änderungen von der SPS im Projekt und nicht in der GSDML-Datei gespeichert. Die GSDML-Datei ist ein zertifizierter Bestandteil des Geräts und darf manuell nicht verändert werden. Die Datei wird auch vom System nicht verändert.

Die Funktionalität des BPS wird über Parametersätze definiert. Die Parameter und deren Funktionen sind in der GSDML-Datei über Module strukturiert. Mit einem anwenderspezifischen Projektierungstool werden bei der SPS-Programmerstellung die jeweils benötigten Module eingebunden und entsprechend der Verwendung konfiguriert. Beim Betrieb des BPS am PRO-FINETsind alle Parameter mit Default-Werten belegt. Werden diese Parameter vom Anwender nicht geändert, so arbeitet das Gerät mit den von Leuze electronic ausgelieferten Defaulteinstellungen. Die Defaulteinstellungen des BPS finden Sie in den Modulbeschreibungen. о П

Aufbau des GSDML-Dateinamens

Der Dateiname der GSDML-Datei wird nach folgender Regel aufgebaut:

GSDML-[GSDML-Schemaversion]-Leuze-[Artikelbeschreibung]-[Datum].xml

[GSDML-Schemaversion] = Versionskennung der verwendeten GSDML-Schemaversion, z. B. V2.2

[Datum] = Datum der Freigabe der GSDML-Datei im Format yyyymmdd.

Dieses Datum steht gleichzeitig auch für den Ausgabestand der Datei.

Beispiel: GSDML-V2.2-Leuze-BPS348i-20131003.xml

♦ Konfigurieren Sie die Hardware der SPS-S7:

Fügen Sie das BPS in Ihr Projekt ein. Die Projektierung des PROFINET-Systems erfolgt mit Hilfe der Hardware-Konfiguration (HW-Konfig) des SIMATIC-Managers.

Ordnen Sie einer IP-Adresse einen eindeutigen Gerätenamen zu.

billiour Sie die PROFINET-Projektierung an den IO-Controller (SPS-S7).

Nach der korrekten Übertragung erfolgen automatisch folgende Aktivitäten:

- Überprüfen der Gerätenamen
- · Vergabe der in der HW-Konfig projektierten IP-Adressen an die IO-Devices
- Starten des Verbindungsaufbaus zwischen IO-Controller und projektierten IO-Devices
- Zyklischer Datenaustausch

Nicht-getaufte Teilnehmer können zu diesem Zeitpunkt noch nicht angesprochen werden!

Gerätetaufe

Unter der Gerätetaufe versteht PROFINET die Herstellung eines Namenszusammenhanges für ein PROFINET-Device.

Stellen Sie den Gerätenamen ein.

Im Auslieferungszustand besitzt das PROFINET-Gerät eine eindeutige MAC-Adresse. Die MAC-Adresse se finden Sie auf dem Typenschild des BPS. Mehrere BPS werden durch die angezeigten MAC-Adressen unterschieden.

Anhand dieser Informationen wird jedem Gerät über das Discovery and Configuration Protocol (DCP) ein eindeutiger, anlagenspezifischer Gerätename ("NameOfStation") zugewiesen.

PPROFINET nutzt bei jedem Systemhochlauf das DCP-Protokoll für die IP-Adressvergabe, soweit sich das IO-Device im selben Subnetz befindet.

by Weisen Sie den Gerätenamen den projektierten IO-Devices zu.

Wählen Sie das BPS anhand seiner MAC-Adresse aus. Dem BPS wird dann der eindeutige Gerätename (der mit dem in der HW-Konfig übereinstimmen muss) zugewiesen.

b Weisen Sie der MAC-Adresse die IP-Adresse zu (individueller Gerätename).

Vergeben Sie an dieser Stelle noch eine IP-Adresse (wird von der SPS vorgeschlagen), eine Subnetzmaske, sowie ggf. eine Router-Adresse und weisen Sie diese Daten dem getauften Teilnehmer (Gerätenamen) zu.

Im weiteren Vorgehen und bei der Programmierung wird dann nur noch mit dem eindeutigen Gerätenamen (max. 255 Zeichen) gearbeitet.

berätenamen-Überprüfung

Überprüfen Sie nach Abschluss der Projektierungsphase die jeweils zugeordneten Gerätenamen.

Eindeutige Gerätenamen zuweisen!

Achten Sie darauf, dass die Gerätenamen eindeutig sind und dass sich alle Teilnehmer im gleichen Subnetz befinden.

8.4 **PROFINET Projektierungsmodule**

Aus Gerätesicht wird zwischen schnittstellen-spezifischen Parametern und internen Parametern unterschieden:

- Schnittstellen-spezifische Parameter Parameter, die über die Schnittstelle verändert werden können (siehe nachfolgend beschriebene Module).
- Interne Parameter Parameter, die nur über eine Service-Schnittstelle verändert werden. Sie behalten ihren Wert auch nach der schnittstellen-spezifischen Konfiguration bei.

HINWEIS

Datenüberschreibung durch die Steuerung (SPS)!

beachten Sie, dass die SPS die über die Service-Schnittstelle eingestellten Daten überschreibt.

- In der schnittstellen-spezifischen Konfigurationsphase werden alle schnittstellen-spezifischen Parameter, die über die Service-Schnittstelle geändert wurden, überschrieben. Dies gilt auch für die Parameter aus nicht projektierten Modulen.
- & Während der Konfigurationsphase erhält das BPS Parametertelegramme vom IO-Controller (Master).

Bevor die Parametertelegramme ausgewertet und die entsprechenden Parameterwerte gesetzt werden, werden alle schnittstellen-spezifischen Parameter auf Default-Werte zurückgesetzt. Dadurch wird gewährleistet, dass die Parameter von nicht selektierten Modulen Standardwerte enthalten.

HINWEIS

Kein Universalmodul aktivieren!

Stellt die Steuerung ein sogenanntes "Universalmodul" zur Verfügung, darf das Universalmodul für das BPS nicht aktiviert werden.

Die Default-Werte des BPS finden Sie in den Modulbeschreibungen.

8.4.1 Übersicht der Module

Modul	Modulname	Modulinhalt (P) = Parameter, (A) = Ausgang, (E) = Eingang		
DAP_001 siehe Seite 62	Positionswert	Profil (P), Integrationstiefe (P), Bandauswahl (P)		
M1 siehe Seite 63	Positionswert	Vorzeichen (P), Maßeinheit (P), Auflösung Position (P), Zählrichtung (P), Offset (P), Position (E)		
M2 siehe Seite 64	Preset statisch	Preset-Wert (P), Preset-Teach (A), Preset-Reset (A)		
M3 siehe Seite 65	Preset dynamisch	Preset-Wert (P), Preset-Teach (A), Preset-Reset (A)		
M4 siehe Seite 66	Ein-/Ausgang IO 1	Funktion (P), Aktivierung (P), Ausgang (P), Eingang (P), Zustand (E), Ausgang steuern (A)		
M5 siehe Seite 69	Ein-/Ausgang IO 2	Funktion (P), Aktivierung (P), Ausgang (P), Eingang (P), Zustand (E), Ausgang steuern (A)		

Modul	Modulname	Modulinhalt (P) = Parameter, (A) = Ausgang, (E) = Eingang			
M6 siehe Seite 71	Status und Steuerung	Messwert ungültig/inaktiv (E), Preset aktiv (E), Preset-Teach Toggle (E), Unterer/Oberer Positionsgrenzwert 1 2 (E), Steuer/Marken-Barcode erkannt (E), Steuer/Marken-Bar code Toggle (E), Temperaturwarnung/-fehler (E) Hardwaredefekt (E), Warn-/Fehler schwelle Lesequalität (E), Standby aktiv (E), Messung starten/stoppen (A), Standby aktivieren/deaktivieren (A), Steuer/Marken-Barcode quittieren (A)			
M7 siehe Seite 73	Positions-Grenzwertbereich 1	Untere/Obere PosGrenze 1 (P)			
M8 siehe Seite 73	Positions-Grenzwertbereich 2	Untere/Obere PosGrenze 2 (P)			
M9 siehe Seite 74	Verhalten im Fehlerfall	Positionswert im Fehlerfall (P), Positionsstatus unterdrücken (P), Fehlerverzögerung/ Fehlerverzögerungszeit (Position) (P), Geschwindigkeit im Fehlerfall (P), Geschwindig keitsstatus unterdrücken (P), Fehlerverzögerung/Fehlerverzögerungszeit (Geschwindig keit) (P)			
M10 siehe Seite 75	Geschwindigkeit	Auflösung Geschwindigkeit (P), Mittelung (P), Geschwindigkeit (E)			
M11 siehe Seite 76	Geschwindigkeitsgrenzwert 1 statisch	Schaltart (P), Richtungswahl (P), Geschwindigkeits-Grenzwert 1 (P), Geschwindigkeits- Hysterese 1 (P), Grenzwert 1 Bereichsanfang/Bereichsende (P)			
M12 siehe Seite 77	Geschwindigkeitsgrenzwert 2 statisch	Schaltart (P), Richtungswahl (P), Geschwindigkeits-Grenzwert 2 (P), Geschwindigkeits- Hysterese 2 (P), Grenzwert 2 Bereichsanfang/Bereichsende (P)			
M13 siehe Seite 77	Geschwindigkeitsgrenzwert 3 statisch	Schaltart (P), Richtungswahl (P), Geschwindigkeits-Grenzwert 3 (P), Geschwindigkeits Hysterese 3 (P), Grenzwert 3 Bereichsanfang/Bereichsende (P)			
M14 siehe Seite 78	Geschwindigkeitsgrenzwert 4 statisch	Schaltart (P), Richtungswahl (P), Geschwindigkeits-Grenzwert 4 (P), Geschwindigkeits- Hysterese 4 (P), Grenzwert 4 Bereichsanfang/Bereichsende (P)			
M15 siehe Seite 79	Geschwindigkeitsgrenzwert dynamisch	Grenzwert-Steuerung (P), Schaltart (P), Richtungswahl (P), Geschwindigkeits- Grenzwert (P), Hysterese (P), Grenzwert Bereichsanfang/Bereichsende (P)			
M16 siehe Seite 79	Geschwindigkeits Status	Geschwindigkeits-Messfehler (E), Geschwindigkeits-Grenzwert 1 4 überschritten (E), Dynamischer Geschwindigkeits-Grenzwert überschritten (E), Bewegungsstatus/-rich- tung (E), Geschwindigkeits-Grenzwert 1 4 aktiv (E), Dynamischer Geschwindigkeits- Grenzwert aktiv(E)			
M20 siehe Seite 81	Freie Auflösung	Position (P), Geschwindigkeit (P)			
M21 siehe Seite 81	Abstand zum BCB	Abstand (E)			
M22 siehe Seite 82	Steuer- und Markenbarcodes	Aktualisierung (P), Übertragung (P) Erstes/Zweites/Drittes Zeichen (E)			
M23 siehe Seite 82	Bandwertkorrektur	Reallänge (P), Bereichsanfang/-ende (P)			
M24 siehe Seite 83	Lesequalität	Warnschwelle/Fehlerschwelle/Glättung Lesequalität (P), Lesequalität (E)			
M25 siehe Seite 83	Gerätestatus	Gerätestatus (E)			
M26 siehe Seite 84	Erweiterter Status	Bandrichtung (E)			
M28 siehe Seite 84	16-Bit Positionswert	16-Bit Positionswert (E)			

8.4.2 DAP Modul – Fest definierte Parameter

Beim PROFINET können Parameter in Modulen hinterlegt sein und auch fest in einem PROFINET-Teilnehmer definiert werden. Je nach Projektierungstool heißen die fest definierten, aber einstellbaren Parameter "Common"-Parameter oder gerätespezifische Parameter.

Die Common-Parameter müssen immer vorhanden sein. Sie werden außerhalb von Projektierungs-Modulen definiert und sind deshalb mit dem Grundmodul (DAP: Device Access Point) verknüpft, das über Slot 0/Subslot 0 adressiert wird.

Nachfolgend sind die im BPS (DAP Slot 0/Subslot 0) fest definierten, aber einstellbaren Geräteparameter aufgelistet, die immer vorhanden und unabhängig von den Modulen verfügbar sind.

Bandauswahl einstellen!

Stellen Sie den Parameter *Bandauswahl* entsprechend dem verwendeten Barcodeband-Raster ein.

Common-Parameter/Gerätespezifische Parameter (DAP: Device Access Point):

0]]

Modul-ID: Profinet_DAP_001

Jedes PROFINET-Gerät benötigt ein DAP-Modul. Das DAP-Modul stellt den Kommunikationszugangspunkt zum BPS dar.

Das Modul enthält gerätespezifische Parameter, jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De- foult	De- Maßeinheit		t Erklärung
	Aur.			iault	metr.	Inch	
Profil	0	Byte	2	2			Definiert das eingesetzte Geräteprofil. Hinweis: Aktuell ist nur das BPS-Profil hinterlegt und deshalb keine Auswahl möglich. Nummer des aktivierten Pro- fils. 2: BPS-Profil
Integrationstiefe	1.0 1.4	Bitfeld	2 16	8	Messi	ungen	Anzahl der aufeinanderfolgenden Messungen, die das BPS zur Positionsbestimmung verwendet.
Bandauswahl	1.5 1.6	Bitfeld	1: 30 mm BCB 2: 40 mm BCB	2			Umschaltung zwischen Barcodeband (BCB) mit 30 mm Raster und 40 mm Raster.

8.4.3 Modul 1 – Positionswert

Modul-ID: 1001 mit Submodul-ID: 1

Modul zur Ausgabe des aktuellen Positionswerts. Das Modul enthält zusätzlich die wichtigsten Parameter zur Formatierung des Ausgabewerts.

Das Modul enthält Parameter (mit 6 Byte Parameterdatenlänge) und Eingangsdaten (mit 4 Byte konsistenter Eingangsdatenlänge), jedoch keine Ausgangsdaten.

Parameter	Rel. Adr.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
					metr.	Inch	
Vorzeichen	0.0	Bit	0 1	0			Ausgabemodus des Vorzeichens. Wirkt sich auf Positionswert und Geschwindigkeitsausgabe aus: 0: Zweierkomplement 1: Vorzeichen + Betrag
Maßeinheit	0.1	Bit	0 1	0			Die Auswahl der Maßeinheit wirkt sich auf alle Werte mit Maßeinheiten aus. Der Parameter wirkt auf alle Schnittstellen: 0: metrisch (mm) 1: Inch (in)

Parameter	Rel. Adr.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
					metr.	Inch	
Auflösung Position	0.2 0.4	Bit	1 6	4	mm	in/ 100	Auflösung des Positionswerts. Wirkt nur auf die schnittstellenspezifische Ausgabe. Die Auflösung hat keine Auswirkung auf die eingestellten Parameter- werte wie Offset oder Preset: 001 = 1: 0,001 010 = 2: 0,01 011 = 3: 0,1 100 = 4: 1 101 = 5: 10 110 = 6: freie Auflösung
Zählrichtung	0.5	Bit	0 1	0			Zählrichtung bei der Positionsberechnung bzw. Vor- zeichen bei Geschwindigkeitsberechnung. Der Para- meter wirkt sich auf alle Schnittstellen aus: 0: positiv 1: negativ
Offset	1 4	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Ausgabewert = Messwert + Offset. Der Parameter wirkt sich auf alle Schnittstellen aus. Hinweis: Ist ein Preset aktiv, so hat dieser Priorität vor dem Offset.
Eingangsdaten	Rel.	Datentyp	Wertebereich	Init-	Maße	inheit	Erklärung
	Adr.			Wert	metr. Inch		
Position	0.0	sign 32Bit	-2.000.000.000 +2.000.000.000	0	skalie	rt	Aktuelle Position.

Zahlenwerte umrechnen bei Umstellung der Maßeinheit!

Wird die Maßeinheit von metrisch auf Inch (oder umgekehrt) umgestellt, so werden vorher eingegebene Zahlenwerte (z. B. für Offset, Preset, Grenzwerte, etc.) nicht automatisch umgerechnet.

Beispiel: Offset = 10000 mm – nach Umstellung metrisch auf Inch: Offset = 10000 Inch/100

Rechnen Sie die Zahlenwerte beim Umstellen der Maßeinheit manuell um.

