

SINAMICS

SINAMICS S120
AC Drive

Gerätehandbuch

Answers for industry.

SIEMENS

SINAMICS

S120 AC Drive

Gerätehandbuch

Vorwort	
Grundlegende Sicherheitshinweise	1
Systemübersicht	2
Netzanschaltung und netzseitige Leistungskomponenten	3
Power Modules	4
Zwischenkreiskomponenten	5
Motorseitige Leistungskomponenten	6
Control Units, Control Unit Adapter und Bedienkomponenten	7
Ergänzende Systemkomponenten und Gebersystemanbindung	8
Zubehör	9
Schaltschrankbau und EMV bei Komponenten der Bauform Blocksize	10
Service und Wartung	11
Anhang	Α

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

/ GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

/ WARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

/ VORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

/ WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Vorwort

SINAMICS-Dokumentation

Die SINAMICS-Dokumentation ist in folgende Kategorien gegliedert:

- Allgemeine Dokumentation/Kataloge
- Anwender-Dokumentation
- Hersteller/Service-Dokumentation

Weiterführende Informationen

Unter folgendem Link finden Sie Informationen zu den Themen:

- Dokumentation bestellen/Druckschriftenübersicht
- Weiterführende Links für den Download von Dokumenten
- Dokumentation online nutzen (Handbücher/Informationen finden und durchsuchen)

http://www.siemens.com/motioncontrol/docu

Bei Fragen zur technischen Dokumentation (z. B. Anregungen, Korrekturen) senden Sie bitte eine E-Mail an folgende Adresse: docu.motioncontrol@siemens.com

My Documentation Manager

Unter folgendem Link finden Sie Informationen, wie Sie Dokumentation auf Basis der Siemens Inhalte individuell zusammenstellen und für die eigene Maschinendokumentation anpassen:

http://www.siemens.com/mdm

Training

Unter folgendem Link finden Sie Informationen zu SITRAIN - dem Training von Siemens für Produkte, Systeme und Lösungen der Antriebs- und Automatisierungstechnik: http://www.siemens.com/sitrain

FAQs

Frequently Asked Questions finden Sie in den Service&Support-Seiten unter **Produkt Support**:

http://support.automation.siemens.com

SINAMICS

Informationen zu SINAMICS finden Sie unter: http://www.siemens.com/sinamics

Nutzungsphasen und ihre verfügbaren Tools/Dokumente

Tabelle 1 Nutzungsphasen und die verfügbaren Dokumente/Tools

Nutzungsphase	Dokument/Tool
Orientieren	SINAMICS S Vertriebliche Unterlagen
Planen/Projektieren	Projektierungs-Tool SIZER
	Projektierungshandbücher Motoren
Entscheiden/Bestellen	SINAMICS S120 Kataloge
	SIMOTION, SINAMICS S120 und Motoren für Produktionsmaschinen (Katalog PM 21)
	SINAMICS und Motoren für Einachsantriebe (Katalog D 31)
	SINUMERIK & SINAMICS Ausrüstungen für Werkzeugmaschinen (Katalog NC 61)
	SINUMERIK 840D sl Typ 1B Ausrüstungen für Werkzeugmaschinen (Katalog NC 62)
Aufbauen/Montage	SINAMICS S120 Gerätehandbuch Control Units und ergänzende Systemkomponenten
	SINAMICS S120 Gerätehandbuch Leistungsteile Booksize
	SINAMICS S120 Gerätehandbuch Leistungsteile Chassis
	SINAMICS S120 Gerätehandbuch AC Drive
	SINAMICS S120M Gerätehandbuch Dezentrale Antriebstechnik
	SINAMICS HLA Systemhandbuch Hydraulic Drive
Inbetriebsetzen	Inbetriebnahme-Tool STARTER
	SINAMICS S120 Getting Started
	SINAMICS S120 Inbetriebnahmehandbuch
	SINAMICS S120 Inbetriebnahmehandbuch CANopen
	SINAMICS S120 Funktionshandbuch
	SINAMICS S120 Funktionshandbuch Safety Integrated
	SINAMICS S120/S150 Listenhandbuch
	SINAMICS HLA Systemhandbuch Hydraulic Drive
Nutzen/Betreiben	SINAMICS S120 Inbetriebnahmehandbuch
	SINAMICS S120/S150 Listenhandbuch
	SINAMICS HLA Systemhandbuch Hydraulic Drive

Nutzungsphase	Dokument/Tool
Instandhalten/Service	SINAMICS S120 Inbetriebnahmehandbuch
	SINAMICS S120/S150 Listenhandbuch
Literaturverzeichnis	SINAMICS S120/S150 Listenhandbuch

Zielgruppe

Die vorliegende Dokumentation wendet sich an Maschinenhersteller, Inbetriebnehmer und Servicepersonal, die das Antriebssystem SINAMICS einsetzen.

Nutzen

Dieses Handbuch vermittelt die für die Inbetriebnahme und den Service von SINAMICS S120 benötigten Informationen, Vorgehensweisen und Bedienhandlungen.

Standardumfang

Der Umfang der in der vorliegenden Dokumentation beschriebenen Funktionalitäten kann vom Umfang der Funktionalitäten des gelieferten Antriebssystems abweichen.

- Es können im Antriebssystem weitere, in dieser Dokumentation nicht erläuterte Funktionen ablauffähig sein. Es besteht jedoch kein Anspruch auf diese Funktionen bei der Neulieferung bzw. im Servicefall.
- Es können in der Dokumentation Funktionen beschrieben sein, die in einer Produktausprägung des Antriebssystems nicht verfügbar sind. Die Funktionalitäten des gelieferten Antriebssystems sind ausschließlich den Bestellunterlagen zu entnehmen.
- Ergänzungen oder Änderungen, die durch den Maschinenhersteller vorgenommen werden, müssen auch vom Maschinenhersteller dokumentiert werden.

Ebenso enthält diese Dokumentation aus Gründen der Übersichtlichkeit nicht sämtliche Detailinformationen zu allen Typen des Produkts. Diese Dokumentation kann auch nicht jeden denkbaren Fall der Aufstellung, des Betriebs und der Instandhaltung berücksichtigen.

Technical Support

Landesspezifische Telefonnummern für technische Beratung finden Sie im Internet unter **Kontakt**:

http://www.siemens.com/automation/service&support

EG-Konformitätserklärungen

Die EG-Konformitätserklärung zur EMV-Richtlinie finden Sie im Internet unter:

http://support.automation.siemens.com/WW/view/de/21901735/134200

Die EG-Konformitätserklärung zur Niederspannungsrichtlinie finden Sie im Internet unter:

http://support.automation.siemens.com

Geben Sie dort als Suchbegriff die Nummer 22383669 ein.

Hinweis

SINAMICS S-Geräte erfüllen im betriebsmäßigen Zustand und in trockenen Betriebsräumen die Niederspannungsrichtlinie 2006/95/EG.

Hinweis

SINAMICS S-Geräte erfüllen in der Konfiguration, die in der zugehörenden EG-Konformitätserklärung zur EMV angegeben sind sowie unter Beachtung des Projektierungshandbuchs "EMV-Aufbaurichtlinie" mit der Bestellnummer 6FC5297-0AD30-0xPx, die EMV-Richtlinie 2004/108/EG.

Hinweis

Das Gerätehandbuch beschreibt einen Sollzustand, dessen Einhaltung den gewünschten zuverlässigen Betrieb und die Einhaltung von EMV-Grenzwerten sicherstellt.

Bei Abweichungen von den Anforderungen des Gerätehandbuchs ist durch geeignete Maßnahmen wie z. B. Messungen sicherzustellen bzw. nachzuweisen, dass der gewünschte zuverlässige Betrieb und die Einhaltung von EMV-Grenzwerten sichergestellt sind.

EMV-Grenzwerte in Südkorea

이 기기는 업무용(A급) 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

For sellers or other users, please bear in mind that this device is an A-grade electromagnetic wave device. This device is intended to be used in areas other than at home.

Die für Korea einzuhaltenden EMV-Grenzwerte entsprechen den Grenzwerten der EMV-Produktnorm für drehzahlveränderbare elektrische Antriebe EN 61800-3 der Kategorie C2 bzw. der Grenzwertklasse A, Gruppe 1 nach EN 55011. Mit geeigneten Zusatzmaßnahmen werden die Grenzwerte nach Kategorie C2 bzw. nach Grenzwertklasse A, Gruppe 1 eingehalten. Dazu können zusätzliche Maßnahmen wie z. B. der Einsatz eines zusätzlichen Funk-Entstörfilters (EMV-Filter) notwendig sein.

Darüber hinaus sind Maßnahmen für einen ordnungsgemäßen EMV-gerechten Aufbau der Anlage ausführlich in diesem Handbuch bzw. im Projektierungshandbuch "EMV-Aufbaurichtlinie" beschrieben.

Es ist zu beachten, dass letztendlich immer das am Gerät vorhandene Label für eine Aussage zur Normeneinhaltung ausschlaggebend ist.

Ersatzteile

Ersatzteile finden Sie im Internet unter:

http://support.automation.siemens.com/WW/view/de/16612315

Symbol-Erklärung

Tabelle 2 Symbole

Symbol	Bedeutung
	Schutzerde (PE)
	Masse (z. B. M 24 V)
<i></i>	Funktionserde Potenzialausgleich

Inhaltsverzeichnis

	Vorwort		5	
1	Grundle	gende Sicherheitshinweise	21	
	1.1	Allgemeine Sicherheitshinweise	21	
	1.2	Sicherheitshinweise zu elektromagnetischen Feldern (EMF)	25	
	1.3	Umgang mit Elektrostatisch gefährdeten Bauelementen (EGB)	25	
	1.4	Industrial Security	26	
	1.5	Restrisiken von Antriebssystemen (Power Drive Systems)	27	
2	System	Systemübersicht		
	2.1	Anwendungsbereich		
	2.2	Plattformkonzept und Totally Integrated Automation		
	2.3	Übersicht SINAMICS S120 AC Drive		
	2.4	Komponenten SINAMICS S120		
	2.5	Systemdaten		
	2.6	Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe		
3		schaltung und netzseitige Leistungskomponenten		
•	3.1	Einleitung		
	3.2	Hinweise zur Netztrenneinrichtung		
	3.3	Überstromschutz durch Netzsicherungen und Leistungsschalter		
	3.4	Einsatz von Fehlerstrom-Schutzeinrichtungen		
	3.5	Überspannungsschutz		
	3.6	Netzschütze		
	3.7 3.7.1	Netzfilter Beschreibung		
	3.7.1	Klassifizierung des EMV-Verhaltens		
	3.7.3	Elektromagnetische Verträglichkeit (EMV) des Systems		
	3.7.4	Sicherheitshinweise für Netzfilter		
	3.7.5	Maßbilder	50	
	3.7.6	Montage	55	
	3.7.7	Technische Daten		
	3.7.7.1	Technische Daten Netzfilter Blocksize		
	3.7.7.2	Technische Daten Netzfilter Chassis	57	
	3.8	Netzdrosseln	58	
	3.8.1	Beschreibung		
	3.8.2	Sicherheitshinweise für Netzdrosseln		
	3.8.3	Maßbilder		

	3.8.4	Montage	
	3.8.5	Elektrischer Anschluss	73
	3.8.6	Technische Daten	74
	3.8.6.1	Netzdrosseln Blocksize	74
	3.8.6.2	Netzdrosseln Chassis	77
	3.9	Netzanschaltungsvarianten	78
	3.9.1	Betrieb an unterschiedlichen Netzformen	
	3.9.2	Möglichkeiten der Netzanschaltung	
	3.9.3	Betrieb der Netzanschaltungskomponenten am speisenden Netz	
	3.9.4	Betrieb der Netzanschaltungskomponenten über einen Spartransformator	
	3.9.5	Betrieb der Netzanschaltungskomponenten über einen Trenntransformator	
_			
ŀ	Power N	Modules	87
	4.1	Sicherheitshinweise für Power Modules	87
	4.2	Power Modules Blocksize (PM240-2)	90
	4.2.1	Beschreibung	
	4.2.2	Sicherheitshinweise für Power Modules 240-2	
	4.2.3	Schnittstellenbeschreibung	
	4.2.3.1	Übersicht	
	4.2.3.2	Anschlussbeispiel	
	4.2.3.3	Netzanschluss	
	4.2.3.4	Bremswiderstand und Zwischenkreis-Anschluss	
	4.2.3.5	Motoranschluss	
	4.2.3.6	Safe Brake Relay-Anschluss	
	4.2.4	Maßbilder	
	4.2.5	Montage	
	4.2.5.1	Montagemaße und Anzugsdrehmomente	
	4.2.5.2	Montage Schirmblech	
	4.2.6	Technische Daten	
	4.2.6.1	Power Modules 200 V	
	4.2.6.2	Power Modules 400 V	
	4.2.6.3	Kennlinien	
	4.3	Power Modules Blocksize (PM340)	
	4.3.1	Beschreibung	
	4.3.2	Sicherheitshinweise für Power Modules Blocksize	-
	4.3.3	Schnittstellenbeschreibung	
	4.3.3.1	Übersicht	
	4.3.3.2	Anschlussbeispiel	
	4.3.3.3	Netzanschluss	
	4.3.3.4	Bremswiderstand und Zwischenkreis-Anschluss	
	4.3.3.5	Motoranschluss	
	4.3.3.6	Safe Brake Relay-Anschluss	
	4.3.4	Maßbilder	
	4.3.5	Montage	
	4.3.5.1	Montagemaße und Anzugsdrehmomente	
	4.3.5.2	Zugang zu Netz- und Motorklemmen	
	4.3.6	Technische Daten	
	4.3.6.1	Power Modules Blocksize, 1 AC	
	4.3.6.2	Power Modules Blocksize, 3 AC	
	4363	Kennlinien	157

	4.4	Power Modules Chassis	162
	4.4.1	Beschreibung	
	4.4.2	Sicherheitshinweise für Power Modules Chassis	162
	4.4.3	Schnittstellenbeschreibung	163
	4.4.3.1	Übersicht	163
	4.4.3.2	Anschlussbeispiel	165
	4.4.3.3	X9 Klemmenleiste	166
	4.4.3.4	DCPS, DCNS Anschluss für einen du/dt-Filter	166
	4.4.3.5	X41 EP-Klemmen / Temperatursensor-Anschluss	167
	4.4.3.6	X42 Klemmenleiste	168
	4.4.3.7	X46 Bremsenansteuerung und -überwachung	169
	4.4.3.8	X400-X402 DRIVE-CLiQ-Schnittstelle	169
	4.4.3.9	Bedeutung der LEDs am Power Module	170
	4.4.4	Maßbilder	172
	4.4.5	Elektrischer Anschluss	174
	4.4.6	Technische Daten	176
	4.4.6.1	Kennlinien	178
=	Zwiecho	nkreiskomponenten	100
5	Zwischei		
	5.1	Blocksize	183
	5.1.1	Bremswiderstände	183
	5.1.1.1	Beschreibung	183
	5.1.1.2	Sicherheitshinweise für Bremswiderstände Blocksize	183
	5.1.1.3	Anschlussbeispiele	184
	5.1.1.4	Maßbilder	186
	5.1.1.5	Montage	190
	5.1.1.6	Technische Daten	191
	5.2	Chassis	105
	5.2 5.2.1	Braking Modules	
	5.2.1 5.2.1.1	Beschreibung	
	5.2.1.1	Sicherheitshinweise für Braking Modules Chassis	
	5.2.1.2	Braking Module für Baugröße FX	
	5.2.1.4	Braking Module für Baugröße GX	
	5.2.1.5	Anschlussbeispiel	
	5.2.1.6	X1 Bremswiderstandsanschluss	
	5.2.1.7	X21 Digitaleingänge / -ausgänge	
	5.2.1.8	S1 Schwellenwertschalter	
	5.2.1.9	Montage eines Braking Module in Power Module der Baugröße FX	
	5.2.1.10	Montage eines Braking Module in Power Module der Baugröße GX	
	5.2.1.10	Technische Daten	
	5.2.2	Bremswiderstände	
	5.2.2.1	Beschreibung	
	5.2.2.2	Sicherheitshinweise für Bremswiderstände Chassis	
	5.2.2.3	Maßbild	
	5.2.2.4	Elektrischer Anschluss	
	5.2.2.5	Technische Daten	
6	Motorsei	tige Leistungskomponenten	
	6.1	Blocksize	
	6.1.1	Motordrosseln	
	6.1.1.1	Beschreibung	
	6.1.1.2	Sicherheitshinweise für Motordrosseln	213

	6.1.1.3	Maßbilder	215
	6.1.1.4	Montage	223
	6.1.1.5	Elektrischer Anschluss	229
	6.1.1.6	Technische Daten	230
	6.2	Chassis	233
	6.2.1	Motordrosseln	233
	6.2.1.1	Beschreibung	233
	6.2.1.2	Sicherheitshinweise für Motordrosseln	233
	6.2.1.3	Maßbild	235
	6.2.1.4	Technische Daten	236
	6.2.2	Sinusfilter	237
	6.2.2.1	Beschreibung	237
	6.2.2.2	Sicherheitshinweise für Sinusfilter Chassis	237
	6.2.2.3	Maßbild	239
	6.2.2.4	Technische Daten	
	6.2.3	du/dt-Filter plus Voltage Peak Limiter	241
	6.2.3.1	Beschreibung	241
	6.2.3.2	Sicherheitshinweise für du/dt-Filter plus Voltage Peak Limiter	241
	6.2.3.3	Schnittstellenbeschreibung	
	6.2.3.4	Anschluss des du/dt-Filters plus Voltage Peak Limiter	246
	6.2.3.5	Maßbild du/dt-Drossel	247
	6.2.3.6	Maßbild Spannungsbegrenzungs-Netzwerk	248
	6.2.3.7	Technische Daten	
	6.2.4	du/dt-Filter compact plus Voltage Peak Limiter	
	6.2.4.1	Beschreibung	
	6.2.4.2	Sicherheitshinweise für du/dt-Filter compact plus Voltage Peak Limiter	
	6.2.4.3	Schnittstellenbeschreibung	
	6.2.4.4	Anschluss des du/dt-Filters compact plus Voltage Peak Limiter	
	6.2.4.5	Maßbild du/dt-Filter compact plus Voltage Peak Limiter	
	6.2.4.6	Technische Daten	258
7	Control U	Jnits, Control Unit Adapter und Bedienkomponenten	259
	7.1	Einleitung	259
	7.1.1	Control Units	
	7.1.2	Control Unit Adapter	
	7.0	·	
	7.2	Sicherheitshinweise für Control Units und Control Unit Adapter	
	7.3	Control Unit CU310-2 PN (PROFINET)	
	7.3.1	Beschreibung	
	7.3.2	Schnittstellenbeschreibung	
	7.3.2.1	Übersicht	
	7.3.2.2	X22 serielle Schnittstelle (RS232)	
	7.3.2.3	X23 HTL-/TTL-/SSI-Geberschnittstelle	
	7.3.2.4	X100 DRIVE-CLiQ-Schnittstelle	
	7.3.2.5	X120 Digitaleingänge (fehlersicher)/EP-Klemme/Temperatursensor	
	7.3.2.6	X121 Digitaleingänge/-ausgänge	
	7.3.2.7	X124 Elektronikstromversorgung	
	7.3.2.8	X127 LAN (Ethernet)	
	7.3.2.9	X130 Digitaleingang/(Fehlersicherer) Digitalausgang	
		X131 Digitaleingänge/-ausgänge und Analogeingang	
		X150 P1/P2 PROFINET	
	1.3.2.12	Messbuchsen	

7.3.2.13	S5 DIP-Schalter	282
7.3.2.14	DIAG-Taster	282
7.3.2.15	RESET-Taste	282
7.3.2.16	Speicherkarte	283
7.3.3	Anschlussbeispiele	284
7.3.4	Bedeutung der LEDs	286
7.3.4.1	Funktion der LEDs	286
7.3.4.2	Verhalten der LEDs während des Hochlaufs	287
7.3.4.3	Verhalten der LEDs im Betriebszustand	288
7.3.5	Maßbild	290
7.3.6	Technische Daten	291
7.4	Control Unit CU310-2 DP (PROFIBUS)	292
7.4.1	Beschreibung	
7.4.2	Schnittstellenbeschreibung	
7.4.2.1	Übersicht	
7.4.2.2	X21 PROFIBUS	
7.4.2.3	PROFIBUS-Adressschalter	
7.4.2.4	X22 serielle Schnittstelle (RS232)	
7.4.2.5	X23 HTL-/TTL-/SSI-Geberschnittstelle	
7.4.2.6	X100 DRIVE-CLiQ-Schnittstelle	
7.4.2.7	X120 Digitaleingänge (fehlersicher)/EP-Klemme/Temperatursensor	
7.4.2.8	X121 Digitaleingänge/-ausgänge	
7.4.2.9	X124 Elektronikstromversorgung	
	X127 LAN (Ethernet)	
	X130 Digitaleingang/(Fehlersicherer) Digitalausgang	
	X131 Digitaleingänge/-ausgänge und Analogeingang	
	Messbuchsen	
	S5 DIP-Schalter	
	DIAG-Taster	
	RESET-Taste	
7.4.2.10	Speicherkarte	
7.4.2.17	Anschlussbeispiele	
7.4.3 7.4.4	Bedeutung der LEDs	
7.4.4.1	Funktion der LEDs	
7.4.4.1	Verhalten der LEDs während des Hochlaufs	
7.4.4.2	Verhalten der LEDs warrend des nochladis	
7.4.4.3 7.4.5	Maßbild	
7.4.5	Technische Daten	
7.4.0		
7.5	Control Unit Adapter CUA31	320
7.5.1	Beschreibung	
7.5.2	Schnittstellenbeschreibung	
7.5.2.1	Übersicht	
7.5.2.2	X200-X202 DRIVE-CLiQ-Schnittstellen	322
7.5.2.3	X210 EP-Klemme/Temperatursensor	322
7.5.2.4	X224 Elektronikstromversorgung	324
7.5.3	Anschlussbeispiel	324
7.5.4	Bedeutung der LED	325
7.5.5	Maßbild	
7.5.6	Technische Daten	326
7.6	Control Unit Adapter CUA32	327
761	Reschreibung	

	7.6.2	Schnittstellenbeschreibung	328
	7.6.2.1	Übersicht	
	7.6.2.2	X200-X202 DRIVE-CLiQ-Schnittstellen	329
	7.6.2.3	X210 EP-Klemme/Temperatursensor	329
	7.6.2.4	X220 HTL-/TTL-/SSI-Geberschnittstelle	331
	7.6.2.5	X224 Elektronikstromversorgung	333
	7.6.3	Anschlussbeispiel	333
	7.6.4	Bedeutung der LEDs	334
	7.6.5	Maßbild	335
	7.6.6	Technische Daten	335
	7.7	Montage der Control Units und Control Unit Adapter	336
	7.8	Basic Operator Panel BOP20	338
	7.8.1	Beschreibung	338
	7.8.2	Schnittstellenbeschreibung	338
	7.8.3	Montage	341
8	Ergänze	ende Systemkomponenten und Gebersystemanbindung	345
	8.1	Sensor Modules	
	8.1.1	Sicherheitshinweise für Sensor Modules Cabinet-Mounted	
	8.1.2	Sensor Module Cabinet-Mounted SMC10	
	8.1.2.1	Beschreibung	
	8.1.2.2	Schnittstellenbeschreibung	
	8.1.2.3	Bedeutung der LED	
	8.1.2.4	Maßbild	
	8.1.2.5	Montage	
	8.1.2.6	Technische Daten	
	8.1.3	Sensor Module Cabinet-Mounted SMC20	
	8.1.3.1	Beschreibung	
	8.1.3.2 8.1.3.3	Schnittstellenbeschreibung	
	8.1.3.4	Bedeutung der LED	
	8.1.3.5	Maßbild Montage	
	8.1.3.6	Technische Daten	
	8.1.4	Sensor Module Cabinet-Mounted SMC30	
	8.1.4.1	Beschreibung	
	8.1.4.2	Schnittstellenbeschreibung	
	8.1.4.3	Anschlussbeispiele	
	8.1.4.4	Bedeutung der LEDs	
	8.1.4.5	Maßbild	
	8.1.4.6	Montage	
	8.1.4.7	Schutzleiteranschluss und Schirmauflage	
	8.1.4.8	Technische Daten	
	8.2	Optionsmodul Safe Brake Relay	
	8.2.1	Einleitung	
	8.2.2	Sicherheitshinweise für Safe Brake Relays	
	8.2.3	Schnittstellenbeschreibung	
	8.2.3.1	Übersicht	
	8.2.3.2	X524 Elektronikstromversorgung	
	8.2.3.3	Bremsenanschluss	
	8.2.4 8.2.5	Anschlussbeispiel	384 385
	A / D	IVIZINI III I	295

	8.2.6	Montage	
	8.2.7	Technische Daten	387
	8.3	Optionsmodul Safe Brake Adapter	388
	8.3.1	Beschreibung	
	8.3.2	Sicherheitshinweise für Safe Brake Adapter	389
	8.3.3	Schnittstellenbeschreibung	390
	8.3.3.1	Übersicht	
	8.3.3.2	X11 Schnittstelle zum Control Interface Module	
	8.3.3.3	X12 Spannungsversorgung AC 230 V	
	8.3.3.4	X14 Lastanschluss	
	8.3.3.5	X15 Schnellentregung	
	8.3.4	Anschlussbeispiel	
	8.3.5	Maßbild	
	8.3.6	Montage	
	8.3.7	Technische Daten	394
9	Zubehör		395
	9.1	DRIVE-CLiQ-Schrankdurchführung	395
	9.1.1	Beschreibung	
	9.1.2	Schnittstellenbeschreibung	
	9.1.2.1	Übersicht	
	9.1.3	Maßbilder	397
	9.1.4	Montage	
	9.1.4.1	DRIVE-CLiQ-Schrankdurchführung für Leitungen mit DRIVE-CLiQ-Stecker	398
	9.1.4.2	DRIVE-CLiQ-Schrankdurchführung für Leitungen mit M12-Stecker/Buchse	
	9.1.5	Technische Daten	401
	9.2	DRIVE-CLiQ-Kupplung	402
	9.2.1	Beschreibung	402
	9.2.2	Schnittstellenbeschreibung	402
	9.2.2.1	Übersicht	
	9.2.3	Maßbild	
	9.2.4	Montage	
	9.2.5	Technische Daten	404
	9.3	Einbaurahmen	405
	9.3.1	Beschreibung	405
	9.3.2	Maßbilder	406
	9.3.3	Montage	407
	9.4	Schirmanschluss-Satz	408
	9.4.1	Beschreibung	408
	9.4.2	Maßbilder	
	9.4.2.1	Schirmanschluss-Sätze	
	9.4.2.2	Power Modules Blocksize mit Schirmanschluss-Satz	
	9.4.3	Montage	416
	9.4.3.1	Power Modules Blocksize PM340	
	9.4.3.2	Auflage der Leistungsleitungen	419
10	Schaltso	hrankbau und EMV bei Komponenten der Bauform Blocksize	421
	10.1	Allgemeines	421
	10.2	Sicherheitshinweise für den Schaltschrankhau	422

	10.3	Hinweise zur Elektromagnetischen Verträglichkeit (EMV)	423
	10.4	Schirmung und Verlegung der Leitungen	424
	10.5 10.5.1 10.5.2 10.5.3 10.5.4 10.5.5	Versorgung DC 24 V Allgemeines Überstromschutz Überspannungsschutz Typische 24-V-Stromaufnahme der Komponenten Auswahl der Stromversorgungsgeräte.	426 427 428 429
	10.6.1.2 10.6.1.3	Verbindungstechnik DRIVE-CLiQ-Signalleitungen Übersicht DRIVE-CLiQ-Signalleitungen ohne DC 24-V-Adern DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Steckern DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Stecker und M12-Buchse	431 431 432 433
	10.6.1.6 10.6.2 10.6.2.1	Vergleich der DRIVE-CLiQ-Signalleitungen Mischeinsatz von MOTION-CONNECT 500 und MOTION-CONNECT 800PLUS Leistungsleitungen für Motoren Projektierung der Leitungslänge Vergleich der Leistungsleitungen MOTION-CONNECT Strombelastbarkeit und Derating-Faktoren für Leistungs- und Signalleitungen Federdruckklemmen Schraubklemmen	435 436 437 438 439 441
	10.7	Schutzverbindung und Potenzialausgleich	442
	10.8 10.8.1 10.8.2	Anordnung der Komponenten und Geräte	444
	10.9.3.2 10.9.3.3	Hinweise zur Schaltschrankentwärmung Allgemeines Hinweise zur Belüftung Verlustleistung der Komponenten bei Nennbetrieb Allgemeines Verlustleistungen für Control Units, Control Unit Adapter und Sensor Modules Verlustleistungen für Netzdrosseln und Netzfilter Verlustleistungen für Power Modules	447 449 451 451 452
11	Service u	ınd Wartung	455
	11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4	Sicherheitshinweise für Service und Wartung Service und Wartung bei Komponenten der Bauform Blocksize Tausch von Hardware-Komponenten Lüftertausch CU310-2 DP und CU310-2 PN Lüftertausch am PM240-2 Lüftertausch am PM340	457 457 457
	11.3 11.3.1 11.3.2 11.3.3 11.3.3.1	Service und Wartung bei Komponenten der Bauform Chassis Instandhaltung Montagevorrichtung Austausch von Bauteilen Austausch des Powerblocks, Power Module, Baugröße FX	466 468 469

	11.3.3.2	Austausch des Powerblocks, Power Module, Baugröße GX	472
	11.3.3.3	Austausch des Control Interface Module, Power Module, Baugröße FX	475
	11.3.3.4	Austausch des Control Interface Module, Power Module, Baugröße GX	477
	11.3.3.5	Austausch des Lüfters, Power Module, Baugröße FX	479
	11.3.3.6	Austausch des Lüfters, Power Module, Baugröße GX	481
	11.4	Formieren der Zwischenkreiskondensatoren	483
	11.5	Ersatzteile	.487
	11.6	Recycling und Entsorgung	487
Α	Anhang.		. 489
	A.1	Abkürzungsverzeichnis	.489
	A.2	Dokumentationsübersicht	.498
	Index		499

Grundlegende Sicherheitshinweise

1.1 Allgemeine Sicherheitshinweise

∮GEFAHR

Lebensgefahr durch unter Spannung stehende Teile und andere Energiequellen

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

- Arbeiten Sie an elektrischen Geräten nur, wenn Sie dafür qualifiziert sind.
- Halten Sie bei allen Arbeiten die landesspezifischen Sicherheitsregeln ein.