8.4.4 Modul 2 – Preset statisch

0]]

Modul-ID: 1002 mit Submodul-ID: 1

Das Modul ermöglicht es, einen statischen Preset als Parameter vorzugeben und diesen Preset-Wert an einer geeigneten Position zu aktivieren (Preset-Teach). Das Deaktivieren des Preset-Werts erfolgt über die Funktion *Preset-Reset*. Ist der Preset aktiviert, wird ein eingestellter Offset (Modul 1) nicht für die Berechnung des Positionswerts (Modul 1) verwendet.

Ein aktivierter Preset wird im BPS und in der Anschlusshaube gespeichert. Bei einem Gerätetausch bleiben die Werte in der Anschlusshaube erhalten. Bei einem Gerätetausch inklusive Anschlusshaube muss der Preset-Wert an der vorgesehenen Position erneut aktiviert werden (Preset-Teach).

Das Modul enthält Parameter (mit 4 Byte Parameterdatenlänge) und Ausgangsdaten (mit 1 Byte Ausgangsdatenlänge), jedoch keine Eingangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	De- Maßeinhe		Maßeinheit		Erklärung
	7.01.			lauit	metr.	Inch			
Preset-Wert	0	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Neuer Positionswert bei einem Teach-Ereignis über die Ausgangsdaten.		

Ausgangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maßeinheit		Erklärung
	Au.			Went	metr.	Inch	
Preset-Teach	0.0	Bit	01				Einlesen des Preset-Werts (Ausgabewert = Preset- Wert): Übergang 0 → 1: Preset-Teach
Preset-Reset	0.1	Bit	01				Preset-Wert wird deaktiviert (Ausgabewert = Mess- wert + Offset): Übergang 0 → 1: Preset-Reset

8.4.5 Modul 3 – Preset dynamisch

()	
٢		
1	L	

Modul-ID: 1003 mit Submodul-ID: 1

Das Modul ermöglicht es, einen dynamischen Preset als Teil der Ausgangsdaten vorzugeben und diesen Preset-Wert an einer geeigneten Position zu aktivieren (Preset-Teach). Deaktivieren des Preset-Werts erfolgt über die Funktion *Preset-Reset*. Ist der Preset aktiviert wird ein eingestellter Offset (Modul 1) nicht für die Berechnung des Positionswerts (Modul 1) verwendet.

Ein dynamischer Preset-Wert kann zur Laufzeit im SPS-Programm ermittelt werden und an das BPS übertragen werden. Ein statischer Preset-Wert (Modul 2) kann nur in der Projektierung hinterlegt werden.

Ein aktivierter Preset wird im BPS und in der Anschlusshaube gespeichert. Bei einem Gerätetausch bleiben die Werte in der Anschlusshaube erhalten. Bei einem Gerätetausch inklusive Anschlusshaube muss der Preset-Wert an der vorgesehenen Position erneut aktiviert werden (Preset-Teach).

Das Modul enthält Ausgangsdaten (mit 5 Byte Ausgangsdatenlänge), aber keine Parameter und keine Eingangsdaten.

Ausgangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maßeinheit		Maßeinheit		Erklärung
	- Au.			Wort	metr.	Inch			
Preset-Teach	0.0	Bit	0 1				Einlesen des Preset-Werts: Übergang 0 → 1: Preset-Teach		
Preset-Reset	0.1	Bit	0 1				Preset-Wert wird deaktiviert: Übergang 0 → 1: Preset-Reset		
Preset-Wert	1	sign 32Bit	-10.000.000 +10.000.000				Neuer Positionswert bei einem Teach-Ereignis über Bit 0.0.		

8.4.6 Modul 4 - Ein-/Ausgang IO 1

0 M]] ____

Modul-ID: 1004 mit Submodul-ID: 1

Mit diesem Modul wird die Arbeitsweise des digitalen Ein-/Ausgangs IO 1 eingestellt. Der Anschluss kann wahlweise als Eingang oder Ausgang verwendet werden.

Der Ausgang wird durch verschiedene Ereignisse im Gerät aktiviert.

Bei Verwendung als Eingang wird durch ein externes Signal eine Gerätefunktion gesteuert.

Alternativ kann der Anschluss auch entkoppelt vom Gerät verwendet werden:

- Bei Verwendung als Eingang wird der Zustand eines externen Signals in den Eingangsdaten an die Steuerung übertragen.

- Bei Verwendung als Ausgang wird der Anschluss über die Ausgangsdaten bedient.

Das Modul enthält Parameter (mit 4 Byte Parameterdatenlänge), Eingangsdaten (mit 1 Byte Eingangsdatenlänge) und Ausgangsdaten (mit 1 Byte Ausgangsdatenlänge).

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Au.			laun	metr.	Inch	
Funktion	0.0	Bit	01	1			Modus: 0: Eingang 1: Ausgang
Aktivierung	0.1	Bit	0 1	1			Der Parameter definiert den Pegel des Ausgangs, wenn das Ereignis <i>Ausgang</i> eintritt. 0: LOW (Ausgang), Übergang 1 → 0 1: HIGH (Ausgang), Übergang 0 → 1 Wird I/O als Eingang konfiguriert, reagiert er flanken- gesteuert.

Parameter	Rel.	Datentyp	Wertebereich	De-	Maße	inheit	Erklärung
				lauit	metr.	Inch	
Ausgang							Ereignis zur Aktivierung des Ausgangs. Die einzel- nen Funktionen sind untereinander ODER-verknüpft.
	1.0	Bit	0 1	0			Positionsgrenzwert 1: Befindet sich der Positionswert außerhalb des konfi- gurierten <i>Grenzwertbereichs 1</i> , wird der Ausgang gesetzt: 0: OFF 1: ON
	1.1	Bit	0 1	0			Positionsgrenzwert 2: Befindet sich der Positionswert außerhalb des konfi- gurierten <i>Grenzwertbereichs 2</i> , wird der Ausgang gesetzt: 0: OFF 1: ON
	1.2	Bit	0 1	0			Geschwindigkeitsgrenzwert: Befindet sich der Geschwindigkeitswert außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.3	Bit	0 1	0			Positionswert ungültig: Kann kein gültiger Positionswert ermittelt werden, da z. B. kein Barcodeband gelesen wird, die Barcodes zerstört oder verschmutzt sind, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.4	Bit	0 1	0			Geschwindigkeitswert ungültig: Kann keine gültige Geschwindigkeit berechnet wer- den, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.5	Bit	0 1	0			Warnschwelle Lesequalität: Fällt die ermittelte Lesequalität unter die konfigurierte Warnschwelle, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.6	Bit	0 1	0			Fehlerschwelle Lesequalität: Fällt die ermittelte Lesequalität unter die konfigurierte Fehlerschwelle, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.7	Bit	0 1	0			Marken- oder Steuerbarcode erkannt befindet sich ein Marken- oder Steuer-Barcode im Scanstrahl, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.0	Bit	01	0			Pseudodynamischer Ausgang: Über das Bit 0.0 in den Ausgangsdaten kann die Steuerung den Ausgang am BPS setzen und zurücksetzen 0: OFF 1: ON
	2.1	Bit	01	0			Gerätefehler: Erkennt das BPS einen Gerätefehler, wird der Aus- gang gesetzt. 0: OFF 1: ON

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	1.011			laan	metr.	Inch	
Ausgang							
	2.2	Bit	0 1	0			Geschwindigkeitsgrenzwert 1: Befindet sich der Geschwindigkeitswert 1 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.3	Bit	0 1	0			Geschwindigkeitsgrenzwert 2: Befindet sich der Geschwindigkeitswert 2 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.4	Bit	0 1	0	[Geschwindigkeitsgrenzwert 3: Befindet sich der Geschwindigkeitswert 3 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.5	Bit	0 1	0	[Geschwindigkeitsgrenzwert 4: Befindet sich der Geschwindigkeitswert 4 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
Eingang	3	Bitfeld	03	0			Interne Funktionalität, die im Gerät ausgelöst wird. Wird <i>keine interne Funktion</i> gewählt, kann die Steue- rung über Bit 0.0 der Eingangsdaten den Zustand eines beliebigen externen Signals einlesen. 0: keine interne Funktion 1: Messung Stopp/Start 2: Preset Teach 3: Preset Reset
Eingangsdaten	Rel.	Datentyp	Wertebereich	Init-	Maße	inheit	Erklärung
	Adr.			wen	metr.	Inch	†
Zustand	0.0	Bit	0 1				Signalzustand des Eingangs oder Ausgangs: 0: Eingang/Ausgang auf Signalpegel inaktiv 1: Eingang/Ausgang auf Signalpegel aktiv
Ausgangsdaten	Rel.	Datentyp	Wertebereich	Init-	Maße	inheit	Erklärung
	Adr.			Wert	metr.	Inch	•
Ausgang steuern	0.0	Bit	0 1				Steuerung des Ausgangs. Die Funktion muss über die Parameter aktiviert/deaktiviert werden: 0: Ausgang auf Signalpegel inaktiv 1: Ausgang auf Signalpegel aktiv

Verhalten des BPS bei Messung Stopp/Start

Liegt der Scanstrahl im Moment des Einschaltens der Laserdiode auf dem BCB, so liefert das BPS nach ca. 10 ms gültige Messwerte.

Wird das BPS aus dem Standby wieder aktiviert, muss zuerst der Motor seine Solldrehzahl erreichen. Das BPS liefert erst nach einigen Sekunden gültige Messwerte.

8.4.7 Modul 5 - Ein-/Ausgang IO 2

о]]

Modul-ID: 1005 mit Submodul-ID: 1

Mit diesem Modul wird die Arbeitsweise des digitalen Ein-/Ausgangs IO 2 eingestellt. Der Anschluss kann wahlweise als Eingang oder Ausgang verwendet werden.

Der Ausgang wird durch verschiedene Ereignisse im Gerät aktiviert.

Bei Verwendung als Eingang wird durch ein externes Signal eine Gerätefunktion gesteuert.

Alternativ kann der Anschluss auch entkoppelt vom Gerät verwendet werden:

- Bei Verwendung als Eingang wird der Zustand eines externen Signals in den Eingangsdaten an die Steuerung übertragen.

- Bei Verwendung als Ausgang wird der Anschluss über die Ausgangsdaten bedient.

Das Modul enthält Parameter (mit 4 Byte Parameterdatenlänge), Eingangsdaten (mit 1 Byte Eingangsdatenlänge) und Ausgangsdaten (mit 1 Byte Ausgangsdatenlänge).

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maßeinheit		Erklärung
	Adi.			laun	metr.	Inch	
Funktion	0.0	Bit	0 1	0			Modus: 0: Eingang 1: Ausgang
Aktivierung	0.1	Bit	0 1	1			Der Parameter definiert den Pegel des Ausgangs, wenn das Ereignis <i>Ausgang</i> eintritt. 0: LOW (Ausgang), Übergang 1 → 0 1: HIGH (Ausgang), Übergang 0 → 1 Wird IO 2 als Eingang konfiguriert, reagiert er flan- kengesteuert.

Parameter	Rel.	Datentyp	Wertebereich	De-	Maße	inheit	Erklärung
				lauit	metr.	Inch	
Ausgang							Ereignis zur Aktivierung des Ausgangs. Die einzel- nen Funktionen sind untereinander ODER-verknüpft.
	1.0	Bit	0 1	0			Positionsgrenzwert 1: Befindet sich der Positionswert außerhalb des konfi- gurierten <i>Grenzwertbereichs 1</i> , wird der Ausgang gesetzt: 0: OFF 1: ON
	1.1	Bit	0 1	0			Positionsgrenzwert 2: Befindet sich der Positionswert außerhalb des konfi- gurierten <i>Grenzwertbereichs 2</i> , wird der Ausgang gesetzt: 0: OFF 1: ON
	1.2	Bit	0 1	0			Geschwindigkeitsgrenzwert: Befindet sich der Geschwindigkeitswert außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.3	Bit	0 1	0			Positionswert ungültig: Kann kein gültiger Positionswert ermittelt werden, da z. B. kein Barcodeband gelesen wird, die Barcodes zerstört oder verschmutzt sind, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.4	Bit	0 1	0			Geschwindigkeitswert ungültig: Kann keine gültige Geschwindigkeit berechnet wer- den, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.5	Bit	0 1	0			Warnschwelle Lesequalität: Fällt die ermittelte Lesequalität unter die konfigurierte Warnschwelle, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.6	Bit	0 1	0			Fehlerschwelle Lesequalität: Fällt die ermittelte Lesequalität unter die konfigurierte Fehlerschwelle, wird der Ausgang gesetzt. 0: OFF 1: ON
	1.7	Bit	0 1	0			Marken- oder Steuerbarcode erkannt befindet sich ein Marken- oder Steuer-Barcode im Scanstrahl, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.0	Bit	01	0			Pseudodynamischer Ausgang: Über das Bit 0.0 in den Ausgangsdaten kann die Steuerung den Ausgang am BPS setzen und zurücksetzen 0: OFF 1: ON
	2.1	Bit	01	0			Gerätefehler: Erkennt das BPS einen Gerätefehler, wird der Aus- gang gesetzt. 0: OFF 1: ON

Parameter	Rel. Adr	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	, idit			laan	metr.	Inch	
Ausgang							
	2.2	Bit	0 1	0			Geschwindigkeitsgrenzwert 1: Befindet sich der Geschwindigkeitswert 1 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.3	Bit	01	0			Geschwindigkeitsgrenzwert 2: Befindet sich der Geschwindigkeitswert 2 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.4	Bit	01	0			Geschwindigkeitsgrenzwert 3: Befindet sich der Geschwindigkeitswert 3 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
	2.5	Bit	01	0			Geschwindigkeitsgrenzwert 4: Befindet sich der Geschwindigkeitswert 4 außerhalb der konfigurierten Werte, wird der Ausgang gesetzt. 0: OFF 1: ON
Eingang	3	unsign 8Bit	03	0			Interne Funktionalität, die im Gerät ausgelöst wird. Wird <i>keine interne Funktion</i> gewählt, kann die Steue- rung über Bit 0.0 der Eingangsdaten den Zustand eines beliebigen externen Signals einlesen. 0: keine interne Funktion 1: Messung Stopp/Start 2: Preset Teach 3: Preset Reset
Eingangsdaten	Rel.	Datentyp	Wertebereich	Init-	Maße	inheit	Erklärung
	Adr.			Wert	metr.	Inch	
Zustand	0.0	Bit	0 1				Signalzustand des Eingangs oder Ausgangs: 0: Eingang/ Ausgang auf Signalpegel inaktiv 1: Eingang/ Ausgang auf Signalpegel aktiv
Ausgangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maße	inheit	Erklärung
	Au.			Went	metr.	Inch	
Ausgang steuern	0.0	Bit	0 1				Steuerung des Ausgangs. Die Funktion muss über die Parameter aktiviert werden: 0: Ausgang auf Signalpegel inaktiv 1: Ausgang auf Signalpegel aktiv

Verhalten des BPS bei Messung Stopp/Start

Liegt der Scanstrahl im Moment des Einschaltens der Laserdiode auf dem BCB, so liefert das BPS nach ca. 10 ms gültige Messwerte.

Wird das BPS aus dem Standby wieder aktiviert, muss zuerst der Motor seine Solldrehzahl erreichen. Das BPS liefert erst nach einigen Sekunden gültige Messwerte.

8.4.8 Modul 6 – Status und Steuerung

Modul-ID: 1006 mit Submodul-ID: 1

Das Modul signalisiert verschiedene Statusinformationen des BPS. Über die Ausgangsdaten werden verschiedene Gerätefunktionen angesteuert.

Das Modul enthält Eingangsdaten (mit 2 Byte Eingangsdatenlänge) und Ausgangsdaten (mit 2 Byte Ausgangsdatenlänge), jedoch keine Parameter.

Eingangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maßeinheit		Erklärung
	Au.			Went	metr.	Inch	
Messwert ungültig	0.0	Bit	0 1	0			Signalisiert, dass kein gültiger Messwert ermittelt werden kann. 0: Messwert gültig 1: Messwert ungültig
Messung inaktiv	0.1	Bit	0 1				Signalisiert eine inaktive Messung. 0: Messung aktiv 1: Messung inaktiv
Preset aktiv	0.2	Bit	01	0			Signalisiert eine Positionswertausgabe mit aktivem Preset. 0: kein Preset aktiv 1: Preset aktiv
Preset-Teach Toggle	0.3	Bit	0 1	0			Dieses Togglebit wechselt bei jedem Preset-Teach- Vorgang den Zustand.
Unterer Positionsgrenzwert 1	0.4	Bit	0 1	0			Signalisiert die Unterschreitung der unteren Positionsgrenze 1. 0: OK 1: Unterschreitung
Oberer Positionsgrenzwert 1	0.5	Bit	0 1	0			Signalisiert die Überschreitung der oberen Positionsgrenze 1. 0: OK 1: Überschreitung
Unterer Positionsgrenzwert 2	0.6	Bit	01	0			Signalisiert die Unterschreitung der unteren Positionsgrenze 2. 0: OK 1: Unterschreitung
Oberer Positionsgrenzwert 2	0.7	Bit	0 1	0			Signalisiert die Überschreitung der oberen Positionsgrenze 2. 0: OK 1: Überschreitung
Steuer- oder Markenbarcode erkannt	1.0	Bit	0 1	0			Signalisiert einen erkannten Steuer- oder Markenbar- code. 0: keine Marke 1: Marke erkannt
Steuer- oder Markenbarcode Toggle	1.1	Bit	1 5	0			Dieses Toggelbit wechselt bei jedem erkannten Steuer- oder Markenbarcode den Zustand. 0, 1: neue Marke
Temperaturwarnung	1.2	Bit	1 5	0			Signalisiert das Verlassen des spezifizierten Tempe- raturbereichs. 0: OK 1: Temperaturwarnung
Temperaturfehler	1.3	Bit	0 1	0			Signalisiert das Überschreiten der maximal zulässigen Temperatur. 0: OK 1: Temperaturfehler
Hardwaredefekt	1.4	Bit	0 1	0			Signalisiert einen Hardwaredefekt. 0: OK 1: Hardware defekt
Warnschwelle Lesequalität	1.5	Bit	01	0			Signalisiert, dass die ermittelte Lesequalität unter die parametrierte Warnschwelle gefallen ist. 0: OK 1: Unterschreitung
Fehlerschwelle Lesequalität	1.6	Bit	0 1	0			Signalisiert, dass die ermittelte Lesequalität unter die parametrierte Fehlerschwelle gefallen ist. 0: OK 1: Unterschreitung
Standby aktiv	1.7	Bit	0 1	0			Signalisiert einen aktiven Standby. 0: kein Standby 1: Standby aktiv
Ausgangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maße	inheit	Erklärung
--	--------	----------	--------------	---------------	-------	--------	--
	- Aur.			weit	metr.	Inch	
Messung stoppen/starten	0.0	Bit	0 1	0			Über dieses Bit kann die Messung gestoppt und wie- der gestartet werden. Wird die Messung gestoppt, deaktiviert das BPS lediglich den Laserstrahl. Wird die Messung wieder gestartet, stehen nach wenigen Millisekunden wieder Messwerte zur Verfügung. 0: Messung aktiv 1: Messung stoppen
Standby aktivieren/deaktivie- ren	0.1	Bit	0 1	0			Über dieses Bit kann das BPS in einen Standby ver- setzt werden, das BPS deaktiviert Laserstrahl und Motor. Wird der Standby wieder deaktiviert, muss zuerst der Motor seine Solldrehzahl erreichen, somit stehen erst nach einigen Sekunden wieder Mess- werte zur Verfügung. 0: inaktiv 1: aktivieren
Steuer- oder Markenbarcode quittieren	0.2	Bit	01	0			Über dieses Bit kann die Übernahme des erkannten Steuer- oder Markenbarcodes in die SPS quittiert werden. Übergang 0 → 1: Quittierung

8.4.9 Modul 7 – Positions-Grenzwertbereich 1

Modul-ID: 1007 mit Submodul-ID: 1

Das Modul definiert einen Positionsbereich mit unterer und oberer Grenze. Befindet sich der gemessene Positionswert außerhalb des konfigurierten Bereichs, wird das entsprechende Statusbit in Modul 6 und, falls konfiguriert, ein Ausgang gesetzt.

Das Modul enthält Parameter (mit 8 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De- fault	De- Maßeinheit		Erklärung
	Aur.			laun	metr.	Inch	
Untere PosGrenze 1	03	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Untere Positionsgrenze.
Obere PosGrenze 1	4 7	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Obere Positionsgrenze.

8.4.10 Modul 8 – Positions-Grenzwertbereich 2

Modul-ID: 1008 mit Submodul-ID: 1

Das Modul definiert einen Positionsbereich mit unterer und oberer Grenze. Befindet sich der gemessene Positionswert außerhalb des konfigurierten Bereichs, wird das entsprechende Statusbit in Modul 6 und, falls konfiguriert, ein Ausgang gesetzt.

Das Modul enthält Parameter (mit 8 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De- fault	Maße	inheit	Erklärung
	Adr.			laun	metr.	Inch	
Untere PosGrenze 2	03	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Untere Positionsgrenze.
Obere PosGrenze 2	4 7	sign 32Bit	-10.000.000 +10.000.000	0	mm	in/ 100	Obere Positionsgrenze.

8.4.11 Modul 9 - Verhalten im Fehlerfall

о]]

Modul-ID: 1009 mit Submodul-ID: 1

Das Modul stellt Parameter für das Verhalten im Fehlerfall zur Verfügung.

Ist der Positionswert oder die Geschwindigkeitsberechnung im Gerät kurzfristig gestört, sendet das BPS für eine konfigurierte Zeit den letzten gültigen Messwert.

Kann das BPS innerhalb der Fehlerverzögerungzeit wieder gültige Messwerte berechnen, werden diese ausgegeben. Die Störung ist nur als kleiner Sprung im ausgegebenen Messwert erkennbar.

Ist die Berechnung länger gestört, kann konfiguriert werden, wie sich das BPS verhalten soll.

Das Modul enthält Parameter (mit 8 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De- foult	Maße	inheit	Erklärung
	Au.			lauit	metr.	Inch	
Positionswert im Fehlerfall	0.0 0.1	Bit	0 1	1			Positionswert im Fehlerfall nach Ablauf der Fehlerverzögerungszeit: 0: letzter gültiger Wert 1: Null
Positionsstatus unterdrücken	0.2	Bit	01	1			Statusbit (Modul 6 Bit 0.0) beim Auftreten eines Feh- lers: 0: OFF (Statusbit wird sofort gesetzt) 1: ON (Statusbit wird für die konfigurierte Fehlerverzögerungszeit unterdrückt)
Fehlerverzögerung (Position)	0.3	Bit	0 1	1			Positionswert beim Auftreten eines Fehlers: 0: OFF (sofort den Wert des Parameters <i>Positions- wert im Fehlerfall</i>) 1: ON (für die konfigurierte Fehlerverzögerungszeit den letzten gültigen Positionswert)
Fehlerverzögerungszeit (Posi- tion)	1 2	unsign 16Bit	10 4.000	50	1 ms		Auftretende Fehler werden für die konfigurierte Zeit unterdrückt, d. h. kann in der konfigurierten Zeit kein gültiger Positionswert ermittelt werden, wird immer der letzte gültige Positionswert ausgegeben. Liegt der Fehler nach Ablauf der Zeit weiterhin an, so wird der Wert des Parameters <i>Positionswert im Fehlerfall</i> ausgegeben.
Geschwindigkeit im Fehlerfall	3.0 3.1	Bit	01	1			Geschwindigkeit im Fehlerfall nach Ablauf der Fehlerverzögerungszeit (Geschwindigkeit): 0: letzter gültiger Wert wird ausgegeben 1: Null wird ausgegeben
Geschwindigkeitsstatus unterdrücken	3.2	Bit	0 1	1			Statusbit (Modul 16 Bit 0.0) bei Auftreten eines Feh- lers: 0: OFF (Statusbit wird sofort gesetzt) 1: ON (Statusbit wird für die konfigurierte Fehlerverzögerungszeit unterdrückt)
Fehlerverzögerung (Geschwindigkeit)	3.3	Bit	01	1			Geschwindigkeit beim Auftreten eines Fehlers: 0: OFF (gibt sofort den Wert des Parameters <i>Geschwindigkeit im Fehlerfall</i> aus) 1: ON (gibt für die konfigurierte Fehlerverzögerungszeit die letzte gültige Geschwin- digkeit aus)
Fehlerverzögerungszeit (Geschwindigkeit)	4 5	unsign 16Bit	10 4.000	50	1 ms		Auftretende Fehler werden für die konfigurierte Zeit unterdrückt, d. h. kann in der konfigurierten Zeit keine gültige Geschwindigkeit ermittelt werden, wird immer die letzte gültige Geschwindigkeit ausgege- ben. Liegt der Fehler nach Ablauf der Zeit weiterhin an, so wird der Wert des Parameters <i>Geschwindigr</i> <i>keit im Fehlerfall</i> ausgegeben.

о]]

8.4.12 Modul 10 - Geschwindigkeit

Modul-ID: 1010 mit Submodul-ID: 1

Das Modul dient der Ausgabe der aktuellen Geschwindigkeit in der gewünschten Auflösung.

Die Maßeinheit (metrisch bzw. Inch) wird über Modul 1 (Positionswert) eingestellt und gilt zugleich auch für die Geschwindigkeit. Wird das Modul 1 nicht konfiguriert, erfolgt die Ausgabe mit der Default-Maßeinheit (metrisch). Das Vorzeichen der Geschwindigkeit ist abhängig von der gewählten Zählrichtung im Modul 1. Bei Default-Zählrichtung (positiv) wird eine positive Geschwindigkeit bei einer Bewegung in Richtung größerer Bandwerte ausgegeben. Eine Bewegung in Richtung kleinerer Bandwerte führt zu negativen Geschwindigkeiten. Die Messwertaufbereitung mittelt in der gewählten Zeit (Mittelung) alle errechneten Geschwindigkeitswerte zu einem Geschwindigkeitsausgabewert.

Das Modul enthält Parameter (mit 2 Byte Parameterdatenlänge), und Eingangsdaten (mit 4 Byte konsistenter Eingangsdatenlänge), jedoch keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De- fault	Maßeinheit		Erklärung
	Au.			Tault	metr.	Inch	
Auflösung Geschwindigkeit	0.0 0.2	Bit	1 5	1	mm /s	(in/ 100) /s	Auflösung für den Geschwindigkeitswert: 001 = 1: 1 010 = 2: 10 011 = 3: 100 100 = 4: 1000 101 = 5: freie Auflösung
Mittelung	0.3 0.5	Bit	0 5	2			Über die angegebene Zeit werden alle errechneten Geschwindigkeiten gemittelt: 000 = 0: keine Mittelung 001 = 1: 2 ms 010 = 2: 4 ms 011 = 3: 8 ms 100 = 4: 16 ms 101 = 5: 32 ms
					_		
Eingangsdaten	Rel. Adr	Datentyp	Wertebereich	Init- Wert	Maße	inheit	Erklärung

Eingangsdaten	Rel. Adr	Datentyp	Wertebereich	Init- Wert	nit- Maßeinheit		Erklärung
	7 101.			mon	metr.	Inch	
Geschwindigkeit	0	sign 32Bit	-1.000.000 +1.000.000	0	skalie	rt	Aktuelle Geschwindigkeit.

Л

8.4.13 Modul 11 – Geschwindigkeitsgrenzwert 1 statisch

○ Modul-ID: 1011 mit Submodul-ID: 1

Das Modul stellt alle Parameter für die Funktion Geschwindigkeitsgrenzwert 1 statisch bereit.

Diese Funktion vergleicht die aktuelle Geschwindigkeit mit einer über die Konfiguration hinterlegten Grenzgeschwindigkeit. Der Vergleich erfolgt im konfigurierten Bereich, der durch die Parameter *Bereichsanfang* und *Bereichsende* festgelegt ist.

Wird eine richtungsabhängige Grenzwertprüfung über den Parameter *Richtungswahl* aktiviert, legen die Werte der Parameter *Bereichsanfang* und *Bereichsende* zusätzlich die Richtung fest. Es wird immer von Bereichsanfang nach Bereichsende geprüft.

Beispiel: Ist der Bereichsanfang *5500* und das Bereichsende *5000*, so erfolgt die richtungsabhängige Prüfung nur in Richtung von *5500* nach *5000*. In der entgegengesetzten Richtung ist der Grenzwert inaktiv.

Erfolgt die Prüfung richtungsunabhängig, ist die Reihenfolge von Bereichsanfang und Bereichsende ohne Bedeutung. Beim Über- bzw. Unterschreiten, je nach gewählter Schaltart, wird der Grenzwertstatus in Modul 16 (siehe Kapitel 8.4.18) und, falls konfiguriert, der Schaltausgang über Modul 4 (siehe Kapitel 8.4.6) oder Modul 5 (siehe Kapitel 8.4.7) entsprechend gesetzt.

Ist der Bereichsanfang identisch mit dem Bereichsende, erfolgt eine dauerhafte, richtungsunabhängige Grenzwertprüfung.

Das Modul enthält Parameter (mit 13 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Adi.			Taun	metr.	Inch	
Schaltart	0.0	Bit	0 1	0			Bedingung für das Signal <i>Geschwindigkeit</i> <i>Grenzwert 1</i> , das auf den Schaltausgang (Modul 4/5) und das Statusbit (Modul 16) wirkt: 0: überschritten 1: unterschritten
Richtungswahl	0.1	Bit	01	0			Auswahl der Grenzwertprüfung: 0: richtungsunabhängig 1: richtungsabhängig
Geschwindigkeitsgrenzwert 1	1 2	unsign 16Bit	0 +20.000	0	mm /s	(in/ 100) /s	Grenzwert wird mit der aktuellen Geschwindigkeit verglichen.
Geschwindigkeits- Hysterese 1	3 4	unsign 16Bit	0 1.000	100	mm /s	(in/ 100) /s	Relative Verschiebung des Schaltpunktes um ein Prellen des Signals zu verhindern.
Grenzwert 1 Bereichsanfang	5 8	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Ab dieser Position wird der Geschwindigkeitsgrenz- wert überwacht.
Grenzwert 1 Bereichsende	9 12	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Bis zu dieser Position wird der Geschwindigkeits- grenzwert überwacht.

о]]

8.4.14 Modul 12 - Geschwindigkeitsgrenzwert 2 statisch

Modul-ID: 1012 mit Submodul-ID: 1

Das Modul stellt alle Parameter für die Funktion Geschwindigkeitsgrenzwert 2 statisch bereit.

Weitere Erläuterungen zu den Parametern *Bereichsanfang* und *Bereichsende* siehe Kapitel 8.4.13 "Modul 11 – Geschwindigkeitsgrenzwert 1 statisch".

Das Modul enthält Parameter (mit 13 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Au.			aun	metr.	Inch	
Schaltart	0.0	Bit	0 1	0			Bedingung für das Signal <i>Geschwindigkeit</i> <i>Grenzwert 2</i> , das auf den Schaltausgang (Modul 4/5) und das Statusbit (Modul 16) wirkt: 0: überschritten 1: unterschritten
Richtungswahl	0.1	Bit	0 1	0			Auswahl der Grenzwertprüfung: 0: richtungsunabhängig 1: richtungsabhängig
Geschwindigkeitsgrenzwert 2	1 2	unsign 16Bit	0 +20.000	0	mm /s	(in/ 100) /s	Grenzwert wird mit der aktuellen Geschwindigkeit verglichen.
Geschwindigkeits- Hysterese 2	3 4	unsign 16Bit	0 1.000	100	mm /s	(in/ 100) /s	Relative Verschiebung des Schaltpunktes um ein Prellen des Signals zu verhindern.
Grenzwert 2 Bereichsanfang	5 8	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Ab dieser Position wird der Geschwindigkeitsgrenz- wert überwacht.
Grenzwert 2 Bereichsende	9 12	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Bis zu dieser Position wird der Geschwindigkeits- grenzwert überwacht.