Generell gelten sechs Schritte zum Herstellen von Sicherheit:

- 1. Bereiten Sie das Abschalten vor und informieren Sie alle Beteiligten, die von dem Vorgang betroffen sind.
- 2. Schalten Sie die Maschine spannungsfrei.
 - Schalten Sie die Maschine ab.
 - Warten Sie die Entladezeit ab, die auf den Warnschildern genannt ist.
 - Prüfen Sie die Spannungsfreiheit von Leiter gegen Leiter und Leiter gegen Schutzleiter.
 - Prüfen Sie, ob vorhandene Hilfsspannungskreise spannungsfrei sind.
 - Stellen Sie sicher, dass sich Motoren nicht bewegen können.
- 3. Identifizieren Sie alle weiteren gefährlichen Energiequellen, z. B. Druckluft, Hydraulik oder Wasser.
- 4. Isolieren oder neutralisieren Sie alle gefährlichen Energiequellen, z. B. durch das Schließen von Schaltern, das Erden oder Kurzschließen oder das Schließen von Ventilen.
- 5. Sichern Sie die Energiequellen gegen Wiedereinschalten.
- 6. Vergewissern Sie sich, dass die richtige Maschine völlig verriegelt ist.

Nach Abschluss der Arbeiten stellen Sie die Betriebsbereitschaft in umgekehrter Reihenfolge wieder her.

/!\warnung

Lebensgefahr durch gefährliche Spannung beim Anschluss einer nicht geeigneten Stromversorgung

Beim Berühren unter Spannung stehender Teile können Sie schwere Verletzungen oder Tod erleiden.

 Verwenden Sie für alle Anschlüsse und Klemmen der Elektronikbaugruppen nur Stromversorgungen, die SELV- (Safety Extra Low Voltage) oder PELV- (Protective Extra Low Voltage) Ausgangsspannungen zur Verfügung stellen.

/ WARNUNG

Lebensgefahr durch Berührung unter Spannung stehender Teile bei beschädigten Geräten

Unsachgemäße Behandlung von Geräten kann zu deren Beschädigung führen.

Bei beschädigten Geräten können gefährliche Spannungen am Gehäuse oder an freiliegenden Bauteilen anliegen, die bei Berührung zu schweren Verletzungen oder Tod führen können.

- Halten Sie bei Transport, Lagerung und Betrieb die in den technischen Daten angegebenen Grenzwerte ein.
- Verwenden Sie keine beschädigten Geräte.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei nicht aufgelegten Leitungsschirmen

Durch kapazitive Überkopplung können lebensgefährliche Berührspannungen bei nicht aufgelegten Leitungsschirmen entstehen.

• Legen Sie Leitungsschirme und nicht benutzte Adern von Leistungsleitungen (z. B. Bremsadern) mindestens einseitig auf geerdetes Gehäusepotenzial auf.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei fehlender Erdung

Bei fehlendem oder fehlerhaft ausgeführtem Schutzleiteranschluss von Geräten mit Schutzklasse I können hohe Spannungen an offen liegenden Teilen anliegen, die bei Berühren zu schweren Verletzungen oder Tod führen können.

· Erden Sie das Gerät vorschriftsmäßig.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag beim Trennen von Steckverbindungen im Betrieb

Beim Trennen von Steckverbindungen im Betrieb können Lichtbögen zu schweren Verletzungen oder Tod führen.

 Öffnen Sie die Steckverbindungen nur im spannungsfreien Zustand, sofern sie nicht ausdrücklich zum Trennen im Betrieb freigegeben sind.

/!\warnung

Lebensgefahr durch Brandausbreitung bei unzureichenden Gehäusen

Durch Feuer und Rauchentwicklung können schwere Personen- oder Sachschäden auftreten.

- Bauen Sie Geräte ohne Schutzgehäuse derart in einem Metallschaltschrank ein (bzw. schützen Sie das Gerät durch eine andere gleichwertige Maßnahme), dass der Kontakt mit Feuer verhindert wird.
- Stellen Sie sicher, dass Rauch nur über kontrollierte Wege entweicht.

/ WARNUNG

Lebensgefahr durch unerwartete Bewegung von Maschinen beim Einsatz mobiler Funkgeräte oder Mobiltelefone

Bei Einsatz von mobilen Funkgeräten oder Mobiltelefonen mit einer Sendeleistung > 1 W näher als ca. 2 m an den Komponenten können Funktionsstörungen der Geräte auftreten, die Einfluss auf die funktionale Sicherheit von Maschinen haben und somit Menschen gefährden oder Sachschäden verursachen können.

 Schalten Sie Funkgeräte oder Mobiltelefone in unmittelbarer Nähe der Komponenten aus.

/ WARNUNG

Lebensgefahr durch Brand des Motors bei Überlastung der Isolation

Bei einem Erdschluss in einem IT-Netz entsteht eine höhere Belastung der Motorisolation. Mögliche Folge ist ein Versagen der Isolation mit schweren Körperverletzungen oder Tod durch Rauchentwicklung und Brand.

- Verwenden Sie eine Überwachungseinrichtung, die einen Isolationsfehler meldet.
- Beseitigen Sie den Fehler so schnell wie möglich, um die Motorisolation nicht zu überlasten.

/ WARNUNG

Lebensgefahr durch Brand bei Überhitzung wegen unzureichender Lüftungsfreiräume

Unzureichende Lüftungsfreiräume können zu Überhitzung von Komponenten und nachfolgendem Brand mit Rauchentwicklung führen. Dies kann die Ursache für schwere Körperverletzungen oder Tod sein. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

 Halten Sie unbedingt die für die jeweilige Komponente angegebenen Mindestabstände als Lüftungsfreiräume ein.

1.1 Allgemeine Sicherheitshinweise

/ WARNUNG

Unfallgefahr durch fehlende oder unleserliche Warnschilder

Fehlende oder unleserliche Warnschilder können Unfälle mit schweren Körperverletzungen oder Todesfolge auslösen.

- Überprüfen Sie die Vollständigkeit der Warnschilder anhand der Dokumentation.
- Bringen Sie auf den Komponenten fehlende Warnschilder, gegebenenfalls in der jeweiligen Landessprache, an.
- Ersetzen Sie unleserliche Warnschilder.

ACHTUNG

Geräteschaden durch unsachgemäße Spannungs-/Isolationsprüfungen

Unsachgemäße Spannungs-/Isolationsprüfungen können zu Geräteschäden führen.

 Klemmen Sie die Geräte vor einer Spannungs-/Isolationsprüfung der Maschine/Anlage ab, da alle Umrichter und Motoren herstellerseitig hochspannungsgeprüft sind und eine weitere Prüfung innerhalb der Maschine/Anlage deshalb nicht notwendig ist.

/ WARNUNG

Lebensgefahr durch inaktive Safety-Funktionen

Inaktive oder nicht angepasste Safety-Funktionen können Funktionsstörungen an Maschinen auslösen, die zu schweren Verletzungen oder Tod führen können.

- Beachten Sie vor der Inbetriebnahme die Informationen in der zugehörigen Produktdokumentation.
- Führen Sie für sicherheitsrelevante Funktionen eine Sicherheitsbetrachtung des Gesamtsystems inklusive aller sicherheitsrelevanten Komponenten durch.
- Stellen Sie durch entsprechende Parametrierung sicher, dass die angewendeten Sicherheitsfunktionen an Ihre Antriebs- und Automatisierungsaufgabe angepasst und aktiviert sind.
- Führen Sie einen Funktionstest durch.
- Setzen Sie Ihre Anlage erst dann produktiv ein, nachdem Sie den korrekten Ablauf der sicherheitsrelevanten Funktionen sichergestellt haben.

Hinweis

Wichtige Sicherheitshinweise zu Safety-Funktionen

Sofern Sie Safety-Funktionen nutzen wollen, beachten Sie unbedingt die Sicherheitshinweise in den Safety-Handbüchern.

1.2 Sicherheitshinweise zu elektromagnetischen Feldern (EMF)

/!\WARNUNG

Lebensgefahr durch elektromagnetische Felder

Anlagen der elektrischen Energietechnik, z. B. Transformatoren, Umrichter, Motoren erzeugen beim Betrieb elektromagnetische Felder (EMF).

Dadurch sind insbesondere Personen mit Herzschrittmachern oder Implantaten gefährdet, die sich in unmittelbarer Nähe der Geräte/Systeme aufhalten.

• Stellen Sie sicher, dass betroffene Personen den nötigen Abstand einhalten (mindestens 2 m).

1.3 Umgang mit Elektrostatisch gefährdeten Bauelementen (EGB)

Elektrostatisch gefährdete Bauelemente (EGB) sind Einzelbauteile, integrierte Schaltungen, Baugruppen oder Geräte, die durch elektrostatische Felder oder elektrostatische Entladungen beschädigt werden können.

ACHTUNG

Schädigung durch elektrische Felder oder elektrostatische Entladung

Elektrische Felder oder elektrostatische Entladung können Funktionsstörungen durch geschädigte Einzelbauteile, integrierte Schaltungen, Baugruppen oder Geräte verursachen.

- Verpacken, lagern, transportieren und versenden Sie elektronische Bauteile, Baugruppen oder Geräte nur in der Original-Produktverpackung oder in anderen geeigneten Materialien, z. B. leitfähigem Schaumgummi oder Aluminiumfolie.
- Berühren Sie Bauteile, Baugruppen und Geräte nur dann, wenn Sie durch eine der folgenden Maßnahmen geerdet sind:
 - Tragen eines EGB-Armbands
 - Tragen von EGB-Schuhen oder EGB-Erdungsstreifen in EGB-Bereichen mit leitfähigem Fußboden
- Legen Sie elektronische Bauteile, Baugruppen oder Geräte nur auf leitfähigen Unterlagen ab (Tisch mit EGB-Auflage, leitfähigem EGB-Schaumstoff, EGB-Verpackungsbeutel, EGB-Transportbehälter).

1.4 Industrial Security

Hinweis

Industrial Security

Siemens bietet Automatisierungs- und Antriebsprodukte mit Industrial Security-Funktionen an, die den sicheren Betrieb der Anlage oder Maschine unterstützen. Sie sind ein wichtiger Baustein für ein ganzheitliches Industrial Security-Konzept. Die Produkte werden unter diesem Gesichtspunkt ständig weiterentwickelt. Es wird empfohlen sich regelmäßig über Aktualisierungen und Updates unserer Produkte zu informieren.

Informationen und Newsletter hierzu finden Sie unter:

http://support.automation.siemens.com

Für den sicheren Betrieb einer Anlage oder Maschine ist es darüber hinaus notwendig, geeignete Schutzmaßnahmen (z. B. Zellenschutzkonzept) zu ergreifen und die Automatisierungs- und Antriebskomponenten in ein ganzheitliches Industrial Security-Konzept der gesamten Anlage oder Maschine zu integrieren, das dem aktuellen Stand der Technik entspricht. Dabei sind auch eingesetzte Produkte von anderen Herstellern zu berücksichtigen.

Weitergehende Informationen finden Sie unter:

http://www.siemens.com/industrialsecurity

/ WARNUNG

Gefahr durch unsichere Betriebszustände wegen Manipulation der Software

Manipulationen der Software (z. B. Viren, Trojaner, Malware, Würmer) können unsichere Betriebszustände in Ihrer Anlage verursachen, die zu Tod, schwerer Körperverletzung und zu Sachschäden führen können.

- Halten Sie die Software aktuell.
 - Informationen und Newsletter hierzu finden Sie unter:
 - http://support.automation.siemens.com
- Integrieren Sie die Automatisierungs- und Antriebskomponenten in ein ganzheitliches Industrial Security-Konzept der Anlage oder Maschine nach dem aktuellen Stand der Technik.
 - Weitergehende Informationen finden Sie unter:
 - http://www.siemens.com/industrialsecurity
- Berücksichtigen Sie bei Ihrem ganzheitlichen Industrial Security-Konzept alle eingesetzten Produkte.

1.5 Restrisiken von Antriebssystemen (Power Drive Systems)

Die Komponenten für Steuerung und Antrieb eines Antriebssystems sind für den industriellen und gewerblichen Einsatz in Industrienetzen zugelassen. Der Einsatz in öffentlichen Netzen erfordert eine andere Projektierung und / oder zusätzliche Maßnahmen.

Der Betrieb dieser Komponenten ist nur in geschlossenen Gehäusen oder in übergeordneten Schaltschränken mit geschlossenen Schutzabdeckungen unter Anwendung sämtlicher Schutzeinrichtungen zulässig.

Der Umgang mit diesen Komponenten ist nur qualifiziertem und eingewiesenem Fachpersonal gestattet, das alle Sicherheitshinweise auf den Komponenten und in der zugehörenden Technischen Anwenderdokumentation kennt und einhält.

Der Maschinenhersteller muss bei der gemäß entsprechenden lokalen Vorschriften (z. B. EG-Maschinenrichtlinie) durchzuführenden Beurteilung des Risikos seiner Maschine folgende von den Komponenten für Steuerung und Antrieb eines Antriebssystems ausgehende Restrisiken berücksichtigen:

- 1. Ungewollte Bewegungen angetriebener Maschinenteile bei Inbetriebnahme, Betrieb, Instandhaltung und Reparatur z. B. durch
 - HW- und / oder SW-Fehler in Sensorik, Steuerung, Aktorik und Verbindungstechnik
 - Reaktionszeiten der Steuerung und des Antriebs
 - Betrieb und / oder Umgebungsbedingungen außerhalb der Spezifikation
 - Betauung / leitfähige Verschmutzung
 - Fehler bei der Parametrierung, Programmierung, Verdrahtung und Montage
 - Benutzung von Funkgeräten / Mobiltelefonen in unmittelbarer Nähe der Steuerung
 - Fremdeinwirkungen / Beschädigungen
- 2. Im Fehlerfall kann es innerhalb und außerhalb des Umrichters zu außergewöhnlich hohen Temperaturen, einschließlich eines offenen Feuers, sowie Emissionen von Licht, Geräuschen, Partikeln, Gasen etc. kommen, z. B.:
 - Bauelementeversagen
 - Software-Fehler
 - Betrieb und / oder Umgebungsbedingungen außerhalb der Spezifikation
 - Fremdeinwirkungen / Beschädigungen

Umrichter der Schutzart Open Type / IP20 müssen derart in einem Metallschaltschrank eingebaut (oder durch eine andere gleichwertige Maßnahme geschützt) werden, dass der Kontakt mit Feuer innerhalb und außerhalb des Umrichters verhindert wird.

1.5 Restrisiken von Antriebssystemen (Power Drive Systems)

- 3. Gefährliche Berührspannungen z. B. durch
 - Bauelementeversagen
 - Influenz bei elektrostatischen Aufladungen
 - Induktion von Spannungen bei bewegten Motoren
 - Betrieb und / oder Umgebungsbedingungen außerhalb der Spezifikation
 - Betauung / leitfähige Verschmutzung
 - Fremdeinwirkungen / Beschädigungen
- Betriebsmäßige elektrische, magnetische und elektromagnetische Felder, die z. B. für Träger von Herzschrittmachern, Implantaten oder metallischen Gegenständen bei unzureichendem Abstand gefährlich sein können
- 5. Freisetzung umweltbelastender Stoffe und Emissionen bei unsachgemäßem Betrieb und / oder bei unsachgemäßer Entsorgung von Komponenten

Hinweis

Die Komponenten müssen gegen leitfähige Verschmutzung geschützt werden, z. B. durch Einbau in einen Schaltschrank mit der Schutzart IP54 nach IEC 60529 bzw. NEMA 12.

Unter der Voraussetzung, dass am Aufstellort das Auftreten von leitfähigen Verschmutzungen ausgeschlossen werden kann, ist auch eine entsprechend geringere Schutzart des Schaltschranks zulässig.

Weitergehende Informationen zu den Restrisiken, die von den Komponenten eines Antriebssystems ausgehen, finden Sie in den zutreffenden Kapiteln der Technischen Anwenderdokumentation.

Systemübersicht

2.1 Anwendungsbereich

SINAMICS ist die Antriebsfamilie von Siemens für den industriellen Maschinen- und Anlagenbau. SINAMICS bietet Lösungen für alle Antriebsaufgaben:

- Einfache Pumpen- und Lüfteranwendungen in der Prozessindustrie
- Anspruchsvolle Einzelantriebe in Zentrifugen, Pressen, Extrudern, Aufzügen, Förder- und Transportanlagen
- Antriebsverbände in Textil-, Folien- und Papiermaschinen sowie in Walzwerksanlagen
- Hochpräzise Servoantriebe bei der Herstellung von Windkraftanlagen
- Hochdynamische Servoantriebe für Werkzeug-, Verpackungs- und Druckmaschinen



Bild 2-1 Anwendungsgebiete von SINAMICS

2.1 Anwendungsbereich

Je nach Einsatzgebiet steht innerhalb der Familie SINAMICS für jede Antriebsaufgabe eine optimal zugeschnittene Ausprägung bereit.

- SINAMICS G ist für Standardanwendungen mit Asynchronmotoren konzipiert. Diese Anwendungen zeichnen sich durch geringere Anforderungen in Bezug auf die Dynamik der Motordrehzahl aus.
- SINAMICS S löst anspruchsvolle Antriebsaufgaben mit Synchronmotoren und Asynchronmotoren und erfüllt hohe Anforderungen an
 - Die Dynamik und die Genauigkeit
 - Die Integration umfangreicher Technologiefunktionen in die Antriebsregelung
- SINAMICS DC MASTER ist der Gleichstromantrieb der SINAMICS-Familie. Aufgrund seiner durchgängigen Erweiterbarkeit erfüllt er sowohl Basis- als auch anspruchsvolle Anforderungen in der Antriebstechnik und in komplementären Märkten.

2.2 Plattformkonzept und Totally Integrated Automation

SINAMICS folgt in allen seinen Ausprägungen konsequent einem Plattformkonzept. Gemeinsame Hardware- und Software-Komponenten sowie einheitliche Tools für Auslegung, Projektierung und Inbetriebnahme garantieren eine hohe Durchgängigkeit zwischen allen Komponenten. Unterschiedlichste Antriebsaufgaben lassen sich mit SINAMICS ohne Systembrüche lösen. Die verschiedenen Ausprägungen von SINAMICS können einfach miteinander kombiniert werden.

Totally Integrated Automation (TIA) mit SINAMICS S120

SINAMICS gehört neben SIMATIC, SIMOTION und SINUMERIK zu den Kernkomponenten von TIA. Das Inbetriebnahmetool STARTER ist ein integrierter Bestandteil der TIA-Plattform. Sämtliche Komponenten der Automatisierungslösung lassen sich so mit einer durchgängigen Engineering-Plattform ohne Systembruch parametrieren, programmieren und in Betrieb nehmen. Die durchgängige Datenhaltung sorgt für konsistente Daten und einfache Archivierung des gesamten Anlagenprojekts.

SINAMICS S120 unterstützt standardmäßig PROFIBUS DP, den Standardfeldbus des TIA-Konzepts. Er sorgt für leistungsfähige und durchgängige Kommunikation zwischen allen Komponenten der Automatisierungslösung: HMI (Bedienen und Beobachten), Steuerung, Antriebe und Peripherie.

SINAMICS S120 ist auch mit PROFINET-Schnittstelle verfügbar. Dieser Ethernet-basierte Bus erlaubt den schnellen Austausch von Regelungsdaten über PROFINET IO.

Bild 2-2 SINAMICS als Bestandteil des Automatisierungsbaukastens von Siemens

2.3 Übersicht SINAMICS S120 AC Drive

SINAMICS S120 AC Drive ist ein modulares Antriebssystem für Einzelachsen und löst anspruchsvolle Antriebsaufgaben für ein sehr breites Spektrum von industriellen Anwendungen.

Anwendungsgebiete sind:

- Maschinenkonzepte mit Zentralantrieb (z. B. Pressen, Drucken, Verpacken)
- Modulare Maschinenkonzepte, bei denen Maschinenmodule bis zur 1-Achsigkeit aufgeteilt werden
- Einzelantriebe mit im Vergleich zu Standardantrieben hohen Genauigkeits-, Stabilitätsund Rundlaufanforderungen im Maschinen- und Industrieanlagenbau
- Einzelantriebe zur Erfüllung von Transportaufgaben (Fördern, Heben, Senken)
- Antriebe ohne Energierückspeisung (Drahtziehen, Extrudieren)
- Antriebsverbände mit hohen Anforderungen an die Verfügbarkeit (Ausfall der Einspeisung darf nicht zum Ausfall aller Achsen führen)

Die Kombination aus einem Leistungsteil (Power Module) und einer Control Unit (CU) oder einem Control Unit Adapter bildet einen Einzelantrieb in kompakter Bauform für den Maschinen- und Anlagenbau.

Das leistungsfähige Auslegungstool SIZER erleichtert die Auswahl und die Ermittlung der optimalen Antriebskonfiguration. Mit dem Inbetriebnahmetool STARTER kann der Antrieb einfach und komfortabel in Betrieb gesetzt werden.

Ergänzt wird SINAMICS S120 AC Drive durch eine große Palette von Motoren. Ob Synchron- oder Asynchronmotoren, ob rotatorische- oder Linearmotoren, alle werden von SINAMICS S120 AC Drive optimal unterstützt.

2.4 Komponenten SINAMICS S120

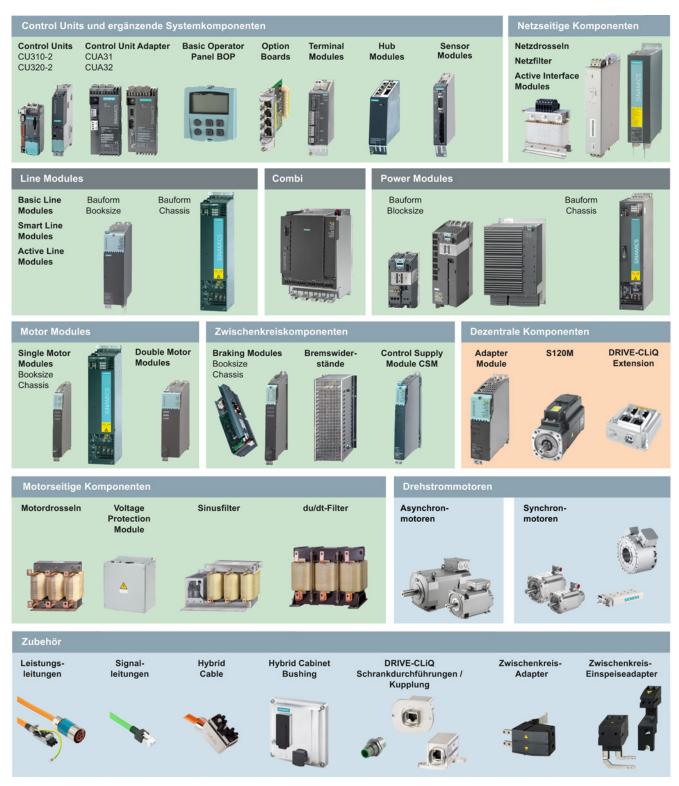


Bild 2-3 Komponentenübersicht SINAMICS S120

2.4 Komponenten SINAMICS S120

Folgende Systemkomponenten werden für SINAMICS S120 AC Drive angeboten:

- Netzseitige Leistungskomponenten wie Sicherungen, Schütze, Drosseln und Netzfilter zum Schalten der Energiezufuhr und zur Einhaltung der EMV-Vorschriften
- Power Modules, wahlweise mit oder ohne integriertem Netzfilter sowie integriertem Brems-Chopper, zur Energiebereitstellung für den angeschlossenen Motor

Zur Abdeckung der erforderlichen Funktionen verfügt SINAMICS S120 AC Drive über:

- Control Units, die Antriebs- und technologische Funktionen bereitstellen
- Ergänzende Systemkomponenten, um die Funktionalität zu erweitern und verschiedene Schnittstellen zu Gebern und Prozess-Signalen abzudecken

Die Komponenten von SINAMICS S120 AC Drive wurden für den Einbau in Schaltschränke entwickelt.

Sie zeichnen sich durch folgende Merkmale aus:

- Leichte Handhabung, einfache Montage und Verdrahtung
- Praxisgerechte Anschlusstechnik und EMV-gerechte Leitungsführung
- Durchgängiges Design

2.5 Systemdaten

Tabelle 2- 1 Elektrische Daten

Netzanschluss-Spannung	
Geräte Bauform Blocksize	1 AC 200 240 V ±10 % 3 AC 200 240 V ±10 % 3 AC 380 480 V ±10 %
Geräte Bauform Chassis	3 AC 380 480 V ±10 %
Bemessungspulsfrequenz	
Geräte Bauform Blocksize	4 kHz Bei höheren Pulsfrequenzen ist die zugehörige Kennlinie für Stromderating zu berücksichtigen.
Geräte Bauform Chassis	2 kHz Bei höheren Pulsfrequenzen ist die zugehörige Kennlinie für Stromderating zu berücksichtigen.
Netzfrequenz	47 63 Hz
Ausgangsspannung	
Geräte Bauform Blocksize	0 V bis 0,74 · Netzanschluss-Spannung bei Geräten mit 1 AC 200 240 V 0 V bis 0,95 · Netzanschluss-Spannung bei Geräten mit 3 AC 200 240 V 0 V bis 0,95 · Netzanschluss-Spannung bei Geräten mit 3 AC 380 480 V
Geräte Bauform Chassis	0 V bis Netzanschluss-Spannung bei Geräten mit 3 AC 380 480 V
Elektronikstromversorgung	DC 24 V -15 / +20 %1, Schutzkleinspannung (PELV / SELV) (siehe Kapitel Versorgung DC 24 V (Seite 426))
Bemessungskurzschluss-Strom SCCR gemäß UL508C (bis 600 V)	 1,1 447 kW: 65 kA 448 671 kW: 84 kA 672 1193 kW: 170 kA ≥ 1194 kW: 200 kA Für Blocksize- und Chassis-Komponenten besteht die UL-Zulassung nur in Verbindung mit den von Siemens vorgeschriebenen Sicherungen, nicht für andere Typen oder mit Leistungsschaltern allein.
Elektromagnetische Verträglichkeit nach EN 61800-3	Kategorie C3 (Option) Kategorie C2 (Option) Kategorie C1 (Option) bei Anlagenausführung konform zur Dokumentation
Überspannungskategorie	III
Verschmutzungsgrad	2

¹⁾ Bei Einsatz einer Motorhaltebremse sind ggf. eingeschränkte Spannungstoleranzen (24 V±10 %) zu beachten.

2.5 Systemdaten

Tabelle 2- 2 Umweltbedingungen

Schutzart	IPXXB nach EN 60529, open type nach UL 508		
Schutzklasse Netzstromkreise	I (mit Schutzleiteranschluss)		
Elektronikkreise	Schutzkleinspannung PELV / SELV		
Kühlart	Interne Luftkühlung,		
	Leistungsteile mit verstärkter Luftkühlung durch eingebauten Lüfter		
Zulässige Kühlmitteltemperatur (Luft) und Aufstellhöhe im Betrieb	0 °C bis +40 °C und bis 1000 m Aufstellhöhe ohne Derating > 40 °C bis +55 °C siehe Kennlinie für Stromderating		
	Aufstellhöhe > 1000 m bis 4000 m siehe Kennlinie für Stromderating oder Reduzierung der Umgebungstemperatur um 3,5 K pro 500 m		
Chemisch aktive Stoffe			
Langzeitlagerung in Transportverpackung	Klasse 1C2 nach EN 60721-3-1		
Transport in Transportverpackung	Klasse 2C2 nach EN 60721-3-2		
Betrieb	Klasse 3C2 nach EN 60721-3-3		
Biologische Umweltbedingungen			
Lagerung in Transportverpackung	Klasse 1B1 nach EN 60721-3-1		
Transport in Transportverpackung	Klasse 2B1 nach EN 60721-3-2		
Betrieb	Klasse 3B1 nach EN 60721-3-3		
Schwingbeanspruchung			
Langzeitlagerung in Transportverpackung	Klasse 1M2 nach EN 60721-3-1		
Transport in Transportverpackung	Klasse 2M3 nach EN 60721-3-2		
Schockbeanspruchung			
Langzeitlagerung in Transportverpackung	Klasse 1M2 nach EN 60721-3-1		
Transport in Transportverpackung	Klasse 2M3 nach EN 60721-3-2		
Betrieb	Klasse 2M2 nach EN 60721-3-2		
Bauform Blocksize FSA bis FSB	Prüfwerte: 147 m/s² (15g)/11 ms		
Bauform Blocksize FSC bis FSF	Prüfwerte: 49 m/s² (5g)/30 ms		
Bauform Chassis	Prüfwerte: 98 m/s² (10g)/20 ms		
Klimatische Umweltbedingungen			
Langzeitlagerung in Transportverpackung	Klasse 1K4 nach EN 60721-3-1 Temperatur -25 °C bis +55 °C		
Transport in Transportverpackung	Klasse 2K4 nach EN 60721-3-2 Temperatur -40 °C bis +70 °C		
Betrieb	Klasse 3K3 nach EN 60721-3-3 Temperatur +0 °C bis +40 °C Relative Luftfeuchte 5 % bis 90 % Ölnebel, Salznebel, Eisbildung, Betauung, Tropf-, Sprüh-, Spritz- und Strahlwasser nicht zulässig		

Tabelle 2-3 Zertifikate

Konformitätserklärungen	CE (Niederspannungs- und EMV-Richtlinie)
Approbationen	cULus
	cURus

2.6 Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe

Vorbemerkung

Mit der Aufstellhöhe über Meeresspiegel (NN) sinkt der Luftdruck und damit die Dichte der Luft. Die gleiche Luftmenge bewirkt jetzt weniger Kühlwirkung und die Luftstrecke zwischen zwei elektrischen Leitern kann nur noch eine kleinere Spannung isolieren. Typische Werte für den Luftdruck sind in folgender Tabelle zusammengefasst:

Tabelle 2-4 Luftdruck für verschiedene Aufstellhöhen

Aufstellhöhe über NN in [m]	0	1000	2000	3000	4000
Luftdruck in [kPa]	100	90	80	70	62

Derating

Die Power Modules sind für den Betrieb bei folgenden Bedingungen ausgelegt:

- Umgebungstemperatur 0 °C bis zu 40 °C
- Jeweils für das Power Module angegebene Pulsfrequenz
- Aufstellhöhe bis zu 1000 m über NN bei Power Modules Blocksize
- Aufstellhöhe bis zu 2000 m über NN bei Power Modules Chassis

Wenn Sie die Power Modules bei höheren Umgebungstemperaturen, Pulsfrequenzen oder Aufstellhöhen betreiben, müssen Sie den Ausgangsstrom reduzieren.