8.4.15 Modul 13 - Geschwindigkeitsgrenzwert 3 statisch

Modul-ID: 1013 mit Submodul-ID: 1

Das Modul stellt alle Parameter für die Funktion Geschwindigkeitsgrenzwert 3 statisch bereit.

Weitere Erläuterungen zu den Parametern *Bereichsanfang* und *Bereichsende* siehe Kapitel 8.4.13 "Modul 11 – Geschwindigkeitsgrenzwert 1 statisch".

Das Modul enthält Parameter (mit 13 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Adr.			Taun	metr.	Inch	
Schaltart	0.0	Bit	01	0			Bedingung für das Signal <i>Geschwindigkeit</i> <i>Grenzwert 3</i> , das auf den Schaltausgang (Modul 4/5) und das Statusbit (Modul 16) wirkt: 0: überschritten 1: unterschritten
Richtungswahl	0.1	Bit	0 1	0			Auswahl der Grenzwertprüfung: 0: richtungsunabhängig 1: richtungsabhängig
Geschwindigkeitsgrenzwert 3	1 2	unsign 16Bit	0 +20.000	0	mm /s	(in/ 100) /s	Grenzwert wird mit der aktuellen Geschwindigkeit verglichen.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	De- Maßeinheit		Erklärung
	Au.			lauit	metr.	Inch	
Geschwindigkeits- Hysterese 3	3 4	unsign 16Bit	0 1.000	100	mm /s	(in/ 100) /s	Relative Verschiebung des Schaltpunktes um ein Prellen des Signals zu verhindern.
Grenzwert 3 Bereichsanfang	5 8	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Ab dieser Position wird der Geschwindigkeitsgrenz- wert überwacht.
Grenzwert 3 Bereichsende	9 12	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Bis zu dieser Position wird der Geschwindigkeits- grenzwert überwacht.

8.4.16 Modul 14 - Geschwindigkeitsgrenzwert 4 statisch

Ο	
11	
7	

Modul-ID: 1014 mit Submodul-ID: 1

Das Modul stellt alle Parameter für die Funktion Geschwindigkeitsgrenzwert 4 statisch bereit.

Weitere Erläuterungen zu den Parametern *Bereichsanfang* und *Bereichsende* siehe Kapitel 8.4.13 "Modul 11 – Geschwindigkeitsgrenzwert 1 statisch".

Das Modul enthält Parameter (mit 13 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Mar.			laun	metr.	Inch	
Schaltart	0.0	Bit	0 1	0			Bedingung für das Signal <i>Geschwindigkeit</i> <i>Grenzwert 4</i> , das auf den Schaltausgang (Modul 4/5) und das Statusbit (Modul 16) wirkt: 0: überschritten 1: unterschritten
Richtungswahl	0.1	Bit	0 1	0			Auswahl der Grenzwertprüfung: 0: richtungsunabhängig 1: richtungsabhängig
Geschwindigkeitsgrenzwert 4	1 2	unsign 16Bit	0 +20.000	0	mm /s	(in/ 100) /s	Grenzwert wird mit der aktuellen Geschwindigkeit verglichen.
Geschwindigkeits- Hysterese 4	3 4	unsign 16Bit	0 1.000	100	mm /s	(in/ 100) /s	Relative Verschiebung des Schaltpunktes um ein Prellen des Signals zu verhindern.
Grenzwert 4 Bereichsanfang	5 8	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Ab dieser Position wird der Geschwindigkeitsgrenz- wert überwacht.
Grenzwert 4 Bereichsende	9 12	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Bis zu dieser Position wird der Geschwindigkeits- grenzwert überwacht.

8.4.17 Modul 15 - Geschwindigkeitsgrenzwert dynamisch

Modul-ID: 1015 mit Submodul-ID: 1

Das Modul stellt die Funktion *Geschwindigkeitsgrenzwert dynamisch* über Ausgangsdaten bereit.

Die Funktion *Geschwindigkeitsgrenzwert dynamisch* vergleicht die aktuelle Geschwindigkeit mit einer über die Ausgangsdaten hinterlegten Grenzgeschwindigkeit. Der Geschwindigkeitsgrenzwert kann dynamisch, d. h. zur Laufzeit, über das Steuerungsprogramm geändert werden.

Der Geschwindigkeitsvergleich erfolgt in einem über die Augangsdaten konfigurierten Bereich. Weitere Erläuterungen zu den Parametern *Bereichsanfang* und *Bereichsende* siehe Kapitel 8.4.13 "Modul 11 – Geschwindigkeitsgrenzwert 1 statisch".

Das Modul enthält Ausgangsdaten (mit 13 Byte Ausgangsdatenlänge), jedoch keine Eingangsdaten und keine Parameter.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	Au.			Tault	metr.	Inch	
Grenzwert-Steuerung	0.0	Bit	0 1				Steuert die interne Verarbeitung der übertragenen dynamischen Grenzwert-Parameter: 0: nicht verarbeiten 1: Parameter jetzt gültig/verarbeiten
Schaltart	0.1	Bit	0 1				Bedingung für den Signalwechsel des Schaltaus- gangs/Statusbits: 0: Geschwindigkeitsgrenzwert überschritten 1: Geschwindigkeitsgrenzwert unterschritten
Richtungswahl	0.2	Bit	01				Auswahl der Grenzwertprüfung: 0: richtungsunabhängig 1: richtungsabhängig
Geschwindigkeitsgrenzwert	1 2	unsign 16Bit	0 +20.000		mm /s	(in/ 100) /s	Grenzwert wird mit der aktuellen Geschwindigkeit verglichen.
Hysterese	3 4	unsign 16Bit	0 1.000		mm /s	(in/ 100) /s	Relative Verschiebung des Schaltpunktes um ein Prellen des Signals zu verhindern.
Grenzwert Bereichsanfang	5 8	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Ab dieser Position wird der Geschwindigkeitsgrenz- wert überwacht.
Grenzwert Bereichsende	9 12	sign 32Bit	-10.000.000 +10.000.000	0	mm	in /100	Bis zu dieser Position wird der Geschwindigkeits- grenzwert überwacht.

8.4.18 Modul 16 – Geschwindigkeit Status

Modul-ID: 1016 mit Submodul-ID: 1

Das Modul signalisiert dem Schnittstellen-Master über Eingangsdaten verschiedene Statusinformationen zur Geschwindigkeitsmessung.

Das Modul enthält Eingangsdaten (mit 2 Byte Eingangsdatenlänge), jedoch keine Parameter und keine Ausgangsdaten.

Eingangsdaten	Rel.	Datentyp	Wertebereich	Init- Wort	Maßeinheit		Erklärung
	Aur.			Went	metr.	Inch	
Geschwindigkeits-Messfehler	0.0	Bit	01				Signalisiert, dass keine gültige Geschwindigkeit ermittelt werden konnte: 0: keine Überschreitung der Geschwindigkeit 1: Überschreitung der Geschwindigkeit
Geschwindigkeitsgrenzwert 1 überschritten	0.1	Bit	01				Signalisiert eine Überschreitung des Geschwindigkeitsgrenzwerts 1: 0: keine Überschreitung 1: Überschreitung
Geschwindigkeitsgrenzwert 2 überschritten	0.2	Bit	01				Signalisiert eine Überschreitung des Geschwindigkeitsgrenzwerts 2: 0: keine Überschreitung 1: Überschreitung
Geschwindigkeitsgrenzwert 3 überschritten	0.3	Bit	01				Signalisiert eine Überschreitung des Geschwindigkeitsgrenzwerts 3: 0: keine Überschreitung 1: Überschreitung
Geschwindigkeitsgrenzwert 4 überschritten	0.4	Bit	01				Signalisiert eine Überschreitung des Geschwindigkeitsgrenzwerts 4: 0: keine Überschreitung 1: Überschreitung
Dynamischer Geschwindig- keitsgrenzwert überschritten	0.5	Bit	01				Signalisiert eine Überschreitung des dynamischen Geschwindigkeitsgrenzwerts: 0: keine Überschreitung 1: Überschreitung
Bewegungsstatus	0.6	Bit	01				Signalisiert, ob aktuell eine Bewegung > 0,1 m/s registriert wird: 0: keine Bewegung 1: Bewegung
Bewegungsrichtung	0.7	Bit	0 1				Ist Bit 1 (Bewegungsstatus) gesetzt, zeigt dieses Bit die Richtung an: 0: positive Richtung 1: negative Richtung
Geschwindigkeitsgrenzwert 1 aktiv	1.1	Bit	0 1				Signalisiert, ob die aktuelle Geschwindigkeit mit dem Geschwindigkeitsgrenzwert 1 verglichen wird: 0: Vergleich inaktiv 1: Vergleich aktiv
Geschwindigkeitsgrenzwert 2 aktiv	1.2	Bit	01				Signalisiert, ob die aktuelle Geschwindigkeit mit dem Geschwindigkeitsgrenzwert 2 verglichen wird: 0: Vergleich inaktiv 1: Vergleich aktiv
Geschwindigkeitsgrenzwert 3 aktiv	1.3	Bit	01				Signalisiert, ob die aktuelle Geschwindigkeit mit dem Geschwindigkeitsgrenzwert 3 verglichen wird: 0: Vergleich inaktiv 1: Vergleich aktiv
Geschwindigkeitsgrenzwert 4 aktiv	1.4	Bit	01				Signalisiert, ob die aktuelle Geschwindigkeit mit dem Geschwindigkeitsgrenzwert 4 verglichen wird: 0: Vergleich inaktiv 1: Vergleich aktiv
Dynamischer Geschwindig- keitsgrenzwert aktiv	1.5	Bit	0 1				Signalisiert, ob die aktuelle Geschwindigkeit mit dem Dynamischen Geschwindigkeitsgrenzwert vergli ⁻ chen wird: 0: Vergleich inaktiv 1: Vergleich aktiv

8.4.19 Modul 20 - Freie Auflösung

0]]

Modul-ID: 1020 mit Submodul-ID: 1

Das Modul realisiert zwei Parameter, die eine freie Skalierung der Ausgabewerte von Positionswert und Geschwindigkeitswert erlauben.

Die freie Auflösung wird benutzt, wenn die in Modul 1 oder Modul 10 einstellbaren Auflösungen nicht für die Applikation passen. In den Modulen 1 und 10 wird der Parameter *Auflösung* auf den Wert *Freie Auflösung* eingestellt. Die Messwerte werden für die Ausgabe dann mit den in diesem Modul hinterlegten Parameterwerten umgerechnet (multipliziert) und ausgegeben.

Das Modul enhält Parameter (mit 4 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maßeinheit		Erklärung
	Adi.			laun	metr.	Inch	
Position	0 1	unsign 16Bit	5 50.000	1000	mm /1000	in /100000	Freie Auflösung des Positionswerts: gilt für alle Schnittstellen, die als Auflösung den Wert <i>Freie Auflösung</i> gewählt haben.
Geschwindigkeit	2 3	unsign 16Bit	5 50.000	1000	(mm /1000) /s	(in /100000) /s	Freie Auflösung des Geschwindigkeitswerts. Gilt für alle Schnittstellen, die als Auflösung den Wert <i>Freie Auflösung</i> gewählt haben.

8.4.20 Modul 21 – Abstand zum Barcodeband (BCB)

Modul-ID: 1021 mit Submodul-ID: 1

Das Modul ermöglicht die Übertragung des aktuellen Abstands zwischen BCB und Lesekopf (in mm) an den Schnittstellen-Master.

Damit wird die Prüfung des korrekten Leseabstandes in der gesamten Anlage möglich.

Beispiel: Eine Störung in der Positionswertermittlung entsteht durch einen an dieser Stelle unzulässigen Leseabstand.

Wird der Wert 255 übermittelt, wurde ein Leseabstand außerhalb des zulässigen Lesefeldes errechnet.

Wird der Wert O übertragen, konnte kein gültiger Abstand errechnet werden.

Das Modul enthält Eingangsdaten (mit 1 Byte Eingangsdatenlänge), jedoch keine Parameter und keine Ausgangsdaten.

Eingangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maßeinheit		Erklärung
	-Au.			Wort	metr.	Inch	
Abstand	0	unsign 8Bit	0 255	0	mm	in/10	Aktueller Abstand zwischen BCB und Lesekopf: 0: kein Abstand errechnet 255: Abstand außerhalb des Lesefelds

Zweites Zeichen des erkannten Steuer- oder Mar-

Drittes Zeichen des erkannten Steuer- oder Marken-

kenbarcodes.

harcodes

8.4.21 Modul 22 - Steuer- und Markenbarcodes

Modul-ID: 1022 mit Submodul-ID: 1

Das Modul ermöglicht die Übertragung von Steuer- und Markeninformationen an den Schnittstellen-Master und die Einstellung der zugehörigen Parameter.

Das Modul enthält Parameter (mit 1 Byte Parameterdatenlänge) und Eingangsdaten (mit 3 Byte Eingangsdatenlänge), jedoch keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maßeinheit		Erklärung
	Adi.			laun	metr.	Inch	
Aktualisierung	0.0	Bit	0 1	0			Konfiguration für Eingangsdaten: 0: Eingangsdaten sofort überschreiben 1: Eingangsdaten erst nach Quittierung überschreiben
Übertragung	0.1	Bitfeld	02	0			Konfiguration, welche Informationen in den Ein- gangsdaten übertragen werden: 0: Steuer- und Markenbarcodes 1: nur Markenbarcodes 2: nur Steuerbarcodes
Eingangsdaten	Rel.	Datentyp	Wertebereich	Init-	it- ert metr. Inch		Erklärung
	Aar.			vvert			
Erstes Zeichen	0	unsign 8Bit	0 255	0			Erstes Zeichen des erkannten Steuer- oder Marken- barcodes.

0

0

0 ... 255

0 ... 255

8.4.22 Modul 23 – Bandwertkorrektur

Ο Л

Zweites Zeichen

Drittes Zeichen

Modul-ID: 1023 mit Submodul-ID: 1

1

2

unsign

unsign

8Bit

8Rit

Das Modul ermöglicht die Funktionalität *Bandwertkorrektur*, um die durch den Fertigungsprozess entstandene Abweichung des BCBs von der korrekten (geeichten) Millimeterskalierung zu beheben.

Mit einer entsprechenden Messeinrichtung muss die reale (geeichte) Länge für einen Meter BCB (laut Aufdruck) ermittelt werden. Entspricht beispielsweise ein Meter Band, realen (geeichten) 1001,4 mm, so wird der Wert *10014* in den Parameter *Reallänge* dieses Moduls eingetragen. Die Reallänge wird mit einer Auflösung von 1/10 mm angegeben.

Um die genaue Auflösung zu nutzen, ist es in der Praxis sinnvoll, eine längere Strecke des BCBs abzumessen und die Abweichung auf einen Meter umzurechnen.

Der Parameter *Bereichsanfang* muss entsprechend dem realen Anfangswert des eingesetzten Barcodebandes konfiguriert werden. Sind mehrere unterschiedliche BCBs aneinander gestückelt, muss auch der Parameter *Bereichsende* des korrigierten Bandabschnitts konfiguriert werden. Mit dem Standardwert *10.000.000* des Bereichsendes wird das gesamte BCB korrigiert.

Das Modul enthält Parameter (mit 10 Byte Parameterdatenlänge), jedoch keine Eingangsdaten und keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	Default	Maße	inheit	Erklärung
	Au.				metr.	Inch	
Reallänge	0	unsign 16Bit	0 65.535	10.000	mm /10		Reale (kalibrierte) Länge von einem Meter BCB (laut Aufdruck).
Bereichsanfang	2	unsign 32Bit	0 10.000.000	0	mm		Ab dieser Position wird der Bandwert mit der <i>Reallänge</i> korrigiert.
Bereichsende	6	unsign 32Bit	0 10.000.000	10.000.000	mm		Bis zu dieser Position wird der Bandwert mit der <i>Reallänge</i> korrigiert.

8.4.23 Modul 24 – Lesequalität

Modul-ID: 1024 mit Submodul-ID: 1

Das Modul ermöglicht die Funktionalität *Lesequalität*, um die BPS Lesequalität zu übertragen und die Parameter für Warnschwelle, Fehlerschwelle und Glättung der Lesequalität zu konfigurieren.