Die einzelnen Reduzierungsfaktoren finden Sie in den technischen Daten des entsprechenden Power Module.

Die maximal zulässige Umgebungstemperatur beträgt bei allen Power Modules 55 °C.

Bei Aufstellhöhen über 2000 m ist ein TN- oder TT-Netz mit geerdetem Sternpunkt erforderlich (kein geerdeter Außenleiter). Wenn der Sternpunkt nicht geerdet ist, muss ein Trenntransformator vorgeschaltet werden, der sekundär im Sternpunkt geerdet ist.

Eine Reduktion der Netzanschluss-Spannung Phase-Phase ist nicht notwendig.

2.6 Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe

Netzanschaltung und netzseitige Leistungskomponenten

3

3.1 Einleitung

Zur Anschaltung eines SINAMICS-Antriebsverbandes an das Versorgungsnetz sollten folgende netzseitige Komponenten eingesetzt werden:

- Netztrenneinrichtung
- Überstromschutzeinrichtung (Netzsicherungen oder Leistungsschalter)
- Netzschütz (bei galvanischer Trennung erforderlich)
- Netzfilter (optional)
- Netzdrossel (optional)

Die möglichen Anschluss-Spannungen für den Antriebsverband sind:

- 1 AC 200 V bis 1 AC 240 V ± 10 %
- 3 AC 200 V bis 3 AC 240 V ± 10 %
- 3 AC 380 V bis 3 AC 480 V ± 10 %

Folgende Netzdrosselvarianten stehen zur Verfügung:

- 4 Varianten bei Bauform Blocksize Power Modules PM240-2, Baugröße FSA bis FSC (Stand-alone)
- 3 Varianten bei Bauform Blocksize Power Modules PM340, Baugröße FSA bis FSC (Unterbau)
- 5 Varianten bei Bauform Blocksize Power Modules PM340, Baugröße FSD bis FSF (3 Unterbau und 2 Stand-alone)
- 4 Varianten bei Bauform Chassis

Folgende Netzfiltervarianten stehen zur Verfügung:

- Integriert
- Extern
 - Unterbau
 - Stand-alone

3.2 Hinweise zur Netztrenneinrichtung

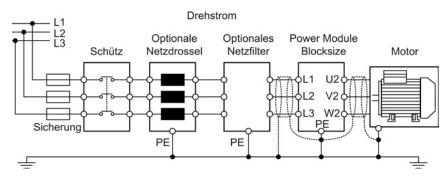


Bild 3-1 Beispiel für eine Netzanschaltung Blocksize

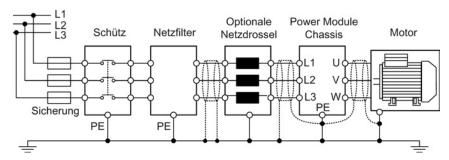


Bild 3-2 Beispiel für eine Netzanschaltung Chassis

3.2 Hinweise zur Netztrenneinrichtung

Für das ordnungsgemäße Trennen des Antriebsverbandes vom Netz (Versorgung) ist eine Netztrenneinrichtung erforderlich. Dafür darf die Netztrenneinrichtung der elektrischen Ausrüstung der Maschine benutzt werden. Die Auswahl der Netztrenneinrichtung muss in Übereinstimmung mit den Anforderungen der weltweit verbindlichen Norm für die elektrische Ausrüstung von Maschinen IEC 60204-1, Abschnitt 5.3 erfolgen. Für die Auswahl sind die jeweiligen technischen Daten und gegebenenfalls weitere an die elektrische Ausrüstung angeschlossene Verbraucher zu berücksichtigen.

Das notwendige Zubehör zur Netztrenneinrichtung ist nach den Herstellerkatalogen auszuwählen. Siehe auch Kataloge PM21 und NC61.

ACHTUNG

Beschädigung der Antriebselektronik beim Schalten der Netztrenneinrichtung unter Last

Bei Schalten der Netztrenneinrichtung (Typ gemäß empfohlener Auswahl) unter Last verschleißen die Kontakte vorzeitig. Dies kann zu Funktionsstörungen der Netztrenneinrichtung mit nachfolgender Beschädigung der Antriebselektronik führen.

- Verwenden Sie einen voreilend ausschaltenden Hilfskontakt bzw. setzen Sie ein Voltage Sensing Module (VSM10) ein.
- Falls dies nicht möglich ist, vermeiden Sie, die Netztrenneinrichtung unter Last zu schalten.

3.3 Überstromschutz durch Netzsicherungen und Leistungsschalter

Zum Leitungsschutz / Überstromschutz müssen Netzsicherungen oder Leistungsschalter eingesetzt werden. Verwendbar sind dafür Sicherungen mit Charakteristik gL der Typen NH, D sowie DO oder Leistungsschalter nach IEC 60947.

Passende Sicherungen und Leistungsschalter sind in den technischen Daten des jeweiligen Power Module aufgeführt.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag sowie Brandgefahr durch zu spät auslösende Überstromschutzeinrichtungen

Nicht oder zu spät auslösende Überstromschutzeinrichtungen können Ursache für elektrischen Schlag oder Brand sein.

- Um den Personen- und Brandschutz zu gewährleisten, müssen am Einspeisepunkt Kurzschlussleistung und Schleifenimpedanz den Anforderungen in der Dokumentation entsprechen, sodass die installierten Überstromschutzeinrichtungen rechtzeitig auslösen.
- Verwenden Sie in TT-Netzen neben geeigneten Überstromschutzeinrichtungen Fehlerstrom-Schutzschalter (RCD) und ab einer Einspeiseleistung von 55 kW oder bei ausgedehnten Anlagen zusätzlich Differenzstrom-Überwachungsgeräte (RCM).

Weitere Informationen: siehe Katalog PM 21.

3.4 Einsatz von Fehlerstrom-Schutzeinrichtungen

Zusätzlich zu den Überstromschutzeinrichtungen können selektiv schaltende, allstromsensitive Fehlerstrom-Schutzeinrichtungen (Typ B) eingesetzt werden.

Fehlerstrom-Schutzeinrichtungen müssen installiert werden, wenn die Netzverhältnisse am Einspeisepunkt in Bezug auf Kurzschlussleistung und Schleifenimpedanz nicht dazu geeignet sind, im Fehlerfall die installierten Überstromschutzeinrichtungen innerhalb der vorgegebenen Zeit auszulösen.

Fehlerstrom-Schutzschalter (RCD)

Fehlerstrom-Schutzschalter (RCD) werden zusätzlich zu den realisierten Überstromschutzeinrichtungen eingesetzt. Sie schützen vor dem Bestehenbleiben eines unzulässig hohen Berührungsstroms. Sie sind vorzugsweise für den Betrieb an TT-Netzen einzusetzen.

Beachten Sie folgende Bedingungen beim Einsatz von Fehlerstrom-Schutzschaltern:

- Verwenden Sie ausschließlich verzögert auslösende, selektiv allstromsensitive Fl-Schutzschalter Typ B.
- Stellen Sie sicher, dass die Schleifenimpedanz entsprechend der lokalen Installationsvorschriften eingehalten wird.
- Verbinden Sie berührbare Teile des Antriebssystems und der Maschine unbedingt mit dem Schutzleiter der Anlage.
- Die Länge der geschirmten Motorleitung darf 50 m nicht überschreiten.
- Verwenden Sie für jedes Power Module eine separate Fehlerstrom-Schutzeinrichtung.
- Stellen Sie sicher, dass Schaltelemente (Netztrenneinrichtungen, Schütze) zum Zu- und Abschalten des Antriebssystems max. 35 ms Verzögerungszeit zwischen dem Schließen/Öffnen der einzelnen Hauptkontakte aufweisen.

Ohne Fehlerstrom-Schutzschalter kann der Berührschutz durch doppelte Isolation oder durch eine Trennung des Power Module vom Netz mithilfe eines Transformators erreicht werden.

Differenzstrom-Überwachungsgeräte (RCM)

In Verbindung mit geeigneten Leistungsschaltern ermöglichen Differenzstrom-Überwachungsgeräte (RCM) auch bei erhöhten Erdungswiderständen (z. B. TT-Netzen) einen Brand- und Anlagenschutz. Beim Betrieb an TT-Netzen ab einer Einspeiseleistung von 55 kW sowie bei ausgedehnten Anlagen müssen Differenzstrom-Überwachungsgeräte zusätzlich zu den geeigneten Leistungsschaltern installiert werden.

/ WARNUNG

Brandgefahr und Gefahr eines Anlagenstillstands bei auftretenden Fehlerströmen

Nicht erkannte Fehlerströme in der Stromversorgung können zu Bränden und Ausfällen der gesamten Anlage führen.

 Installieren Sie Differenzstrom-Überwachungsgeräte immer in Verbindung mit geeigneten Leistungsschaltern.

Beachten Sie beim Einsatz von Differenzstrom-Überwachungsgeräten folgende Punkte:

- Verwenden Sie ausschließlich verzögernd auslösende, allstromsensitive RCM Typ B, um ein sicheres Auslösen auch bei glatten Gleichfehlerströmen zu gewährleisten.
- Verbinden Sie berührbare Teile des Power Drive Systems und der Maschine unbedingt mit dem Schutzleiter der Anlage.
- Führen Sie den Schutzleiter nicht durch den Messstromwandler, da sonst die Schutzfunktion nicht mehr gegeben ist.

3.5 Überspannungsschutz

Zum Schutz der Geräte gegen netzseitige Überspannungen wird der Einsatz eines Überspannungsschutzes direkt am Einspeisepunkt (vor dem Hauptschalter) empfohlen. Um die Anforderungen der CSA C22.2 No. 14-05 zu erfüllen, ist ein Überspannungsschutz des Typs VZCA oder VZCA2 zwingend erforderlich. Geeignete Überspannungsableiter finden Sie bei Fa. Raycap.

3.6 Netzschütze

3.6 Netzschütze

Ein Netzschütz wird benötigt, wenn eine galvanische Trennung des Antriebsverbandes vom Versorgungsnetz gefordert ist.

Für die Auswahl des Netzschützes gelten die Kennwerte nach den jeweiligen Technischen Daten. Dabei sind für die Bemessung der anzuschließenden Leiter die Legungsart, der Faktor für die Bündelung und der Faktor für die Umgebungstemperatur nach EN 60204-1 zu berücksichtigen.

ACHTUNG

Beschädigung der Antriebselektronik beim Schalten des Netzschützes unter Last

Bei Schalten des Netzschützes (Typ gemäß empfohlener Auswahl) unter Last verschleißen die Kontakte vorzeitig. Dies kann zu Funktionsstörungen des Schützes mit nachfolgender Beschädigung der Antriebselektronik führen.

- Verwenden Sie einen voreilend ausschaltenden Hilfskontakt bzw. setzen Sie ein Voltage Sensing Module (VSM10) ein.
- Falls dies nicht möglich ist, vermeiden Sie, das Netzschütz unter Last zu schalten.

Hinweis

Zur Begrenzung der Abschaltüberspannung muss die Schützspule mit einer Überspannungsbegrenzung (z. B. Freilaufdiode, Varistor) beschaltet werden.

Bei Verwendung des Digitalausgangs zur Ansteuerung des Netzschützes ist dessen Schaltvermögen zu berücksichtigen.

3.7.1 Beschreibung

Netzfilter begrenzen in Verbindung mit einem konsequenten EMV-gerechten Anlagenaufbau die von den Power Modules ausgehenden leitungsgebundenen Störungen auf Grenzwerte gemäß EN 61800-3.

Für den SINAMICS S120-Antriebsverband ist ein Netzfilter gemäß Katalog zu verwenden.

3.7.2 Klassifizierung des EMV-Verhaltens

Die EMV-Umgebungen und die EMV-Kategorien sind in der EMV-Produktnorm EN 61800-3 wie folgt definiert:

Umgebungen

Erste Umgebung (öffentliche Netze)

Umgebung, die Wohnbezirke und Einrichtungen enthält, die ohne Zwischentransformator direkt an das Niederspannungs-Versorgungsnetz angeschlossen sind, das Gebäude versorgt, die für Wohnzwecke benutzt werden.

Beispiele: Häuser, Wohnungen, Geschäfte oder Büros in Wohngebäuden.

Zweite Umgebung (industrielle Netze)

Umgebung, die alle anderen Einrichtungen enthält, die nicht direkt an ein Niederspannungs-Versorgungsnetz angeschlossen sind, das Gebäude versorgt, die für Wohnzwecke benutzt werden.

Beispiele: Industriegebiete und technische Bereiche von Gebäuden, die von einem zugeordneten Transformator gespeist werden.

Kategorien

Kategorie C1

Antriebssysteme mit einer Bemessungsspannung < 1000 V, die für den Einsatz in der ersten Umgebung vorgesehen sind.

Antriebssysteme, die der Kategorie C1 entsprechen, können ohne Einschränkung in der ersten Umgebung installiert werden.

Kategorie C2

Antriebssysteme mit einer Bemessungsspannung < 1000 V, die weder Steckergeräte noch bewegbare Einrichtungen sind und die, wenn sie in der ersten Umgebung eingesetzt werden, nur für die Errichtung und Inbetriebnahme durch einen Fachmann vorgesehen sind.

Antriebssysteme, die der Kategorie C2 entsprechen, dürfen in der ersten Umgebung nur eingesetzt werden, wenn sie durch einen Fachmann unter Beachtung der Grenzwerte für die elektromagnetische Verträglichkeit installiert werden.

Kategorie C3

Antriebssysteme mit einer Bemessungsspannung < 1000 V, die für den Einsatz in der zweiten Umgebung und nicht für den Einsatz in der ersten Umgebung vorgesehen sind.

Antriebssysteme, die der Kategorie C3 entsprechen, dürfen nur in der zweiten Umgebung installiert werden.

Kategorie C4

Antriebssysteme mit einer Bemessungsspannung ≥ 1 000 V, mit einem Ausgangsstrom ≥ 400 A oder die für den Einsatz in komplexen Systemen in der zweiten Umgebung vorgesehen sind.

Antriebssysteme, die der Kategorie C4 entsprechen, dürfen nur in der zweiten Umgebung installiert werden.

Hinweis

Fachmann

Ein Fachmann ist eine Person oder eine Organisation mit der erforderlichen Erfahrung für die Einrichtung und/oder Inbetriebnahme von Antriebssystemen (Power Drive System - PDS) einschließlich ihrer EMV-Aspekte.

3.7.3 Elektromagnetische Verträglichkeit (EMV) des Systems

Kategorie C4

Ungefilterte Power Modules entsprechen der Kategorie C4 und können nur in der zweiten Umgebung eingesetzt werden.

Kategorie C3

Power Modules mit einem integrierten oder einem entsprechenden, externen Netzfilter erfüllen die Grenzwerte für Kategorie C3.

Die Power Modules Blocksize sind überwiegend auch in Varianten mit integriertem Netzfilter erhältlich. Eine Ausnahme ist das Power Module PM340 Baugröße FSA für Netzspannung 3 AC 380 V bis 480 V. Für dieses Power Module muss ein externes Netzfilter verwendet werden.

Für die Power Modules Chassis stehen externe Netzfilter zur Verfügung.

Die Power Modules der Kategorie C3 können nur in der zweiten Umgebung eingesetzt werden.

Kategorie C2

Damit die Power Modules mit entsprechendem Netzfilter die Grenzwerte der Kategorie C2 einhalten, müssen folgende Bedingungen erfüllt sein:

- Eine geschirmte Motorleitung mit geringer Kapazität wird verwendet.
- Die Motorleitung ist
 - bei Power Modules PM240-2 kürzer als 50 m.
 - bei Power Modules PM340 kürzer als 25 m.
 - bei Power Modules Chassis kürzer als 100 m.
- Die Pulsfrequenz ist
 - bei Power Modules Blocksize ≤ 4 kHz.
 - bei Power Modules Chassis ≤ 2 kHz.
- Der Strom ≤ Bemessungseingangsstrom in den technischen Daten.

Für Power Modules Chassis ist eine zusätzliche Netzdrossel zum Erreichen der Kategorie C2 erforderlich.

Die Power Modules der Kategorie C2 sind für die zweite Umgebung geeignet. Die Power Modules PM240-2 erreichen mit einer zusätzlichen Netzdrossel mit einer Netzimpedanz $U_k \ge 4$ % oder einem Low Harmonic Filter (LHF) die Voraussetzungen für die erste Umgebung.

Kategorie C1

Wenn die Bedingungen für die Kategorie C2 erfüllt sind, halten die Power Modules PM240-2 mit externen Netzfiltern die Grenzwerte der Kategorie C1 ein. Die Power Modules sind für den Einsatz in der ersten Umgebung vorgesehen.

Hinweis

Verwendungszweck der externen Netzfilter

Durch den Einsatz externer Netzfilter werden bei den Power Modules Blocksize PM340 und Chassis die Grenzwerte der Kategorie C3 bzw. C2 erreicht.

Wohingegen der Einsatz der externen Netzfilter bei den Power Modules Blocksize PM240-2, welche die EMV-Kategorie C2 bereits erfüllen, zum Erreichen der Grenzwerte der EMV-Kategorie C1 führt.

3.7.4 Sicherheitshinweise für Netzfilter

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

 Setzen Sie für die Netzfilter einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können Schäden am Netzfilter durch eine thermische Überlastung auftreten.

 Halten Sie die Lüftungsfreiräume von 100 mm oberhalb und unterhalb des Netzfilters ein.

ACHTUNG

Beschädigung durch Anschluss mehrerer Verbraucher am gleichen Netzeinspeisepunkt

Falls mehrere Verbraucher am gleichen Netzeinspeisepunkt angeschlossen werden, kann dies zu einem Schaden führen.

Entstören Sie weitere Verbraucher durch entsprechende Netzfilter.

ACHTUNG

Beschädigung des Netzfilters durch vertauschte Anschlüsse

Die Vertauschung der Anschlüsse von Eingang und Ausgang führt zu einer Beschädigung des Netzfilters.

- Schließen Sie die ankommende Netzleitung an LINE/NETZ L1, L2, L3 an.
- Schließen Sie die abgehende Leitung zum Power Module an LOAD/LAST L1', L2', L3' (U, V, W) an.

ACHTUNG

Schädigung weiterer Verbraucher durch falsche Netzfilter

Ungeeignete Netzfilter können Netzrückwirkungen auslösen, die weitere am gleichen Netz betriebene Verbraucher schädigen oder stören.

• Verwenden Sie ausschließlich von SIEMENS für SINAMICS frei gegebene Netzfilter.

3.7.5 Maßbilder

Netzfilter Blocksize

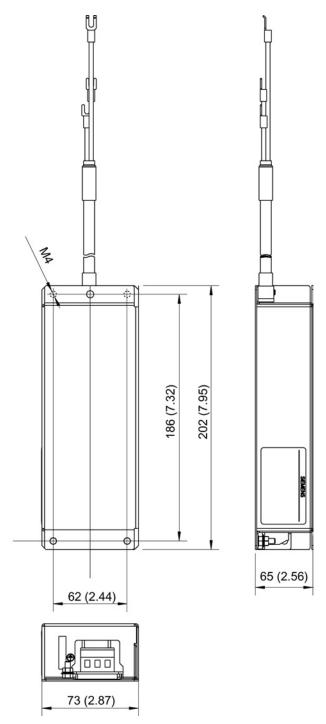


Bild 3-3 Maßbild Netzfilter, Power Module PM240-2 Baugröße FSA, alle Angaben in mm (inch)

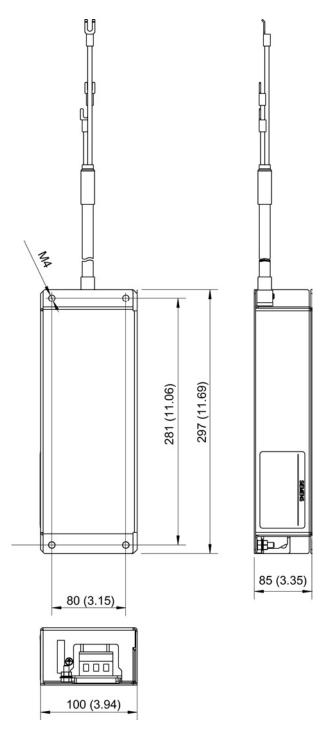


Bild 3-4 Maßbild Netzfilter, Power Module PM240-2 Baugröße FSB, alle Angaben in mm (inch)

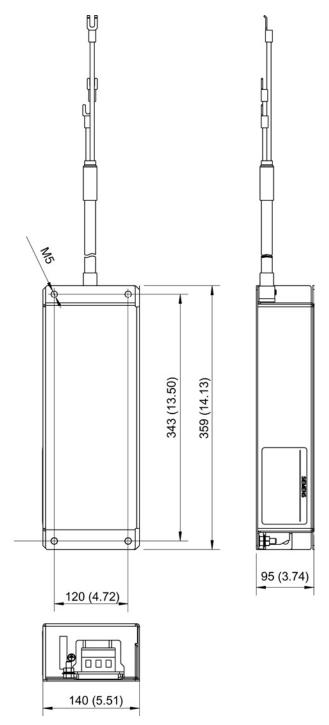


Bild 3-5 Maßbild Netzfilter, Power Module PM240-2 Baugröße FSC, alle Angaben in mm (inch)

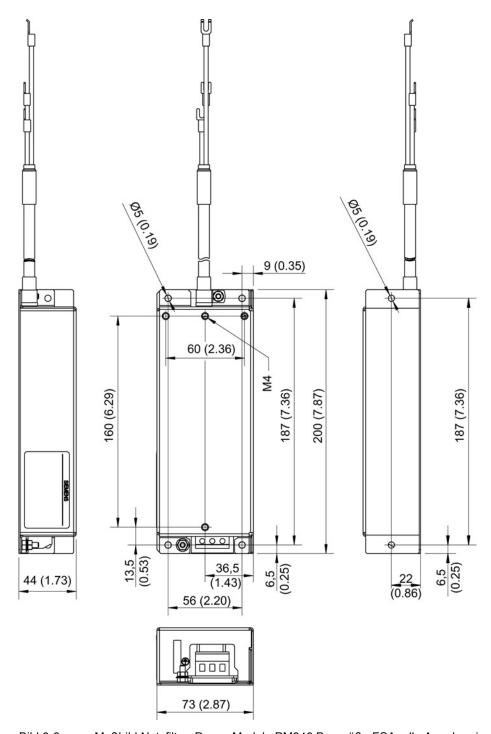


Bild 3-6 Maßbild Netzfilter, Power Module PM340 Baugröße FSA, alle Angaben in mm (inch)

Netzfilter Chassis

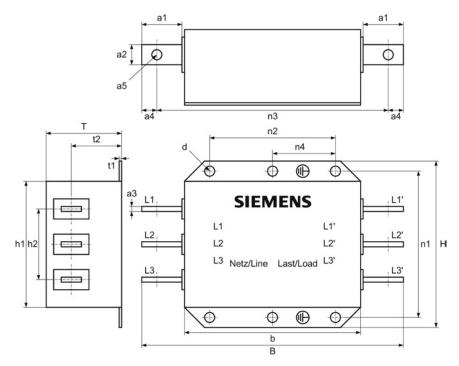
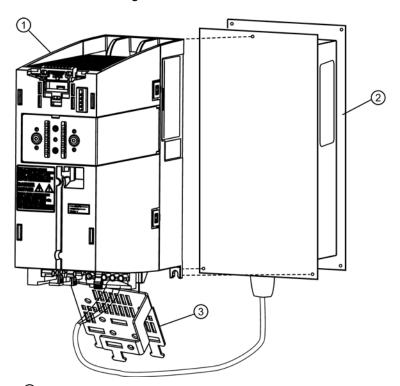


Bild 3-7 Maßbild Netzfilter


Tabelle 3-1 Maße Netzfilter, alle Angaben in mm und (inch)

6SL3000-	0BE32-5AA0	0BE34-4AA0	0BE36-0AA0
В	360 (14.17)	360 (14.17)	400 (15.74)
Н	240 (9.44)	240 (9.44)	265 (10.43)
Т	116 (4.56)	116 (4.56)	140 (5.51)
a1	40 (1.57)	40 (1.57)	40 (1.57)
a2	25 (0.98)	25 (0.98)	25 (0.98)
a3	5 (0.19)	5 (0.19)	8 (0.31)
a4	15 (0.59)	15 (0.59)	15 (0.59)
а5	11 (0.43)	11 (0.43)	11 (0.43)
b	270 (10.62)	270 (10.62)	310 (12.20)
h1	200 (7.87)	200 (7.87)	215 (8.46)
h2	100 (3.93)	100 (3.93)	120 (4.72)
t1	2 (0.07)	2 (0.07)	3 (1.18)
t2	78,2 (3.07)	78,2 (3.07)	90 (3.54)
n1 ¹⁾	220 (8.66)	220 (8.66)	240 (9.44)
n2¹)	210 (8.26)	210 (8.26)	250 (9.84)
n3	330 (12.99)	330 (12.99)	370 (14.56)
n4	-	-	125 (4.92)
d	9 (0.35)	9 (0.35)	12 (0.47)

¹⁾ Die Längen n1 und n2 entsprechen dem Bohrlochabstand

3.7.6 Montage

Die Netzfilter sind als Unterbaukomponenten ausgelegt. Das Netzfilter wird auf der Montagefläche befestigt und das Power Module Platz sparend auf das Netzfilter montiert. Die Leitungen zum Power Module sind bereits am Netzfilter angeschlossen. Der Netzanschluss erfolgt über Klemmen am Netzfilter.

- ① Power Module PM240-2, Baugröße FSA
- 2 Netzfilter
- 3 Schirmanschluss

Bild 3-8 Montagebeispiel: Power Module PM240-2 (Baugröße FSA) mit Schirmanschluss und Netzfilter

Tabelle 3-2 Befestigung Netzfilter für PM240-2 an der Montagefläche

Baugröße	Befestigung	Anzugsdrehmoment
FSA	4 x M4-Schrauben	2,5 Nm
FSB		
FSC	4 x M5-Schrauben	3 Nm

Tabelle 3-3 Befestigung Power Module PM240-2 am Netzfilter

Baugröße	Befestigung	Anzugsdrehmoment
FSA	3 x M4-Schrauben	2,5 Nm
FSB	4 x M4-Schrauben	2,5 Nm
FSC	4 x M5-Schrauben	3 Nm

3.7.7 Technische Daten

3.7.7.1 Technische Daten Netzfilter Blocksize

Tabelle 3-4 Technische Daten Netzfilter Blocksize PM240-2

Netzspannung 3 AC 380 480 V						
Netzfilter 6SL3203-		0BE17-7BA0	0BE21-8BA0	0BE23-8BA0		
Baugröße		FSA	FSB	FSC		
Passend zu Power		Netzspannung 3 AC 380 V	′ -10 % bis 480 V +10 %:			
Module		6SL3210-1PE11-8UL1 6SL3210-1PE12-3UL1 6SL3210-1PE13-2UL1 6SL3210-1PE14-3UL1 6SL3210-1PE16-1UL1 6SL3210-1PE18-0UL1 6SL3211-1PE18-0UL1	6SL3210-1PE21-1UL0 6SL3210-1PE21-4UL0 6SL3210-1PE21-8UL0 6SL3211-1PE21-8UL0	6SL3210-1PE22-7UL0 6SL3210-1PE23-3UL0 6SL3211-1PE23-3UL0		
Typleistung des Power Module	kW	4	7,5	18,5		
Bemessungsstrom	Α	11,4	23,5	49,4		
Verlustleistung	W	13	22	39		
Netzanschluss L1, L2, L3		Max. anschließbarer Querschnitt: 2,5 mm ² Anzugsdrehmoment: 0,6 0,8 Nm	Max. anschließbarer Querschnitt: 6 mm ² Anzugsdrehmoment: 1,5 1,8 Nm	Max. anschließbarer Querschnitt: 16 mm ² Anzugsdrehmoment: 2,0 2,3 Nm		
Lastanschluss L1', L2' L3', PE'		Leitung (einschließlich PE') am Netzfilter				
PE-Anschluss		Max. anschließbarer Querschnitt: 2,5 mm² Anzugsdrehmoment: 2 ±0,1 Nm	Max. anschließbarer Querschnitt: 6 mm² Anzugsdrehmoment: 2 ±0,1 Nm	Max. anschließbarer Querschnitt: 16 mm² Anzugsdrehmoment: 3 ±0,5 Nm		
Schutzart		IP20	IP20	IP20		
Gewicht	kg	1,75	4,0	7,3		

Tabelle 3-5 Technische Daten Netzfilter Blocksize PM340

Netzspannung 3 AC 380	. 480 \	V
Netzfilter 6SE6400-		2FA00-6AD0 FSA
Passend zu Power		6SL3210-1SE11-3UA0, 6SL3210-1SE11-7UA0
Module		6SL3210-1SE12-2UA0, 6SL3210-1SE13-1UA0
		6SL3210-1SE14-1UA0
Bemessungsstrom	Α	6
Verlustleistung	W	< 5
Netzanschluss L1, L2, L3		Schraubklemmen 2,5 mm ²
Lastanschluss U, V, W		Leitung geschirmt 4 x 1,5 mm² (einschließlich PE) 0,24 m lang
PE-Anschluss		Am Gehäuse über Bolzen M4
Schutzart		IP20 bzw. IPXXB
Gewicht, ca.	kg	0,5

3.7.7.2 Technische Daten Netzfilter Chassis

Tabelle 3- 6 Technische Daten Netzfilter Chassis

Bestellnummer	6SL3000-	0BE32-5AA0	0BE34-4AA0	0BE34-4AA0	0BE34-4AA0	0BE36-0AA0
Passend zu Power Module	6SL3310-	1TE32-1AAx	1TE32-6AAx	1TE33-1AAx	1TE33-8AAx	1TE35-0AAx
Typleistung des Power Module	kW	110	132	160	200	250
Bemessungsspannung	V	3 AC 38	30 -10 % 3 AC	480 +10 % (-15	% < 1 min), 47 .	63 Hz
Bemessungsstrom	Α	250	440	440	440	600
Verlustleistung	kW	0,015	0,047	0,047	0,047	0,053
Netz-/Lastanschluss L1, L2, L3, L1', L2', L3'		M10	M10	M10	M10	M10
PE-Anschluss		M8	M8	M8	M8	M10
Schutzart		IP00	IP00	IP00	IP00	IP00
Abmessungen Breite Höhe Tiefe	mm mm mm	360 240 116	360 240 116	360 240 116	360 240 116	400 265 140
Gewicht	kg	12,3	12,3	12,3	12,3	19,0

3.8.1 Beschreibung

Die Netzdrosseln begrenzen niederfrequente Netzrückwirkungen und entlasten die Gleichrichter der Power Modules. Sie werden eingesetzt, um Spannungsspitzen (Netzstörungen) zu glätten oder um Kommutierungs-Spannungseinbrüche zu überbrücken. Daher wird der Einsatz von Netzdrosseln in Verbindung mit Power Modules PM240-2, PM340 und Chassis empfohlen.