Durch die Übertragung der Lesequalität ist eine kontinuierliche Kontrolle möglich. Der Betreiber kann sofort erkennen, wenn sich die Lesequalität durch Verschleiß oder Verschmutzung verschlechtert.

Die Signalisierung der Lesequalität wird über die Statusinformationen in Modul 6 (siehe Kapitel 8.4.8) und über die Schaltausgangsfunktionen in Modul 4 (siehe Kapitel 8.4.6) bzw. Modul 5 (siehe Kapitel 8.4.7) konfiguriert.

Das Modul enthält Parameter (mit 2 Byte Parameterdatenlänge) und Eingangsdaten (mit 1 Byte Eingangsdatenlänge), jedoch keine Ausgangsdaten.

Parameter	Rel.	Datentyp	Wertebereich	De⁻ fault	Maße	inheit	Erklärung
	-Aur.			aun	metr.	Inch	
Warnschwelle Lesequalität	0	unsign 8Bit	30 90	60			Unterhalb dieser Schwelle der Lesequalität in der Einheit [%] erzeugt das BPS ein Warnereignis.
Fehlerschwelle Lesequalität	1	unsign 8Bit	10 70	30			Unterhalb dieser Schwelle der Lesequalität in der Einheit [%] erzeugt das BPS ein Fehlerereignis.
Glättung Lesequalität	2	unsign 8Bit	0 100	5			Unempfindlichkeit gegenüber Änderungen der Qualität. Je höher dieser Wert ist, desto weniger wirkt sich eine Änderung auf die Lesequalität aus.
Eingangsdaten	Rel.	Datentyp	Wertebereich	Init-	Maße	inheit	Erklärung
	Adr.			Wert	metr.	Inch	•
Lesequalität	0	unsign 8Bit	0 100	0	%	%	Lesequalität in der Einheit [%] als geglätteter Wert, abhängig vom Parameter <i>Glättung Lesequalität</i> .

8.4.24 Modul 25 - Gerätestatus

Modul-ID: 1025 mit Submodul-ID: 1

Das Modul signalisiert über Eingangsdaten verschiedene Gerätezustände.

Das Modul enthält Eingangsdaten (mit 1 Byte Eingangsdatenlänge), jedoch keine Parameter und keine Ausgangsdaten.

Eingangsdaten	Rel.	Datentyp	Wertebereich	Init- Wert	Maßeinheit		Erklärung
	<i>A</i> u.			Wort	metr.	Inch	
Gerätestatus	0	unsign 8Bit	0: Initwert 1: Initialisierung 10: Standby 11: Service 12: Diagnose 15: Gerät ist bereit 128: Fehler 129: Warnung	0			Dieses Byte repräsentiert den aktuellen Gerätestatus.
Eingangsdatenlänge: 1 Byte							

8.4.25 Modul 26 - Erweiterter Status

Modul-ID: 1026 mit Submodul-ID: 1

Das Modul signalisiert über Eingangsdaten verschiedene erweiterte Statusinformationen, wie beispielsweise die aktuelle Leserichtung des Barcodebandes.

Das Modul enthält Eingangsdaten (mit 2 Byte Eingangsdatenlänge), jedoch keine Parameter und keine Ausgangsdaten.

Eingangsdaten	Rel.	Datentyp	Wertebereich	Init- Wort	Maßeinheit		Erklärung
	Au.			Weit	metr.	Inch	
Bandrichtung aufsteigend	0.0	BIT	0 : nicht aufstei [_] gend 1 : aufsteigend	0			Die Orientierung zwischen BPS und Barcodeband (BCB) ergibt eine aufsteigende Leserichtung. Sind Bit 0.0 und 0.1 nicht gesetzt (0), kann aktuell keine Leserichtung ermittelt werden.
Bandrichtung absteigend	0.1	BIT	0: nicht abstei ⁻ gend 1: absteigend	0			Die Orientierung zwischen BPS und Barcodeband (BCB) ergibt eine absteigende Leserichtung. Sind Bit 0.0 und 0.1 nicht gesetzt (0), kann aktuell keine Leserichtung ermittelt werden.
Eingangsdatenlänge: 2 Byte							

8.4.26 Modul 28 – 16-Bit Positionswert

Modul-ID: 1028 mit Submodul-ID: 1

Modul zur Ausgabe des aktuellen Postionswerts als 16-Bit Wert. Die Auflösung des Positionswerts ist fix und beträgt ein Dezimeter (100 mm) bzw. ein Inch (in).

Die Darstellung des Vorzeichens und die Maßeinheit können in Modul 1 verändert werden. (siehe Kapitel 8.4.3).

In der Defaulteinstellung erfolgt die Darstellung als Zweierkomplement und mit metrischer Maßeinheit. Bei Überschreitung des 16-Bit Wertebereichs, z. B. ab einem Ausgabewert von 3,27675 km (= 32768 dm) wird als Positionswert in diesem Modul der Wert Null (0) übertragen.

Das Modul enthält Eingangsdaten (mit 2 Byte Eingangsdatenlänge), jedoch keine Parameter und keine Ausgangsdaten.

▲ Leuze electronic

Eingangsdaten	Rel.	Datentyp	Wertebereich	artebereich Init-	Maßeinheit		Erklärung
	-Au.			Wort	metr.	Inch	
16-Bit Positionswert	0	sign 16Bit	Bei Zweierkom ⁻ plement: -32768 32767 Bei Vorzeichen und Betrag: -32767 32767	0	dm (100 mm)	inch	Positionswert als 16-Bit Wert mit der festen Auflösung von einem Dezimeter (100mm) bzw. einem Inch (in).
Eingangsdatenlänge: 2 Byte				-			

9 Leuze electronic webConfig-Tool – Erweiterte Konfiguration

Mit dem Leuze electronic webConfig-Tool steht für die Konfiguration des BPS eine vom Betriebssystem unabhängige, auf Web-Technologie basierende, grafische Benutzeroberfläche zur Verfügung. Das webConfig-Tool kann auf jedem internet-fähigen PC betrieben werden. Das webConfig-Tool verwendet HTTP als Kommunikationsprotokoll und die client-seitige Beschränkung auf Standardtechnologien (HTML, JavaScript und AJAX), die von modernen Browsern unterstützt werden.

Das webConfig-Tool wird in folgenden Sprachen angeboten:

Deutsch, Englisch, Französisch, Italienisch, Spanisch

HINWEIS

Konfigurationsänderungen über das webConfig-Tool sind am PROFINET nicht wirksam!

Vehmen Sie die Basiskonfiguration grundsätzlich über die GSDML-Datei vor (siehe Kapitel 8 "Basiskonfiguration").

Im Prozess-Betrieb sind ausschließlich die über die GSDML-Datei eingestellten Parameter in den PROFINET-Modulen bzw. PROFINET-Default-Vorgaben wirksam. Die über das webConfig-Tool vorgenommenen Parameteränderungen sind am PROFINET nicht mehr wirksam.

Die Parameter für das Zeitverhalten der Schaltein-/ausgänge lassen sich ausschließlich mit dem web-Config-Tool anpassen.

Wenn Sie das BPS über das webConfig-Tool in den Betriebsmodus *Service* umschalten, wird das BPS vom PROFINET getrennt. Alle über die GSDML-Datei eingestellten Parameter sind zunächst weiter wirksam. Über das webConfig-Tool können nun Parameteränderungen zu Testzwecken vorgenommen werden.

Mit dem webConfig-Tool konfigurierte Einstellungen werden beim Einbinden in PROFINET bzw. nach Deaktivierung des Betriebsmodus *Service* vom PROFINET-Master mit den über die GSDML-Datei gemachten Einstellungen überschrieben. Einstellungen die nicht über PROFINET konfiguriert werden können, z. B. Zeitverhalten-Funktionen, werden nicht überschrieben.

HINWEIS

BPS Konfiguration über das webConfig-Tool

bas webConfig-Tool zeigt keine PROFINET-Parameter an.

bie Konfigurationsdaten werden im Gerät **und** in der Anschlusshaube gespeichert.

9.1 Software installieren

Damit das BPS vom angeschlossenen PC automatisch erkannt wird, muss einmalig der USB-Treiber auf Ihrem PC installiert werden. Für die Treiberinstallation benötigen Sie Administrator-Rechte.

- O Wenn bereits ein USB-Treiber für das webConfig-Tool auf Ihrem Rechner installiert ist, muss der
- USB-Treiber nicht erneut installiert werden.

9.1.1 Systemvoraussetzungen

Aktualisieren Sie regelmäßig das Betriebssystem und den Internet-Browser.

Installieren Sie die aktuellen Service-Packs von Windows.

Tabelle 9.1:	webConfig-Systemvorauss	etzungen
--------------	-------------------------	----------

Betriebssystem	Windows XP (Home Edition, Professional) Windows Vista Windows 7 Windows 8
Computer	PC mit USB-Schnittstelle Version 1.1 oder höher
Grafikkarte	mindestens 1024 x 768 Pixel oder höhere Auflösung
benötigte Festplattenkapazität für USB-Treiber	10 MB
Internet-Browser	Internet Explorer ab Version 8.0 Firefox ab Version 4.0

9.1.2 USB-Treiber installieren

- Starten Sie Ihren PC mit Administrator-Rechten und melden Sie sich an.
- ✤ Laden Sie das Setup-Programm aus dem Internet herunter:

www.leuze.de > Produkte > Messende Sensoren > Sensoren zur Positionierung > BPS 300i > (Name des BPS) > Register Downloads > Software/Treiber.

- ♦ Starten Sie das Setup-Programm und folgen Sie den Anweisungen.
 - O Alternativ können Sie den USB-Treiber **LEO_RNDIS.inf** manuell installieren.
 - Wenden Sie sich an Ihren Netzwerk-Administrator, wenn die Installation fehlgeschlagen ist.

9.2 webConfig-Tool starten

Voraussetzung: Der Leuze electronic USB-Treiber für das webConfig-Tool ist auf dem PC installiert.

 \clubsuit Legen Sie die Betriebsspannung am BPS an.

♦ Verbinden Sie die SERVICE-USB-Schnittstelle des BPS mit dem PC.

Der Anschluss an die SERVICE-USB-Schnittstelle des BPS erfolgt über die PC-seitige USB-Schnittstelle.

Verwenden Sie eine Standard-USB-Leitung mit einem Stecker Typ A und einem Stecker Typ Mini-B.

Starten Sie das webConfig-Tool über den Internet-Browser Ihres PC mit der IP-Adresse 192.168.61.100

Dies ist die Leuze electronic Standard Service-Adresse für die Kommunikation mit den Barcode-Positioniersystemen der Baureihe BPS 300i.

Auf Ihrem PC erscheint die webConfig-Startseite.

Umschaltung des Betriebsmodus (*Prozess* - *Service*) (links oben)

Bild 9.1: Startseite des webConfig-Tools

Die Oberfläche des webConfig-Tools ist weitgehend selbsterklärend.

O Das webConfig-Tool ist komplett in der Firmware des BPS enthalten.

Die Seiten und Funktionen des webConfig-Tools können, abhängig von der Firmwareversion, unterschiedlich dargestellt und angezeigt werden.

Browserverlauf löschen

1

Л

Das Cache des Internet-Browsers ist zu löschen, wenn unterschiedliche Gerätetypen oder Geräte mit unterschiedlicher Firmware an das webConfig-Tool angeschlossen wurden.

Löschen Sie Cookies und temporäre Internet- und Website-Daten aus dem Browser-Cache bevor Sie das webConfig-Tool starten.

Beispiel für Internet Explorer 10:

Einstellungen > Sicherheit> Browserverlauf > [Löschen]

Begrenzung der Firefox-Sessions ab Version 17.0 und höher beachten

Wird die begrenzte Anzahl der Firefox-Sessions überschritten, kann das BPS eventuell nicht mehr über das webConfig-Tool angesprochen werden.

b Verwenden Sie **nicht** die Refresh-Funktionen des Internet-Browsers:

[Shift] [F5] bzw. [Shift] + Mausklick

9.3 Kurzbeschreibung des webConfig-Tools

9.3.1 Übersicht

Betriebsmodi

Für Konfigurationen mit dem webConfig-Tool können Sie zwischen den folgenden Betriebsmodi umschalten:

- Prozess
- Das BPS ist mit der Steuerung verbunden.
- Die Prozess-Kommunikation zur Steuerung wird aktiviert.

- Die Schaltein-/ausgänge werden aktiviert.
- Die Konfiguration kann nicht geändert werden.
- *PROZESS* -Funktion vorhanden.
- JUSTAGE Funktion nicht vorhanden.
- Service
 - Die Prozess-Kommunikation zur Steuerung wird unterbrochen.
 - Die Schaltein-/ausgänge werden deaktiviert.
 - Die Konfiguration kann geändert werden.
 - *PROZESS* -Funktion nicht vorhanden.
 - JUSTAGE Funktion vorhanden.

Funktionen

Das webConfig-Tool hat im Betriebsmodus Prozess die folgenden Hauptmenüs bzw. Funktionen:

- HOME Informationen zum angeschlossenen BPS sowie zur Installation.
 Diese Informationen entsprechen den Informationen in der vorliegenden Technischen Beschreibung.
- KONFIGURATION (siehe Kapitel 9.3.2)

Informationen zur aktuellen BPS-Konfiguration – keine Änderung der Konfiguration:

- Auswahl des verwendeten Barcodebandes (30 mm Raster oder 40 mm Raster)
- Anzeige der Bandwertkorrektur (Abweichung des BCB von der Skalierung)
- Anzeige der Gerätekomponenten (Schaltein-/ausgänge, Display)
- Datenbearbeitung (Positions-/Geschwindigkeitserfassung bzw. -überwachung, Datenaufbereitung)
- · Anzeige der Warnschwelle und der Fehlerschwelle für die Lesequalität
- Anzeige der Schnittstellenparameter
- PROZESS

Kontrolle und Speichern der aktuellen Lesedaten im Prozessbetrieb (siehe Kapitel 9.3.4).

• Tabellarische Anzeige der folgenden Werte: Scannummer, Position, Geschwindigkeit, Lesequalität, Abstand vom BCB, Info zu Steuerlabel

Im Betriebsmodus *Service* hat das webConfig-Tool zusätzlich die folgenden Hauptmenüs bzw. Funktionen:

- KONFIGURATION (siehe Kapitel 9.3.2)
 - Konfiguration von Gerätekomponenten (Schaltein-/ausgänge, Display)
 - Auswahl des verwendeten Barcodebandes
 - Konfiguration der Datenbearbeitung (Positions-/Geschwindigkeitserfassung bzw. -überwachung, Datenaufbereitung)
 - · Konfiguration der Warnschwelle und der Fehlerschwelle für die Lesequalität
 - Konfiguration der Schnittstellenparameter
- JUSTAGE (siehe Kapitel 9.3.3)
 - Anzeige der folgenden Werte: Scannummer, Position, Geschwindigkeit, Qualität, Abstand, Anzahl Labels im Scanstrahl
 - Grafische Anzeigen zu den folgenden Werten: Position, Geschwindigkeit, Qualität
- *DIAGNOSE* (siehe Kapitel 9.3.5)
 - Ereignisprotokollierung von Warnungen und Fehlern.
- *WARTUNG* (siehe Kapitel 9.3.6)
 - Aktualisierung der Firmware
 - Benutzerverwaltung
 - Backup/Restore

9.3.2 Funktion KONFIGURATION

HINWEIS

Konfigurationsänderungen nur im Betriebsmodus Service!

Änderungen über die Funktion KONFIGURATION können nur im Betriebsmodus Service vorgenommen werden.

Übersicht der webConfig Konfigurations-Funktionen

Bild 9.2: webConfig-Funktion KONFIGURATION

webConfig-Konfigurationsparameter

*: PROFINET-Parameter, siehe Kapitel 8.4

**: Parameter ist nur über webConfig konfigurierbar

Konfiguration der Schaltein-/ausgänge (Registerkarte GERÄT)

- I/O Modus: Schalteingang oder Schaltausgang *
- Funktion Ausgang *
- Funktion Eingang *
- · Zeitverhalten-Funktionen
 - Signalverzögerung **
 - Pulsdauer **
 - Einschalt-/Ausschaltverzögerung **
 - Entprellzeit **
 - Invertierung ja/nein *

HINWEIS

Anlauf-Konfiguration der Schaltein-/ausgänge!

Die Konfiguration f
ür die Schaltein-/ausg
änge SWIO 1 und SWIO 2 erfolgt grunds
ätzlich
über die GSDML-Datei.

Mit dem webConfig-Tool konfigurierte Einstellungen, die von der GSDML-Konfiguration abweichen, werden beim Anlauf vom PROFINET Master mit den über die GSDML-Datei gemachten Einstellungen überschrieben. Einstellungen, die nicht über PROFINET konfiguriert werden können, z. B. Zeitverhalten-Funktionen, werden nicht überschrieben.

bie PROFINET-Module 4 und 5 konfigurieren die Schaltein-/ausgänge (I/Os) SWIO 1 und SWIO 2 (siehe Kapitel 8.4.6 und siehe Kapitel 8.4.7), z. B.

ob SWIO 1 und SWIO 2 als Eingang oder Ausgang arbeiten

welche Ereignisse auf den Ausgang wirken

welche Funktion der Eingang hat

Zeitverhalten-Funktionen der Schaltein-/ausgänge

Die Zeitverhalten-Funktionen (z. B. Einschaltverzögerung) können **nur** mit dem webConfig-Tool konfiguriert werden.

Die Konfiguration der Zeitverhalten-Funktionen wird beim Anlauf nicht vom PROFINET Master überschrieben.

- Einschaltverzögerung Mit dieser Einstellung wird der Ausgangsimpuls um die spezifizierte Zeit (in ms) verzögert.
- Einschaltdauer

Definiert die Einschaltdauer für den Schalteingang. Eine eventuell aktivierte Ausschaltfunktion hat dann keine Wirkung mehr.

Wird der Ausgang vor Ablauf der Einschaltverzögerung über das Ausschaltsignal deaktiviert, so erscheint nach der Einschaltverzögerung nur ein kurzer Puls am Ausgang.

- 1 Einschaltsignal
- 2 Ausschaltsignal
- 3 Ausgang
- 4 Einschaltverzögerung
- 5 Einschaltdauer

Bild 9.3: Einschaltverzögerung > 0 und Einschaltdauer > 0

Entprellzeit

Parameter zur Einstellung der Software-Entprellzeit für den Schalteingang. Die Definition einer Entprellzeit verlängert die Signaldurchlaufzeit entsprechend.

Hat dieser Parameter den Wert *O*, so findet keine Entprellung statt. Andernfalls entspricht der eingestellte Wert der Zeit (in ms), die das Eingangssignal stabil anstehen muss.

 Ausschaltverzögerung Dieser Parameter gibt die Dauer der Ausschaltverzögerung (in ms) an.

Konfiguration der Barcodebandauswahl und Bandwertkorrektur (Registerkarte *MESSDATEN*, *Barcodeband*)

- Barcodeband in 30 mm Raster oder 40 mm Raster *
- Bandwertkorrektur **

Konfiguration der Positionserfassung (Registerkarte DATENBEARBEITUNG, Position > Erfassung)

- Integrationstiefe *
- Skalierung freie Auflösung *
- Preset *
- Offset *
- Verhalten im Fehlerfall *

Konfiguration der Positionsüberwachung (Registerkarte *DATENBEARBEITUNG*, *Position* > *Überwachung*)

Positionsgrenzwert 1/2 *

Konfiguration der Geschwindigkeitserfassung (Registerkarte *DATENBEARBEITUNG*, *Geschwindigkeit > Erfassung*)

- Mittelung Geschwindigkeitsmessung *
- Skalierung freie Auflösung *
- Verhalten im Fehlerfall *

Konfiguration der Geschwindigkeitsüberwachung (Registerkarte DATENBEARBEITUNG, Messdaten > Geschwindigkeit > Überwachung)

Geschwindigkeitsgrenzwert 1-4 *

Konfiguration der Messwertdarstellung (Registerkarte DATENBEARBEITUNG, Aufbereitung allgemein)

- Masseinheit *
- Zählrichtung *
- Ausgabemodus-Vorzeichen *

Konfiguration der Überwachung der Lesequalität (Registerkarte DATENBEARBEITUNG, Lesequalität)

- Warnschwelle Lesequalität in %**
- Fehlerschwelle Lesequalität in % **

Konfiguration der Datenausgabe (Registerkarte DATENBEARBEITUNG, Ausgabe, Vorbereitung)

- · Positionsauflösung *
- Geschwindigkeitsauflösung *

Konfiguration der Kommunikationsdaten (Registerkarte KOMMUNIKATION)

- Parameter der PROFINET-Schnittstelle
 Die PROFINET-Parameter werden nur zur Ansicht angezeigt.
- Konfiguration der SERVICE-USB-Schnittstelle

9.3.3 Funktion JUSTAGE

HINWEIS

Funktion JUSTAGE nur im Betriebsmodus Service !

Die Ausrichtung des BPS über die Funktion JUSTAGE kann nur im Betriebsmodus Service vergenommen werden.

Die Funktion *JUSTAGE* dient zur einfacheren Montage und Ausrichtung des BPS. Der Laser ist über das Symbol **Start** zu aktivieren, damit die Funktion die Messwerte für Position und Geschwindigkeit überwachen, direkt anzeigen und den optimalen Installationsort ermitteln kann.

Zusätzlich können Lesequalität (in %), Arbeitsabstand und die Anzahl der Labels im Scanstrahl anzeigt werden. Mit diesen Informationen kann beurteilt werden, wie gut das BPS zum BCB ausgerichtet ist.

Bei der Ausgabe der Leseergebnisse wird das BPS vom webConfig-Tool gesteuert.

Bild 9.4: webConfig-Funktion JUSTAGE

9.3.4 Funktion *PROZESS*

Die Funktion *PROZESS* dient zur Kontrolle der aktuellen Messdaten im Betriebsmodus *Prozess*. Die Messergebnisse werden tabellarisch ausgegeben – als reine Monitor-Ausgabe. Über das Symbol **Pause/Start** kann die Monitor-Aufzeichnung unterbrochen und wieder fortgesetzt werden.

	BPS 307/ SM 1 webConfig	100									Leuze electronic the sensor people
			HOME	ALIGNMENT	CONFIGURATIO	PROCE	SS DIAC	NOSIS	MAINTENANCE		
-					-	_					
						CURRENT					
Service Process	_0										& :·· :
NAVIG	ATION #			0	URRENT READ	DATA IN PROC	ESS MODE				# DESCRIPTION
											This display allows the current
Process mor	nitor •	PROCES	S DATA								measurement values to be
		Index -	Scan number 🗇	Position [mm] 0	Velocity [mm/s] 0	Quality [%] 0	Distance [mm] 0	Information ©	Tape change 🗇		Unlike the output of the read
		0	94728	44433	0	98	74	-	-		results in the Alignment tab, this is
		1	94743	44433	0	97	73	-	-	^	strictly a monitor output, i.e., the measurement is not controlled by
		2	94758	44433	0	97	74	-	20		webConfig here.
		3	94773	44433	0	97	74	-			Use the pause button to interrupt
		4	94788	44433	0	97	73	-			and resume monitor recording.
		5	94803	44433	0	97	74	-	-		A Please note!
		5	94818	44433	0	98	74				The read data are stored only
			94833	44433	0	96	74				temporarily for one-time retrieval.
		8	94848	44433	0	97	74				Parallel operation of this display in
		10	04005	44400	0	07	73				multiple webConfig instances is,
		11	94893	44433	0	97	73	2			diereiore, not supporteur
		12	94908	44433	0	98	73				
		13	94923	44433	0	98	73				1
		14	94938	44433	0	97	73		-		
		15	94953	44433	0	97	74				
		16	94968	44433	0	97	73	-	-		
		17	94983	44433	0	97	73	-	-		
		18	94998	44433	0	97	73	-	-		
		19	95013	44433	0	98	73	-	- /		
		20	95028	44433	0	98	74	-	-		
		21	95043	44433	0	97	73	-	-		
		22	95058	44433	0	97	73	-	-		
		23	95073	44433	0	97	73	-	-		
		24	95088	44433	0	97	73	-			
		25	95103	44433	0	97	73	-	-		
		26	95118	44433	0	98	73	-			
		27	95133	44433	0	98	73	2	12		
		28	95148	44433	0	98	73				
		29	95163	44433	0	98	73	-			
		30	951/8	44433	0	98	74			V	
		31	95193	44433	0	90	13	28 () () () () () () () () () (
2		Planning	engineer]								HOST IN 😍 HOST OUT 😍

Bild 9.5: webConfig-Funktion *PROZESS*

9.3.5 Funktion DIAGNOSE

Die Funktion *DIAGNOSE* ist in den Betriebsmodi *Prozess* und *Service* verfügbar. Über die Funktion *DIAGNOSE* wird das Geräte-Ereignisprotokoll angezeigt.

Bild 9.6: webConfig-Funktion *DIAGNOSE*

9.3.6 Funktion *WARTUNG*

Die Funktion WARTUNG ist nur im Betriebsmodus Service verfügbar.

Funktionalitäten:

- Benutzerverwaltung
- Geräte Backup/Restore
- Firmware-Aktualisierung
- Systemuhr
- Einstellungen der Bedienoberfläche

BPS 348i SM 100 D webConfig					Leuze electronic the sensor people
	HOME	ALIGNMENT CONFIGURATION	PROCESS DIAGNOSIS	MAINTENANCE	
		USER MANAGEMEN	T SYSTEM		
Service — Servic		Backup	Restore		📑 • 🍇 🖼 •
NAVIGATION #		DEVICES BAG	KUP/RESTORE		# DESCRIPTION
BackupRestore Firmware update System clock Settings	BACKUP The file made available for backup: File name: BPS_549_Backup_2014-01-29 arc RESTORE File to be used for the restore operation: File name: Information Parameter Serviss Firmware version Upload status Parameter Status Information Information	Durchsuchen Device information BPS 348 5M 100 D T 0.3.1 Value	File in	nformation	The button is enabled after an architect the has been successfully checked. In architect the has been successfully checked. In the state process, the device is the reader and the there is a state of the state is the state is a state of the check cherned. The backup section can contain as the IP address I
[http://192.168.61.100/#]	ining engineer]				HOST IN \$\$ HOST OUT \$\$

Bild 9.7: webConfig-Funktion WARTUNG

10 Diagnose und Fehler beheben

10.1 Was tun im Fehlerfall?

Die Anzeigeelemente (siehe Kapitel 3.3) erleichtern nach dem Einschalten des BPS das Überprüfen der ordnungsgemäßen Funktion und das Auffinden von Fehlern.

Im Fehlerfall können Sie an den Anzeigen der Leuchtdioden den Fehler erkennen. Anhand der Fehlermeldung können Sie die Ursache für den Fehler feststellen und Maßnahmen zur Fehlerbeseitigung einleiten.

Schalten Sie die Anlage ab und lassen Sie sie ausgeschaltet.

Analysieren Sie die Fehlerursache anhand der Betriebsanzeigen, der Fehlermeldungen und des Diagnose-Tools (auch mit Hilfe des webConfig-Tools, Registerkarte *DIAGNOSE*) und beheben Sie den Fehler.

HINWEIS

Leuze electronic Niederlassung/Kundendienst kontaktieren.

Wenn Sie einen Fehler nicht beheben können, kontaktieren Sie die zuständige Leuze electronic Niederlassung oder den Leuze electronic Kundendienst (siehe Kapitel 12 "Service und Support").

10.1.1 PROFINET-spezifische Diagnose

Bei PROFINET existieren folgende Möglichkeiten für die Diagnose:

- Ereignisbezogene Diagnose
- Zustandsbezogene Diagnose

Das BPS verwendet die ereignisbezogene Diagnose für hochpriorisierte Ereignisse/Fehler und die zustandsbezogene Diagnose für vorbeugende Wartung, sowie die Signalisierung von niederpriorisierten Ereignissen bzw. Warnungen.

Ereignisbezogene Diagnose

PROFINET überträgt Ereignisse innerhalb eines Automatisierungsprozesses als Alarme, die vom Anwendungsprozess zu quittieren sind.

Folgende Ereignisse werden dabei unterschieden:

- Prozess-Alarme: Ereignisse, die aus dem Prozess kommen und an die Steuerung gemeldet werden.
- Diagnose-Alarme: Ereignisse, die Fehlfunktionen eines IO-Devices anzeigen.
- Maintenance-Alarme: Übermittlung von Informationen, um durch vorbeugende Wartungsarbeiten den Ausfall eines Geräts zu vermeiden.
- Herstellerspezifische Diagnose

Alarme werden zur eindeutigen Identifizierung immer über einen Slot/Subslot gemeldet.

Diagnose- und Prozess-Alarme kann der Anwender unterschiedlich priorisieren.

Alle Alarme werden zusätzlich in den Diagnose-Puffer eingetragen. Der Diagnose-Puffer kann bei Bedarf über azyklische Read-Dienste von einer übergeordneten Instanz ausgelesen werden.

Zustandsbezogene Diagnose

Um Fehlverhalten oder Statusänderungen in einem Feldgerät an eine Anlagensteuerung zu melden, besteht die Möglichkeit, niederpriorisierte Diagnosemeldungen oder Statusmeldungen nur in den Diagnosepuffer einzutragen und nicht aktiv an die übergeordnete Steuerung zu melden. Diese Möglichkeit kann zum Beispiel für vorbeugende Wartung oder niedrig-priorisierte Warnungen verwendet werden.

Diagnose	Beschreibung	BPS- Kategorie	API/ Slot/ Subslot	Тур	Kommend/ Gehend
Parameter-Fehler	Fehler in der Konfiguration eines Moduls.	Error	0/n ^{a)} /0	Diagnose- Alarm ^{b)}	kommend
Konfigurations- Fehler	Fehler in der Konfiguration eines Moduls.	Error	0/n/0	Diagnose- Alarm	kommend

Tabelle 10.1: BPS Alarm- und Diagnosemeldungen

a) n = Modulnummer

b) Nur Diagnose- oder Prozessalarme lösen tatsächlich das Senden eines Alarms aus. Alle anderen Typen (Vorbeugende Wartung bzw. Statusmeldung) bedeuten nur einen Eintrag in den Diagnosepuffer und gehören damit zur zustandsbasierten Diagnose.

10.1.2 Diagnose mit webConfig-Tool

Systemereignisse werden im webConfig-Tool über die Registerkarte *DIAGNOSE* angezeigt. Im Ereignisprotokoll werden beachtenswerte Systemereignisse aufgezeichnet. Je nach Gewichtung sind die Ereignisse als Info, Warnung, Fehler und kritischer Fehler klassifiziert. Die Statistikzähler erfassen die Anzahl aller aufgezeichneten, sowie der nicht quittierten Meldungen. Mit den Meldungsfiltern können die Ereignisse entsprechend ihrem Status und ihrer Klasse begrenzt werden.

	BPS 348i SM 100 D webConfig								Leuze electronic the sensor people
				HOME AI	LIGNMENT CONFIGURATIO	ON PROCESS	DIAGNOSIS	NANCE	
					EVENT	STATISTIC S			
 Servic Proce 	ce — 💿				ü				📑 • 👪 🖼 •
NA	AVIGATION F				DISPLA	Y OF SYSTEM EVENTS			DESCRIPTION Noteworthy system events are recorded in the event log.
Event log	×	OPTIONS							
		Numb	er of messages		Message 1	liter	Depending on their importance, these are classified as info,		
		Total		0	Status	All messages	¥		warning, error and critical error. The statistics counters detect the number of all recorded as well as non-acknowledged messages.
		Not ad	knowledged	0	Class	Errors and warnings	•		
		EVENT LOG						With the message filters, the events can be filtered according to	
		S No.	Class	ID Descri	iption So	ource Addition	al information	Time	their status and their class.
									A1111
0	🖌 [Pla	nning engineer]							HOST IN 🍨 HOST OUT 🍨

Bild 10.1: webConfig-Funktion *DIAGNOSE*

10.2 Betriebsanzeigen der Leuchtdioden

Über die Status LEDs PWR und BUS (siehe Tabelle 10.5) können Sie allgemeine Fehlerursachen ermitteln.