Die Netzdrosseln für die PM340 der Baugrößen FSA bis FSE sind als Unterbaukomponenten ausgeführt.

3.8.2 Sicherheitshinweise für Netzdrosseln

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

 Setzen Sie für die Netzdrosseln einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

NWARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume können zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand führen. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Komponenten auftreten.

 Halten Sie die Lüftungsfreiräume von 100 mm oberhalb und unterhalb der Komponente ein.

/VORSICHT

Verbrennungsgefahr durch hohe Oberflächentemperatur der Netzdrossel

Die Netzdrosseln können eine Oberflächentemperatur von über 80 °C erreichen. Beim Berühren der Oberfläche erleiden Sie schwere Verbrennungen.

 Montieren Sie die Netzdrossel so, dass ein Berühren ausgeschlossen ist. Wo dies nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung des Systems durch unzulässige Netzdrosseln

Eine unzulässige Netzdrossel kann zur Beschädigung des Systems und weiterer am selben Netz betriebener Verbraucher führen.

Verwenden Sie nur Netzdrosseln, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

Beschädigung der Netzdrossel durch vertauschte Anschlüsse

Die Vertauschung der Anschlüsse von Eingang und Ausgang führt zu einer Beschädigung der Netzdrossel.

- Schließen Sie die ankommende Netzleitung an 1L1, 1L2, 1L3 bzw. 1U1, 1V1, 1W1 an.
- Schließen Sie die abgehende Leitung zur Last an 2L1, 2L2, 2L3 bzw. 1U2, 1V2, 1W2 an.

Hinweis

Funktionsstörungen durch magnetische Felder

Drosseln erzeugen magnetische Felder, die Komponenten und Leitungen stören oder beeinflussen können.

 Ordnen Sie Komponenten und Leitungen in ausreichendem Abstand (mind. 200 mm) an oder schirmen Sie die magnetischen Felder entsprechend ab.

Hinweis

Anschlussleitungen

Halten Sie die Anschlussleitungen zum Power Module kurz (max. 5 m).

Verwenden Sie geschirmte Anschlussleitungen.

3.8.3 Maßbilder

Netzdrosseln Blocksize für PM240-2

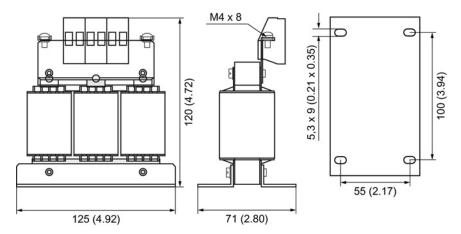


Bild 3-9 Maßbild Netzdrosseln, PM240-2 Baugröße FSA, 0,55 ... 1,1 kW, alle Angaben in mm und (inch)

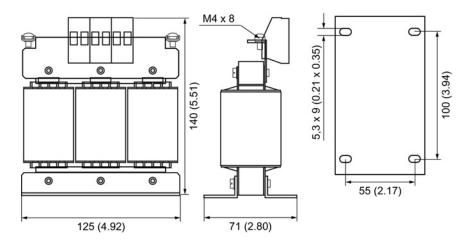


Bild 3-10 Maßbild Netzdrosseln, PM240-2 Baugröße FSA, 1,5 ... 4,0 kW, alle Angaben in mm und (inch)

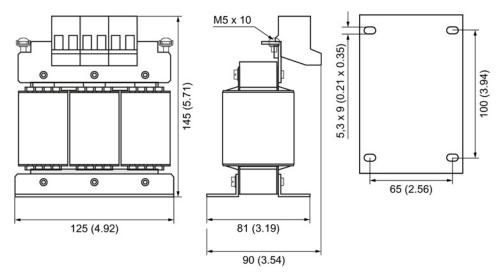


Bild 3-11 Maßbild Netzdrosseln, PM240-2 Baugröße FSB, 4,0 ... 7,5 kW, alle Angaben in mm und (inch)

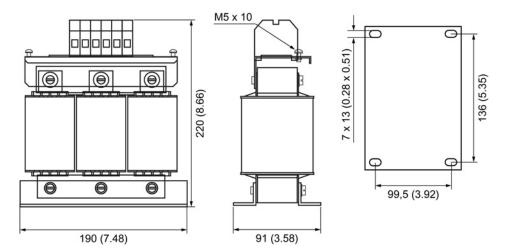
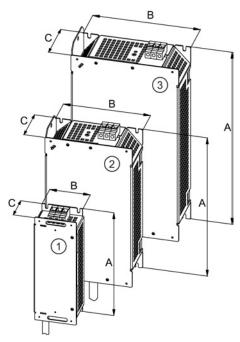



Bild 3-12 Maßbild Netzdrosseln, PM240-2 Baugröße FSC, 11 ... 15 kW, alle Angaben in mm und (inch)

Netzdrosseln Blocksize für PM340

- 1 Baugröße FSA
- ② Baugröße FSB
- 3 Baugröße FSC

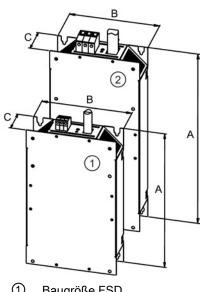

Bild 3-13 Maßbild Netzdrosseln, PM340 Baugröße FSA, FSB, FSC

Tabelle 3-7 Maße Netzdrosseln, PM340 Baugröße FSA, alle Angaben in mm (inch)

Netzdrossel 6SE6400-	3CC00-4AB3	3CC01-0AB3	3CC00-2AD3	3CC00-4AD3	3CC00-6AD3	
Baugröße	FSA					
А	200 (7.87)					
В	75 (2.95)					
С		50 (1.96)				

Tabelle 3-8 Maße Netzdrosseln, PM340 Baugröße FSB und FSC, alle Angaben in mm (inch)

Netzdrossel 6SL3203-	0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD23-5AA0
Baugröße	FSB		FS	SC
Α	270 (10.62)		336 (13.22)	336 (13.22)
В	153 (6.02)		189 (7.44)	189 (7.44)
С	70 (2.75)		50 (1.96)	80 (3.14)

- 1 Baugröße FSD
- 2 Baugröße FSE

Bild 3-14 Maßbild Netzdrosseln, PM340 Baugröße FSD, FSE

Tabelle 3-9 Maße Netzdrosseln, PM340 Baugröße FSD und FSE, alle Angaben in mm (inch)

Netzdrossel 6SL3203-	0CJ24-5AA0	0CD25-3AA0	0CJ28-6AA0
Baugröße	FS	FSE	
А	455 (577 (22.71)	
В	275 (275 (10.82)	
С	83,5	93,5 (3.68)	

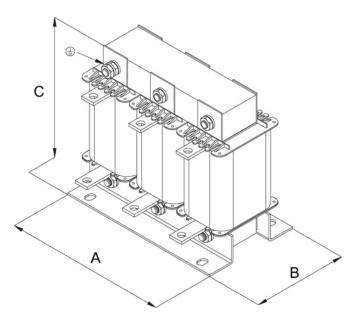
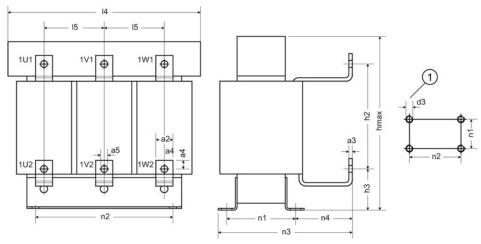



Bild 3-15 Maßbild Netzdrosseln, PM340 Baugröße FSF

Tabelle 3- 10 Maße Netzdrosseln, PM340 Baugröße FSF, alle Angaben in mm (inch)

Netzdrossel 6SE6400-	3CC11-2FD0 3CC11-7FD0				
Baugröße	FSF				
Α	240 (9.44)				
В	141 (5.55)				
С	228 (8.97)				

Netzdrosseln Chassis

① Montagelochung

Bild 3-16 Maßbild Netzdrosseln

Tabelle 3-11 Maße Netzdrosseln, alle Angaben in mm (inch)

6SL3000-	0CE32-3AA0	0CE32-8AA0	0CE33-3AA0	0CE35-1AA0
a2	25 (0.98)	25 (0.98)	25 (0.98)	30 (1.18)
a3	5 (0.19)	5 (0.19)	5 (0.19)	6 (0.23)
a4	12,5 (0.49)	12,5 (0.49)	12,5 (0.49)	15 (0.59)
a5	11 (0.43)	11 (0.43)	11 (0.43)	14 (0.55)
14	270 (10.62)	270 (10.62)	270 (10.62)	300 (11.81)
15	88 (3.46)	88 (3.46)	88 (3.46)	100 (3.93)
hmax	248 (9.76)	248 (9.76)	248 (9.76)	269 (10.59)
h2	150 (5.90)	150 (5.90)	150 (5.90)	180 (7.08)
h3	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)
n1 ¹⁾	101 (3.97)	101 (3.97)	101 (3.97)	118 (4.64)
n2 ¹⁾	200 (7.87)	200 (7.87)	200 (7.87)	224 (8.81)
n3	200 (7.87)	200 (7.87)	200 (7.87)	212,5 (8.36)
n3	84,5 (3.32)	84,5 (3.32)	84,5 (3.32)	81 (3.19)
d3	M8	M8	M8	M8

¹⁾ Die Längen n1 und n2 entsprechen dem Bohrlochabstand.

3.8.4 Montage

Netzdrosseln Blocksize für PM240-2

Die Netzdrosseln für Power Modules PM240-2 der Baugrößen FSA bis FSC sind zur Montage im Schaltschrank ausgelegt. Die Netzdrossel wird auf der Montagefläche neben dem Power Module montiert. Der Netzanschluss erfolgt über Klemmen an der Netzdrossel.

Tabelle 3- 12 Befestigung Netzdrossel für PM240-2 an der Montagefläche

Baugröße	Befestigung	Anzugsdrehmoment
FSA	4 x M5-Schrauben	6 Nm
FSB	4 x M5-Muttern 4 x M5-Unterlegscheiben	
FSC	4 x M6-Schrauben 4 x M6-Muttern 4 x M6-Unterlegscheiben	10 Nm

Netzdrosseln Blocksize für PM340

Die Netzdrosseln für Power Modules PM340 der Baugrößen FSA bis FSE sind als Unterbaukomponenten ausgelegt. Dabei wird die Netzdrossel auf der Montagefläche befestigt und das Power Module Platz sparend auf der Netzdrossel montiert. Die Leitungen zum Power Module sind bereits an der Netzdrossel angeschlossen. Der Netzanschluss erfolgt über Klemmen an der Netzdrossel.

Bei den Baugrößen FSA bis FSC befinden sich die Netzklemmen im eingebauten Zustand oben, bei den Baugrößen FSD und FSE unten.

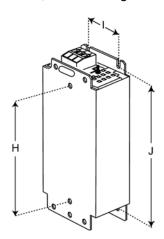


Bild 3-17 Montagemaße Netzdrossel PM340, Baugröße FSA

Tabelle 3- 13 Montagemaße Netzdrossel PM340, Baugröße FSA, alle Angaben in mm und (inch)

Netzdrossel 6SE6400-	3CC00-4AB3	3CC01-0AB3	3CC00-2AD3	3CC00-4AD3	3CC00-6AD3
Baugröße	FSA				
Н	160 (6.29)				
I	56 (2.20)				
J	187 (7.36)				
Befestigungsschrauben	M4 / 1,1 Nm				

Bild 3-18 Montagemaße Netzdrossel PM340, Baugröße FSB und FSC

Tabelle 3- 14 Montagemaße Netzdrossel PM340, Baugröße FSB und FSC, alle Angaben in mm und (inch)

Netzdrossel 6SL3203-	0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD22-2AA0	0CD23-5AA0
Baugröße	FSB			FS	С
G	133 (5.24)			174 (6.85)
Н	258 (10.16)			204 (3.03)
I	133 (5.24)			156 (6.14)
J	258 (10.16)			232 (9.13)
Befestigungsschrauben	M4 / 1,5 Nm		M5 / 2,	25 Nm	

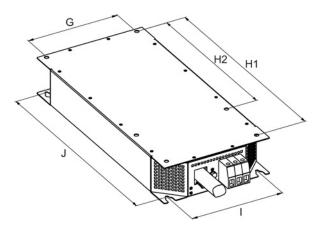


Bild 3-19 Montagemaße Netzdrossel PM340, Baugröße FSD und FSE

Tabelle 3- 15 Montagemaße Netzdrossel PM340, Baugröße FSD und FSE, alle Angaben in mm und (inch)

Netzdrossel 6SL3203-	0CD25-3AA0	0CJ24-5AA0	0CJ28-6AA0
Baugröße	FSD		FSE
G	235 (9.25)	235 (9.25)	235 (9.25)
H1	325 (12.79)	325 (12.79)	405 (15.95)
H2	419 (16.50)	419 (16.50)	541 (21.30)
I	235 (9.25)	235 (9.25)	235 (9.25)
J	421 (16.57)	421 (16.57)	544 (21.42)
Befestigungsschrauben	4 x M8 / 13 Nm		4 x M8 / 13 Nm

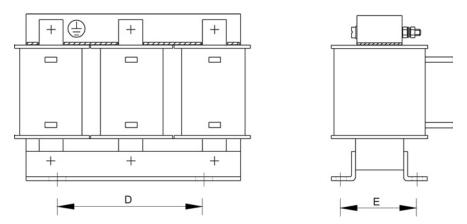
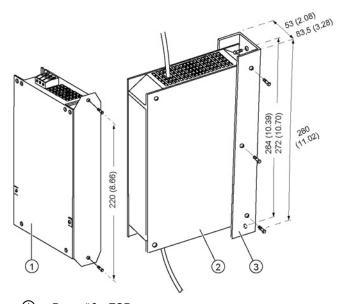