Fehler	mögliche Ursache	Maßnahmen
Aus	 Keine Versorgungsspannung an das Gerät angeschlossen Hardware-Fehler 	 Versorgungsspannung überprüfen Leuze electronic Kundendienst kontaktie- ren (siehe Kapitel 12 "Service und Support")
Rot blinkend	 Kein Barcode im Scanstrahl Kein gültiger Messwert 	 BCB-Diagnosedaten abfragen und dar- aus resultierende Maßnahmen vorneh- men (siehe Tabelle 10.6)
Rot Dauerlicht	 Fehler Funktion des Gerätes ist eingeschränkt Interner Gerätefehler 	 Ursache des Gerätefehlers über das Ereignisprotokoll der webConfig-Diag- nose ermitteln Leuze electronic Kundendienst kontaktie- ren (siehe Kapitel 12 "Service und Support")
Orange Dauerlicht	Gerät im <i>Service</i> -Modus	 Gerät mit webConfig-Tool auf <i>Prozess</i>- Modus zurücksetzen

10.3 Fehlermeldungen am Display

Über das optionale Display des BPS gibt das Gerät im Gerätestatus *BPS Info* folgende mögliche Fehlerstatus-Informationen aus:

- *System OK* BPS arbeitet fehlerfrei.
- Warning

Warnmeldung. Gerätestatus von PROFINET-Modul 6 abfragen.

• Error

Gerätefunktion ist nicht sichergestellt.

	PWR BUS
& Leuze electronic BPS Info System OK	

Bild 10.2: Beispiel: Gerätestatus-/Fehlerstatus-Information am Display

10.4 Checkliste Fehlerursachen

 Tabelle 10.3:
 Fehler Service-Schnittstelle – Ursachen und Maßnahmen

Fehler	mögliche Ursache	Maßnahmen
webConfig startet nicht	 Verbindungsleitung nicht korrekt angeschlossen Angeschlossenes BPS wird nicht erkannt Keine Kommunikation über USB-Service-Schnittstelle Alte webConfig-Konfiguration im Browser-Cache 	 Verbindungsleitung überprüfen USB-Treiber installieren Browserverlauf löschen

Fehler	mögliche Ursache	Maßnahmen
Sporadische Netz- werkfehler	 Verkabelung auf Kontakt- sicherheit pr	Verkabelung prüfen: • Schirmung der Verkabelung prüfen • Verwendete Leitungen prüfen
	EMV-Einkopplungen	 Kontaktqualität von Schraub- bzw. Lötkontakten in der Verkabelung beach- ten EMV-Einkopplung durch parallel verlau- fende Starkstromleitungen vermeiden Getrennte Verlegung von Leistungs- und Datenkommunikationskabel
	 Netzwerkausdehnung überschritten 	 Max. Netzwerkausdehnung in Abhängigkeit der max. Leitungslängen überprüfen

Tabelle 10.4: Fehler Proze	ess-Schnittstelle – Ursachen und Maßnahmen

Taballa 10 5	LED Anzeigen Schnittstellenfehler Ursachen und Maßnahmen
	LED-Anzeigen Schnittstellenienen – Ofsachen und Mashahmen

Fehler	mögliche Ursache	Maßnahmen
BUS LED "Aus"	 Keine Versorgungsspannung an das Gerät angeschlossen 	 Versorgungsspannung überprüfen
	Gerät wurde vom PROFINET nicht erkannt	 Gerätename überprüfen, Link- und Acti- vity-LED an Anschlusshaube prüfen
	Hardware-Fehler	Gerät zum Kundendienst einschicken
BUS LED "rot blinkend"	Verkabelung nicht korrekt	 Verkabelung überprüfen
	 Kommunikationsfehler: Konfiguration fehlgeschlagen IO-Error: kein Datenaus- tausch ("no data exchange") 	 Projektierung prüfen, speziell im Hinblick auf Adresszuordnung (Gerätenamen/ IP Adresse/MAC ID) Reset an der Steuerung durchführen
	 Kommunikationsfehler auf dem PROFINET: Kein Kommunikationsaufbau zum IO-Controller ("no data exchange") 	 Protokolleinstellungen überprüfen Projektierung prüfen, speziell im Hinblick auf Adresszuordnung (Gerätenamen/ IP Adresse/MAC ID)
	Protokolle nicht freigegeben	TCP/IP oder UDP aktivieren
	 Falsche Gerätenamen einge- stellt 	 Projektierung pr üfen, speziell im Hinblick auf Adresszuordnung (Ger ätenamen/ IP Adresse/MAC ID)
	 Falsche Projektierung 	 Projektierung pr üfen, speziell im Hinblick auf Adresszuordnung (Ger ätenamen/ IP Adresse/MAC ID)
	Unterschiedliche Protokollein- stellungen	 Protokolleinstellungen überprüfen

Fehler	mögliche Ursache	Maßnahmen
Messwert bzw. Lesequalität ist dau- erhaft instabil	 Verschmutzung der Optik des BPS 	Optik des BPS reinigen
Messwert bzw. Lesequalität ist schlecht • an einigen Posi- tionswerten • immer an den- selben Positi- onswerten	 Verschmutzung des Barcode- bandes 	 Barcodeband reinigen Barcodeband ersetzen
Es kann kein Mess- wert ermittelt werden	 Kein Code im Scanstrahl Code nicht im Arbeitsbereich des BPS 	 Scanstrahl auf Barcodeband ausrichten BPS zum Barcodeband ausrichten (Arbeitsbereich 50 mm 170 mm)
Messwert fehlerhaft	 Falsches Barcodeband BCB-Raster abweichend zur BPS-Konfiguration 	 BPS-Konfiguration auf vorliegendes Bar- codeband anpasssen

Tabelle 10.6:	Fehler Positionsmessung – Ursachen und Maßnahmen

11 Pflegen, Instand halten und Entsorgen

11.1 Reinigen

Falls das BPS-Gerät einen Staubbeschlag aufweist:

Reinigen Sie das BPS-Gerät mit einem weichen Tuch und bei Bedarf mit Reinigungsmittel (handelsüblicher Glasreiniger).

HINWEIS

Keine aggressiven Reinigungsmittel verwenden!

Verwenden Sie zur Reinigung des BPS-Geräts keine aggressiven Reinigungsmittel wie Verdünner oder Aceton.

Die Optikabdeckung kann dadurch eingetrübt werden.

11.2 Instandhaltung

Das BPS-Gerät erfordert im Normalfall keine Wartung durch den Betreiber. Reparaturen an den Geräten dürfen nur durch den Hersteller erfolgen.

Wenden Sie sich f
ür Reparaturen an Ihre zust
ändige Leuze electronic Niederlassung oder an den Leuze electronic Kundendienst (siehe Kapitel 12 "Service und Support").

11.2.1 Firmware-Update

Grundsätzlich ist ein Firmware-Update entweder vom Leuze electronic Service vor Ort durchführbar oder im Stammhaus.

Wenden Sie sich f
ür Firmware-Updates an Ihre zust
ändige Leuze electronic Niederlassung oder an den Leuze electronic Kundendienst (siehe Kapitel 12).

11.2.2 BCB-Reparatur mit Reparaturkit

HINWEIS

BCB Reparaturkit nicht dauerhaft verwenden!

以 Verwenden Sie das mit dem Reparaturkit erzeugte Barcodeband nur vorübergehend als Notlösung.

Die optischen und mechanischen Eigenschaften des selbstgedruckten Barcodebandes entsprechen nicht denen des Original-Barcodebandes.

Selbstgedrucktes Barcodeband soll nicht dauerhaft in der Anlage verbleiben.

Separatur-Barcodebänder in 1 m Stücken können auf Anfrage bei Leuze electronic bestellt werden.

Wurde das Barcodeband beschädigt, z. B. durch herabfallende Teile, können Sie im Internet ein Reparaturkit für das BCB herunterladen.

www.leuze.de > Produkte > Messende Sensoren > Sensoren zur Positionierung > BPS 300i > (Name des BPS) > Register Downloads > Reparaturkit.

In den Dateien der Reparaturkits finden Sie alle Positionswerte im 30 mm Raster und 40 mm
 Raster.

Aufteilung:

- BCB8: Auf jeder A4-Seite wird 0,9 m Barcodeband dargestellt.
 Fünf Zeilen à 18 cm mit je sechs Codeinformationen zu 30 mm
 Bandlängen: 0 ... 500 m, 500 ... 1000 m, 1000 ... 1500 m ... 2500 ... 3000 m
- BCB: Auf jeder A4-Seite wird 1 m Barcodeband dargestellt.
 Fünf Zeilen à 20 cm mit je fünf Codeinformationen zu 40 mm
 Bandlängen: 0 ... 500 m, 500 ... 1000 m, 1000 ... 1500 m und 1500 ... 2000 m

Austausch eines defekten Barcodebandbereichs

- b Ermitteln Sie die Codierung des defekten Bereichs.
- brucken Sie die Codierung für den ermittelten Bereich.

b Kleben Sie den ausgedruckten Code über die defekte Stelle des Barcodebands.

HINWEIS

Codierung drucken

- ♥ Wählen Sie zum Drucken nur die Seiten an, die benötigt werden.
- b Passen Sie die Einstellungen des Druckers so an, dass der Barcode nicht verzerrt wird.
- Überprüfen Sie das Druckergebnis und messen Sie den Abstand zwischen zwei Barcodes (siehe Bild 11.1 und siehe Bild 11.2):

BCB: 40 mm

BCB8: 30 mm

Trennen Sie die Codestreifen auf und setzen Sie sie aneinander. Der Codeinhalt muss sich immer fortlaufend um jeweils 30 mm bzw. 40 mm vergrössern oder verkleinern.

Kontrollieren Sie die Erhöhung der aufgedruckten Werte um 3 bzw. 4.

Bild 11.2: Überprüfen des Druckergebnisses BCB8-Reparaturkit (30 mm Raster)

11.3 Entsorgen

beachten Sie bei der Entsorgung die national gültigen Bestimmungen für elektronische Bauteile.

12 Service und Support

Rufnummer für 24-Stunden-Bereitschaftsservice: +49 (0) 7021 573 - 0

Service-Hotline: +49 (0) 7021 573 - 123 Montag bis Freitag 8.00 bis 17.00 Uhr (UTC+1)

E-Mail: service.identifizieren@leuze.de

Reparaturservice und Rücksendungen: Vorgehensweise und Internetformular finden Sie unter www.leuze.de/reparatur Rücksendeadresse für Reparaturen: Servicecenter Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany

12.1 Was tun im Servicefall?

HINWEIS

Bitte benutzen Sie dieses Kapitel als Kopiervorlage im Servicefall!

Füllen Sie die Kundendaten aus und faxen Sie zusammen mit Ihrem Serviceauftrag an die unten genannte Fax-Nummer.

Kundendaten (bitte ausfüllen)

Gerätetyp:	
Seriennummer:	
Firmware:	
Anzeige auf Display:	
Anzeige der LEDs:	
Fehlerbeschreibung:	
Firma:	
Ansprechpartner/Abteilung:	
Telefon (Durchwahl):	
Fax:	
Strasse/Nr:	
PLZ/Ort:	
Land:	

Leuze Service-Fax-Nummer: +49 7021 573 - 199

13 **Technische Daten**

13.1 Allgemeine Daten

Tabelle 13.1: Optik

Lichtquelle	Laserdiode
Wellenlänge	655 nm
Lebensdauer Laserdiode	100.000 h (typ. bei +25 °C)
Strahlablenkung	über rotierendes Polygonrad
Austrittsfenster	Glas
Laserklasse	2 gemäß IEC 60825-1:2007 (EN 60825-1:2008-05); II gemäß CDRH (U.S. 21 CFR 1040.10 mit den Abwei- chungen entsprechend der "Laser Notice No. 50" vom 24.06.2007)
Arbeitsbereich	50 mm 170 mm Bei einer Leseentfernung von 50 mm beträgt die Lesefeld- breite 120 mm. Ab einer Leseentfernung von 100 mm beträgt die Lese- feldbreite 160 mm (siehe Bild 13.1, BPS Lesefeldkurve).

2

Bild 13.1: **BPS** Lesefeldkurve

Tabelle 13.2: Messdaten

Reproduzierbarkeit (3 Sigma)	±0,15 mm
Ansprechzeit	8 ms
Ausgabezeit	1 ms
Basis für Schleppfehlerberechnung	4 ms
Messbereich	0 10.000.000 mm
Max. Verfahrgeschwindigkeit	10 m/s

Tabelle 13.3:	Bedien-/Anzeigeelemente
---------------	-------------------------

Display	Monochromes Grafikdisplay, 128 x 32 Pixel, mit Hintergrundbeleuchtung
Tastatur	zwei Tasten
LEDs	zwei LEDs für Power (PWR) und Busstatus (BUS), zwei- farbig (rot/grün)

Tabelle 13.4: Mechanik

Gehäuse	Aluminium-Druckguss
Anschlusstechnik	 BPS mit MS 348: M12-Rundsteckverbindungen BPS mit ME 348 103: Leitungen mit M12-Rundsteck- verbindungen BPS mit MK 348: Klemmenblöcke mit Federkraftklem- men (5-polig)
Schutzart	IP 65
Gewicht	ca. 580 g (ohne Anschlusshaube)
Abmessungen (ohne Anschlusshaube)	(H x B x T) 108,7 mm x 100,0 mm x 48,3 mm
Abmessungen (mit Anschlusshaube MS 348)	(H x B x T) 108,7 mm x 100,0 mm x 48,3 mm
Abmessungen (mit Anschlusshaube ME 348 103)	(H x B x T) 127,7 mm x 100 mm x 48,3 mm
Abmessungen (mit Anschlusshaube MK 348)	(H x B x T) 147,4 mm x 100,0 mm x 48,3 mm
Abmessungen Anschlusshaube MS 348	(H x B x T) 64,0 mm x 43,5 mm x 33,5 mm
Abmessungen Anschlusshaube ME 348 103	(H x B x T) 64,0 mm x 43,5 mm x 38,0 mm
Abmessungen Anschlusshaube MK 348	(H x B x T) 64,0 mm x 43,5 mm x 83,5 mm

Tabelle 13.5: Umgebungsdaten

Luftfeuchtigkeit	max. 90% relative Feuchte, nicht kondensierend
------------------	--

Vibration	IEC 60068-2-6, Test Fc
Schock Dauerschock	IEC 60068-2-27, Test Ea
Elektromagnetische Verträglichkeit	IEC 61000-6-3 IEC 61000-6-2 (beinhaltet IEC 61000-4-2, -3, -4, -5, -6)

Tabelle 13.6: Zulassungen, Konformität

Konformität	CE, CDRH
Zulassungen	UL 60950-1, CSA C 22.2 No. 60950-1

UL-Applikationen!

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

13.1.1 BPS ohne Heizung

VORSICHT UL-Applikationen!

 Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

Tabelle 13.7: Elektrik

Schnittstellentyp	PROFINET-RT mit integriertem Switch für BUS IN und BUS OUT Protokoll: PROFINET-RT Kommunikation Conformance Class: B
Service-USB-Schnittstelle	USB 2.0 Typ Mini-B Buchse
Schalteingang/Schaltausgang	Zwei Schaltein-/ausgänge Funktionen frei programmierbar über PROFINET-Schnitt- stelle Schalteingang: 18 30 VDC je nach Versorgungsspan- nung, I max. = 8 mA Schaltausgang: 18 30 VDC, je nach Versorgungsspan- nung, I max. = 60 mA (kurzschlussfest) Schaltein-/ausgänge sind gegen Verpolung geschützt!
LED PWR grün	Gerät betriebsbereit (Power On)
Betriebsspannung U _B	18 30 VDC (Class 2, Schutzklasse III)
Leistungsaufnahme	max. 3,7 W

Tabelle 13.8: Umgebungstemperatur

Umgebungstemperatur (Betrieb)	-5 °C +50 °C
Umgebungstemperatur (Lager)	-35 °C +70 °C

13.1.2 BPS mit Heizung

UL-Applikationen!

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

Tabelle 13.9: Elektrik

Betriebsspannung U _B	18 30 VDC	
Leistungsaufnahme	max. 17,7 W	
Aufbau der Heizung	Gehäuseheizung und separate Optikglasheizung	
Aufwärmzeit	Mindestens 30 min bei +24 VDC und einer Umgebungs- temperatur von -35 °C	
Minimaler Leitungsquerschnitt	Leitungsquerschnitt mindestens 0,75 mm² für die Zulei- tung der Versorgungsspannung. Hinweis: Durchschleifen der Spannungsversorgung an mehrere Heizungsgeräte nicht zulässig. Standard-M12-vorkonfektionierte Leitung nicht verwend- bar (zu geringer Leitungsquerschnitt).	

Tabelle 13.10: Umgebungstemperatur

Umgebungstemperatur (Betrieb)	-35 °C +50 °C
Umgebungstemperatur (Lager)	-35 °C +70 °C

13.2 Barcodeband

Tabelle 13.11: BCB-Abmessungen

	ВСВ	BCB8
Raster	40 mm	30 mm
Standardhöhe	47 mm	47 mm
Vorzugshöhen	25 mm, Sonderhöhen ab 150 m	25 mm, 30 mm, Sonderhöhen ab 150 m
Länge	0 5 m, 0 10 m, 0 20 m,, 0 150 m, 0 200 m; Sonderlängen und Sonder- kodierungen ab 150 m Länge (siehe Kapitel 14)	0 5 m, 0 10 m, 0 20 m,, 0 150 m; Sonderlängen und Sonder- kodierungen ab 150 m Länge (siehe Kapitel 14)
Bandtoleranz	±1 mm pro Meter	±1 mm pro Meter

HINWEIS

Twin-Bänder auf Anfrage

by Twin-Bänder können auf Anfrage bestellt werden (siehe Kapitel 14).
Tabelle 13.12: BCB-Aufbau

Herstellungsverfahren	Photosatz
Oberflächenschutz	Polyester, matt
Grundmaterial	Polyesterfilm, aufgeklebt silikonfrei
Kleber	Acrylatkleber
Kleberstärke	0,1 mm
Klebkraft (Durchschnittswerte)	auf Aluminium: 25 N/25 mm auf Stahl: 25 N/25 mm auf Polycarbonat: 22 N/25 mm auf Polypropylen: 20 N/25 mm

Tabelle 13.13: BCB-Umgebungsdaten

Empfohlene Verarbeitungstemperatur	0 °C +45 °C
Umgebungstemperatur	-40 °C +120 °C
Formstabilität	keine Schrumpfung, geprüft nach DIN 30646
Aushärtung	endgültige Aushärtung nach 72 h; Das BPS kann sofort nach Aufbringen des BCB die Posi- tion erfassen.
Reißfestigkeit	150 N
Reißdehnung	min. 80%, geprüft nach DIN 50014, DIN 51220
Witterungsbeständigkeit	UV-Licht, Feuchtigkeit, Salzsprühnebel (150 h/5 %)
Chemische Beständigkeit (geprüft bei 23 °C über 24 h)	Trafoöl, Dieselöl, Testbenzin, Heptan, Äthylenglykol (1:1)
Brandverhalten	selbstlöschend nach 15 s, tropft nicht ab
Untergrund	fettfrei, trocken, sauber, glatt
Mechanische Eigenschaften	kratz- und wischfest, UV-beständig, feuchtigskeitsbeständig, bedingt chemikalienbeständig

13.3 Maßzeichnungen

alle Maße in mm

Bild 13.4: Maßzeichnung BPS mit Anschlusshaube MK 348

Bild 13.5: Maßzeichnung BPS mit Anschlusshaube ME 348 103

13.4 Maßzeichnungen Zubehör

Bild 13.6: Maßzeichnung Anschlusshaube MS 348

alle Maße in mm

alle Maße in mm BUS_IN: M12-Buchse, D-kodiert, 4-polig, 180°, Leitungslänge 0,5 m BUS_OUT: M12-Buchse, D-kodiert, 4-polig, 180°, Leitungslänge 0,7 m PWR: M12-Stecker, A-kodiert, 5-polig, 180°, Leitungslänge 0,9 m

Bild 13.8: Maßzeichnung Anschlusshaube ME 348 103

alle Maße in mm

alle Maße in mm

1

alle Maße in mm

- Klemmbacken zur Befestigung am BPS
- 2 Klemmprofil zur Befestigung an runden oder ovalen Rohren (¬ 16 ... 20 mm)
- 3 Stangenhalter um 360 ° drehbar

alle Maße in mm

Bild 13.12: Maßzeichnung Befestigungsteil BT 300-1

13.5 Maßzeichnungen Barcodeband

Bild 13.14: Maßzeichnung Barcodeband BCB8 im 30 mm Raster

14 Bestellhinweise und Zubehör

14.1 Typenübersicht BPS 348i

Tabelle 14.1:	Typenübersicht BPS 348i

ArtNr.	Artikelbezeichnung	Beschreibung
50124981	BPS 348i SM 100 D H	BPS mit PROFINET-RT Interface, Display und Heizung
50124982	BPS 348i SM 100 D	BPS mit PROFINET-RT Interface und Display
50124983	BPS 348i SM 100	BPS mit PROFINET-RT Interface
50136336	BPS 348i SM 100 H	BPS mit PROFINET-RT Interface und Heizung

14.2 Anschlusshauben

Tabelle 14.2:BPS-Anschlusshauben

ArtNr.	Artikelbezeichnung	Beschreibung
50116467	MK 348	Anschlusshaube mit Federkraftklemmen
50116471	MS 348	Anschlusshaube mit M12-Steckverbindern
50131256	ME 348 103	Anschlusshaube mit Leitungen mit M12-Steckver- binder. BUS_IN: M12-Buchse, D-kodiert, 4-polig, 180°, Leitungslänge 0,5 m BUS_OUT: M12-Buchse, D-kodiert, 4-polig, 180°, Leitungslänge 0,7 m PWR: M12-Stecker, A-kodiert, 5-polig, 180°, Leitungslänge 0,9 m

14.3 Leitungen-Zubehör

Tabelle 14.3: Zubehör – PWR-Anschlussleitung (Spannungsversorgung)

ArtNr.	Artikelbezeichnung	Beschreibung
50104557	K-D M12A-5P-5m-PVC	PWR-Anschlussleitung, M12-Buchse für PWR, axialer Steckerabgang, offenes Leitungsende, Leitungslänge 5 m, ungeschirmt
50104559	K-D M12A-5P-10m-PVC	PWR-Anschlussleitung, M12-Buchse für PWR, axialer Steckerabgang, offenes Leitungsende, Leitungslänge 10 m, ungeschirmt

Tabelle 14.4: Zubehör – BUS IN-Anschlussleitung (auf offenes Ende)

ArtNr.	Artikelbezeichnung	Beschreibung
M12-Stecker für BUS IN, axialer Leitungsabgang, offenes Leitungsende		
50106739	KB ET-2000-SA	BUS IN-Anschlussleitung, Länge 2 m
50106740	KB ET-5000-SA	BUS IN-Anschlussleitung, Länge 5 m

ArtNr.	Artikelbezeichnung	Beschreibung
50106741	KB ET-10000-SA	BUS IN-Anschlussleitung, Länge 10 m
50106742	KB ET-15000-SA	BUS IN-Anschlussleitung, Länge 15 m
50106746	KB ET-30000-SA	BUS IN-Anschlussleitung, Länge 30 m

Tabelle 14.5: Zubehör – BUS IN-Anschlussleitung (auf RJ-45)

ArtNr.	Artikelbezeichnung	Beschreibung
M12-Stecker für	BUS IN, auf RJ-45 Stecker	
50109880	KB ET-2000-SA-RJ45	BUS IN-Anschlussleitung (auf RJ-45), Länge 2 m
50109881	KB ET-5000-SA-RJ45	BUS IN-Anschlussleitung (auf RJ-45), Länge 5 m
50109882	KB ET-10000-SA-RJ45	BUS IN-Anschlussleitung (auf RJ-45), Länge 10 m
50109883	KB ET-15000-SA-RJ45	BUS IN-Anschlussleitung (auf RJ-45), Länge 15 m
50109886	KB ET-30000-SA-RJ45	BUS IN-Anschlussleitung (auf RJ-45), Länge 30 m

Tabelle 14.6: Zubehör – BUS OUT-Anschlussleitung (auf M12)

ArtNr.	Artikelbezeichnung	Beschreibung	
M12-Stecker + M	M12-Stecker + M12-Stecker für BUS OUT auf BUS IN		
50106899	KB ET-2000-SSA	BUS OUT-Anschlussleitung, Länge 2 m	
50106900	KB ET-5000-SSA	BUS OUT-Anschlussleitung, Länge 5 m	
50106901	KB ET-10000-SSA	BUS OUT-Anschlussleitung, Länge 10 m	
50106902	KB ET-15000-SSA	BUS OUT-Anschlussleitung, Länge 15 m	
50106905	KB ET-30000-SSA	BUS OUT-Anschlussleitung, Länge 30 m	

14.4 Weiteres Zubehör

Tabelle 14.7: Zubehör – BPS-Steckverbinder

ArtNr.	Artikelbezeichnung	Beschreibung
50020501	KD 095-5A	M12-Buchse axial für Spannungsversorgung, geschirmt
50108991	D-ET1	RJ45-Stecker zum Selbstkonfektionieren
50112155	S-M12A-ET	M12-Stecker axial, D-kodiert, zum Selbstkonfekti- onieren
50109832	KDS ET M12 / RJ45 W-4P	Umsetzer von M12, D-kodiert, auf RJ-45 Buchse

Tabelle 14.8: Zubehör – USB-Leitung

ArtNr.	Artikelbezeichnung	Beschreibung
50117011	KB USBA-USBminiB	USB-Serviceleitung, 1 Stecker Typ A und Typ Mini-B, Länge 1 m

ArtNr.	Artikelbezeichnung	Beschreibung
50124941	BTU 0300M-W	Befestigungsteil für Wandmontage – positionsge- naue Ausrichtung des BPS ohne Justage (easy- mount).
50121433	BT 300 W	Befestigungswinkel für Wandmontage
50027375	BT 56	Befestigungsteil für Rundstange
50121434	BT 300-1	Befestigungsteil für Rundstange

Tabelle 14.9:	Zubehör – Befestigungsteile
100010 11.0.	Edbolio Bolooligaligotolio

14.5 Barcodebänder

Tabelle 14.10: Zubehör – BCB

ArtNr.	Artikelbezeichnung	Beschreibung
50038895	BCB 005	Barcodeband mit 5 m Länge, 47 mm hoch
50040041	BCB 010	Barcodeband mit 10 m Länge, 47 mm hoch
50037489	BCB 020	Barcodeband mit 20 m Länge, 47 mm hoch
50037491	BCB 030	Barcodeband mit 30 m Länge, 47 mm hoch
50037492	BCB 040	Barcodeband mit 40 m Länge, 47 mm hoch
50038894	BCB 050	Barcodeband mit 50 m Länge, 47 mm hoch
50038893	BCB 060	Barcodeband mit 60 m Länge, 47 mm hoch
50038892	BCB 070	Barcodeband mit 70 m Länge, 47 mm hoch
50038891	BCB 080	Barcodeband mit 80 m Länge, 47 mm hoch
50038890	BCB 090	Barcodeband mit 90 m Länge, 47 mm hoch
50037493	BCB 100	Barcodeband mit 100 m Länge, 47 mm hoch
50040042	BCB 110	Barcodeband mit 110 m Länge, 47 mm hoch
50040043	BCB 120	Barcodeband mit 120 m Länge, 47 mm hoch
50040044	BCB 130	Barcodeband mit 130 m Länge, 47 mm hoch
50040045	BCB 140	Barcodeband mit 140 m Länge, 47 mm hoch
50040046	BCB 150	Barcodeband mit 150 m Länge, 47 mm hoch
50037494	BCB 200	Barcodeband mit 200 m Länge, 47 mm hoch
50037495	BCB special length 47 mm height	Barcodeband mit Sonderlänge, 47 mm hoch
50102600	BCB special length 25 mm height	Barcodeband mit Sonderlänge, 25 mm hoch
50106979	BCB special length / height	Barcodeband mit Sonderlänge und -höhe
50111786	BCB special length / height / win- ding	Barcodeband mit Sonderlänge, -höhe und -wickel- richtung

ArtNr.	Artikelbezeichnung	Beschreibung
50106478	MVS label 40 mm 10 pieces	MVS-Label, 40 mm Raster; Verpackungseinheit: 10 Stück
50126134	MV0 label 40 mm 10 pieces	MV0-Label, 40 mm Raster; Verpackungseinheit: 10 Stück
50106473	Repair kit 40 mm	Reparaturkit, 40 mm Raster

Tabelle 14.11: Zubehör – BCB8

ArtNr.	Artikelbezeichnung	Beschreibung
50104792	BCB8 010	Barcodeband mit 10 m Länge, 47 mm hoch
50104793	BCB8 020	Barcodeband mit 20 m Länge, 47 mm hoch
50104794	BCB8 030	Barcodeband mit 30 m Länge, 47 mm hoch
50104795	BCB8 040	Barcodeband mit 40 m Länge, 47 mm hoch
50104796	BCB8 050	Barcodeband mit 50 m Länge, 47 mm hoch
50104797	BCB8 060	Barcodeband mit 60 m Länge, 47 mm hoch
50104798	BCB8 070	Barcodeband mit 70 m Länge, 47 mm hoch
50104799	BCB8 080	Barcodeband mit 80 m Länge, 47 mm hoch
50104800	BCB8 090	Barcodeband mit 90 m Länge, 47 mm hoch
50104801	BCB8 100	Barcodeband mit 100 m Länge, 47 mm hoch
50104802	BCB8 110	Barcodeband mit 110 m Länge, 47 mm hoch
50104803	BCB8 120	Barcodeband mit 120 m Länge, 47 mm hoch
50104804	BCB8 130	Barcodeband mit 130 m Länge, 47 mm hoch
50104805	BCB8 140	Barcodeband mit 140 m Länge, 47 mm hoch
50104806	BCB8 150	Barcodeband mit 150 m Länge, 47 mm hoch
50104807	BCB8 special length 47 mm height	Barcodeband mit Sonderlänge, 47 mm hoch
50104808	BCB8 special length 30 mm height	Barcodeband mit Sonderlänge, 30 mm hoch
50104809	BCB8 special length 25 mm height	Barcodeband mit Sonderlänge, 25 mm hoch
50106980	BCB8 special length / height	Barcodeband mit Sonderlänge und -höhe
50106476	MVS label 30 mm 10 pieces	MVS-Label, 30mm Raster; Verpackungseinheit: 10 Stück
50126135	MV0 label 30 mm 10 pieces	MV0-Label, 30 mm Raster; Verpackungseinheit: 10 Stück
50106472	Repair kit 30 mm	Reparaturkit, 30 mm Raster

ArtNr.	Artikelbezeichnung	Beschreibung
50120378	BCB twin tape special length / height	BCB Twin-Band, 40 mm Raster, mit Sonderlänge und -höhe; Lieferumfang: 2 Barcodebänder mit gleichem Wertebereich
50120379	BCB8 twin tape special length / height	BCB8 Twin-Band, 30 mm Raster, mit Sonderlänge und -höhe; Lieferumfang: 2 Barcodebänder mit gleichem Wertebereich
50120380	BCB twin tape special length	BCB Twin-Band, 40 mm Raster, 47 mm hoch; Lie- ferumfang: 2 Barcodebänder mit gleichem Werte- bereich
50120381	BCB8 twin tape special length	BCB8 Twin-Band, 30 mm Raster, 47 mm hoch; Lieferumfang: 2 Barcodebänder mit gleichem Wertebereich

Tabelle 14.12: Zubehör – Twin-Bänder

15 EG-Konformitätserklärung

Die Barcode-Positioniersysteme der Baureihe BPS 300 wurden unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

Der Hersteller der Produkte, die Leuze electronic GmbH + Co. KG in D-73277 Owen, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

16 Anhang

16.1 Barcodeband BCB im 40 mm Raster

Bild 16.2:

Bild 16.3: Einzellabel MV0, 40 mm Raster

Bild 16.4: Einzellabel Markenlabel, 40 mm Raster

00001

Bild 16.8: Einzellabel Markenlabel, 30 mm Raster

Anhang