Bild 3-20 Montagemaße Netzdrossel PM340, Baugröße FSF


Tabelle 3- 16 Montagemaße Netzdrossel PM340, Baugröße FSF, alle Angaben in mm und (inch)

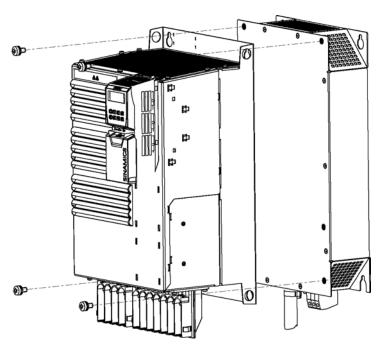
Netzdrossel 6SE6400-	3CC11-2FD0	3CC11-7FD0	
Baugröße	FSF		
D	185 (7.28)		
E	95 (3.74)		
Befestigungsschrauben	4 x M8 / 13 Nm		

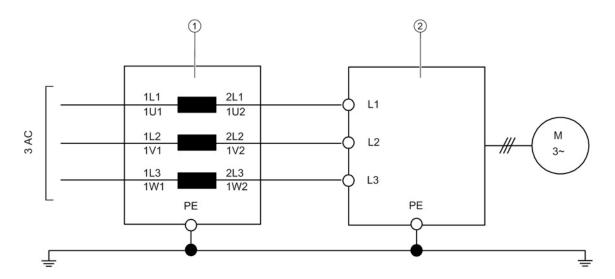
Montagebeispiele

Bild 3-21 Montage PM340 mit Netzdrossel am Beispiel der Baugröße FSB

- ① Baugröße FSB
- ② Baugröße FSC
- 3 Seitlicher Montagehalter

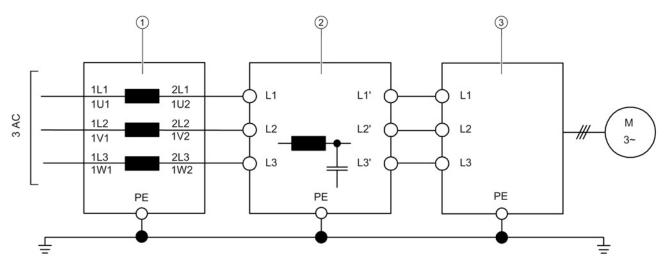
Bild 3-22 Seitliche Montage der Netzdrosseln für Baugröße FSB und FSC




Bild 3-23 Montage PM340 mit Netzdrossel am Beispiel der Baugröße FSD

Netzdrosseln Chassis

Die Netzdrosseln für die Power Modules der Baugrößen FSF, FX und GX werden aufgrund ihres Gewichts und ihrer Größe separat montiert.


3.8.5 Elektrischer Anschluss

Netz-/Lastanschluss

- Netzdrossel
- 2 Power Module

Bild 3-24 Power Module mit Netzdrossel

- 1 Netzdrossel
- 2 Netzfilter
- 3 Power Module

Bild 3-25 Power Module mit Netzdrossel und Netzfilter

3.8 Netzdrosseln

3.8.6 Technische Daten

3.8.6.1 Netzdrosseln Blocksize

Tabelle 3- 17 Technische Daten Netzdrosseln Blocksize PM240-2

Bestellnummer 6S3203-		0CE13-2AA0	0CE21-0AA0	0CE21-8AA0	0CE23-8AA0			
Baugröße		FSA	FSA	FSB	FSC			
Passend zu Power		Netzspannung 1 AC 2	Netzspannung 1 AC 200 V -10 % bis 240 V +10 %:					
Module ¹⁾		6SL3210- 1PB13-0xL0 1PB13-8xL0	6SL3210- 1PB15-5xL0 1PB17-4xL0	6SL3210- 1PB21-4xL0 1PB21-8xL0	6SL3210- 1PC22-2xL0 1PC22-8xL0			
			1PB21-0xL0 6SL3211- 1PB21-0xL0	6SL3211- 1PB21-8xL0	6SL3211- 1PC22-2xL0			
		Netzspannung 3 AC 3	80 V -10 % bis 480 V	+10 %:				
		6SL3210- 1PE11-8xL1 1PE12-3xL1 1PE13-2xL1	6SL3210- 1PE14-3xL1 1PE16-1xL1 1PE18-0xL1 6SL3211- 1PE18-0xL1	6SL3210- 1PE21-1xL0 1PE21-4xL0 1PE21-8xL0 6SL3211- 1PE21-8xL0	6SL3210- 1PE22-7xL0 1PE23-3xL0 6SL3211- 1PE23-3xL0			
Induktivität	mH	2,5	1,0	0,5	0,3			
Typleistung des Power Module	kW	0,55 1,1	1,5 4,0	4,0 7,5	11 15			
Bemessungsstrom	Α	4,0	11,3	22,3	47,0			
Verlustleistung 50/60 Hz	W	23 / 25,3	36 / 39,6	53 / 58,3	88 / 96,8			
Netz-/Lastanschluss 1L1, 1L2,1L3 2L1, 2L2, 2L3		Max. anschließbarer Querschnitt: 2,5 mm² Anzugsdrehmoment: 0,6 0,8 Nm	Max. anschließbarer Querschnitt: 2,5 mm² Anzugsdrehmo- ment: 0,6 0,8 Nm	Max. anschließbarer Querschnitt: 6 mm² Anzugsdrehmo- ment: 1,5 1,8 Nm	Max. anschließbarer Querschnitt: 16 mm² Anzugsdrehmo- ment: 2,0 4,0 Nm			
PE-Anschluss		Art: Bolzen M4 Anzugsdrehmoment: 3 Nm	Art: Bolzen M4 Anzugsdrehmo- ment: 3 Nm	Art: Bolzen M5 Anzugsdrehmo- ment: 5 Nm	Art: Bolzen M5 Anzugsdrehmo- ment: 5 Nm			
Schutzart		IP20	IP20	IP20	IP20			
Gewicht	kg	1,1	2,1	2,95	2,95			

 $^{^{1)}}$ x = A: Power Module mit integriertem Netzfilter, x = U: Power Module ohne integriertes Netzfilter

Tabelle 3- 18 Technische Daten Netzdrosseln Blocksize PM340, Baugröße FSA

Netzspannung 1 AC 200 V -10 % bis 240 V +10 %						
Bestellnummer 6SE6400-		3CC00-4AB3	3CC01-0AB3			
Passend zu Power Module 6SL3210-		1SB11-0xxx 1SB12-3xxx	1SB14-0xxx			
Bemessungsstrom	Α	3,4	8,1			
Verlustleistung 50/60 Hz	W	12,5 / 15	11,5 / 14,5			
Netzanschluss L1, N		Schraubklemmen 6 mm ²	Schraubklemmen 6 mm ²			
Lastanschluss L1, N		Leitung 3 x 1,5 mm² (einschl. PE) Länge ca. 0,38 m	Leitung 3 x 1,5 mm ² (einschl. PE) Länge ca. 0,38 m			
PE-Anschluss		Bolzen M5	Bolzen M5			
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB			
Gewicht	kg	1,3	1,3			

Tabelle 3- 19 Technische Daten Netzdrosseln Blocksize PM340, Baugröße FSA

Netzspannung 3 AC 380 V -10 % bis 480 V +10 %						
Bestellnummer 6SE6400-		3CC00-2AD3	3CC00-4AD3	3CC00-6AD3		
Passend zu Power Module 6SL3210-		1SE11-3UA0 1SE11-7UA0	1SE12-2UA0 1SE13-1UA0	1SE14-1UA0		
Bemessungsstrom	Α	1,9	3,5	4,8		
Verlustleistung 50/60 Hz	W	6 / 7	12,5 / 15	7,5 / 9		
Netzanschluss U1, V1, W1		Schraubklemme 6 mm ²	Schraubklemme 6 mm ²	Schraubklemme 6 mm ²		
Lastanschluss 1U2, 1V2, 1W2		Leitung 4 x 1,5 mm ² Länge ca. 0,38 m	Leitung 4 x 1,5 mm ² Länge ca. 0,38 m	Leitung 4 x 1,5 mm ² Länge ca. 0,38 m		
PE-Anschluss		Am Gehäuse mit Bolzen M5	Am Gehäuse mit Bolzen M5	Am Gehäuse mit Bolzen M5		
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB		
Gewicht	kg	1,2	1,3	1,3		

3.8 Netzdrosseln

Tabelle 3-20 Technische Daten Netzdrosseln Blocksize PM340, Baugrößen FSB und FSC

Netzspannung 3 AC 380 V -10 % bis 480 V +10 %							
Baugröße		FSB		FSC			
Bestellnummer 6SL3203-		0CD21-0AA0	0CD21-4AA0	0CD22-2AA0	0CD23-5AA0		
Passend zu Power Module 6SL3210-		1SE16-0xxx 1SE17-7xxx	1SE21-0xxx	1SE21-8xxx 1SE22-5xxx	1SE23-2xxx		
Bemessungsstrom	Α	9	11,6	25	31,3		
Verlustleistung 50/60 Hz	W	9 / 11	27 / 32	98 / 118	37 / 44		
Netzanschluss U1, V1, W1		Schraubklemme 6 mm ²	Schraubklemme 6 mm ²	Schraubklemme 6 mm ²	Schraubklemme 6 mm ²		
Lastanschluss 1U2, 1V2, 1W2		Leitung 4 x 1,5 mm ² Länge ca. 0,46 m	Leitung 4 x 1,5 mm ² Länge ca. 0,46 m	Leitung 4 x 2,5 mm ² Länge ca. 0,49 m	Leitung 4 x 2,5 mm ² Länge ca. 0,49 m		
PE-Anschluss		Am Gehäuse mit Bolzen M5					
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB		
Gewicht	kg	3,4	3,4	6,3	6,4		

Tabelle 3-21 Technische Daten Netzdrosseln Blocksize PM340, Baugrößen FSD, FSE und FSF

Netzspannung 3 AC 380 V -10 % bis 480 V +10 %							
Baugröße		FSD		FSE	FSF		
Bestellnummer	6SL3203- 0CJ24-5AA0		6SL3203- 0CD25-3AA0 6SL3203- 0CJ28-6AA0		6SE6400- 3CC11-2FD0	6SE6400- 3CC11-7FD0	
Passend zu Power Module 6SL3210- 6SL3215-		1SE23-8xxx 1SE24-5xxx 1SE23-8UAx	1SE26-0xxx 1SE26-0UAx	1SE27-5xxx 1SE31-0xxx 1SE27-5UAx 1SE31-0UAx	1SE31-1xxx 1SE31-5xxx 1SE31-1UAx	1SE31-8xxx 1SE31-8UAx	
Bemessungs- strom	Α	54	71	105	178	225	
Verlustleistung 50/60 Hz	W	90 / 115	90 / 115	170 / 215	280 / 360	280 / 360	
Netzanschluss U1, V1, W1		Schraubklemme 16 mm ²	Schraubklemme 16 mm ²	Schraubklemme 50 mm ²	Flachanschluss für Kabelschuh M10	Flachanschluss für Kabelschuh M10	
Lastanschluss 1U2, 1V2, 1W2		Leitung 4 x 16 mm ² Länge ca. 0,70 m	Leitung 4 x 16 mm ² Länge ca. 0,70 m	Leitung 4 x 35 mm ² Länge ca. 0,70 m	Flachanschluss für Kabelschuh M10	Flachanschluss für Kabelschuh M10	
PE-Anschluss		Am Gehäuse mit Schraube M8	Am Gehäuse mit Schraube M8	Am Gehäuse mit Schraube M8	Am Gehäuse mit Bolzen M8	Am Gehäuse mit Bolzen M8	
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP00	IP00	
Gewicht	kg	13	13	19	25	25	

3.8.6.2 Netzdrosseln Chassis

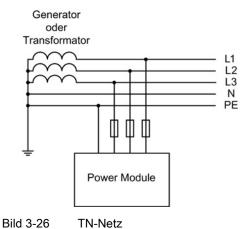
Tabelle 3- 22 Technische Daten Netzdrosseln Chassis

Bestellnummer	6SL3000-	0CE32-3AA0	0CE32-8AA0	0CE33-3AA0	0CE35-1AA0	0CE35-1AA0
Passend zu Power Module	6SL3310-	1TE32-1AAx	1TE32-6AAx	1TE33-1AAx	1TE33-8AAx	1TE35-0AAx
Bemessungsstrom des Power Module	A	210	260	310	380	490
Bemessungsspannung	V	3 AC 380 - 10 % 3 AC 480 + 10 % (-15 % < 1 min), 47 63 Hz				·lz
I _{thmax}	Α	224	278	331	508	508
Verlustleistung	kW	0,274	0,247	0,267	0,365	0,365
Netz-/Lastanschluss 1U1, 1V1, 1W1, 1U2, 1V2, 1W2		Anschluss- laschen M10	Anschluss- laschen M10	Anschluss- laschen M10	Anschluss- laschen M12	Anschluss- laschen M12
PE-Anschluss		Schraube M6	Schraube M6	Schraube M6	Schraube M6	Schraube M6
Schutzart		IP00	IP00	IP00	IP00	IP00
Gewicht	kg	24,5	26	27,8	38	38

3.9 Netzanschaltungsvarianten

3.9.1 Betrieb an unterschiedlichen Netzformen

Die Power Modules sind für die folgenden Stromverteilungssysteme gemäß IEC 60364-1 ausgelegt.


Hinweis

Ab einer Aufstellhöhe von 2000 m müssen Sie die Hinweise im Kapitel Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe (Seite 37) beachten.

TN-Netz

In einem TN-System ist ein Punkt des Generators bzw. Transformators geerdet - in der Regel ist dies der Sternpunkt. Das Gehäuse des Verbrauchers ist ebenfalls über diese Leitung mit der Erde verbunden.

Neutral- und Schutzleiter können dabei getrennt (N / PE) oder zusammen (PEN) geführt werden.

- Power Modules ohne Netzfilter können an allen TN-Netzen betrieben werden.
- Power Modules mit integriertem oder externem Netzfilter k\u00f6nnen nur an TN-Netzen mit geerdetem Sternpunkt betrieben werden.

TT-Netz

In einem TT-System ist ein Punkt des Generators bzw. Transformators geerdet - in der Regel ist dies der Sternpunkt. Das Gehäuse des Verbrauchers ist mit einer separaten Leitung mit der Erde verbunden.

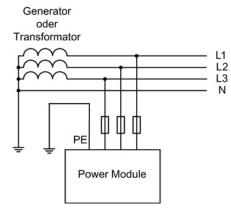
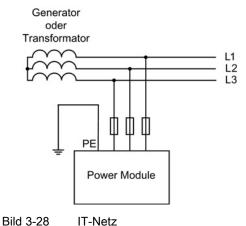



Bild 3-27 TT-Netz

- Power Modules ohne Netzfilter können an allen TT-Netzen betrieben werden.
- Power Modules mit integriertem oder externem Netzfilter k\u00f6nnen nur an TT-Netzen mit geerdetem Sternpunkt betrieben werden.

IT-Netz

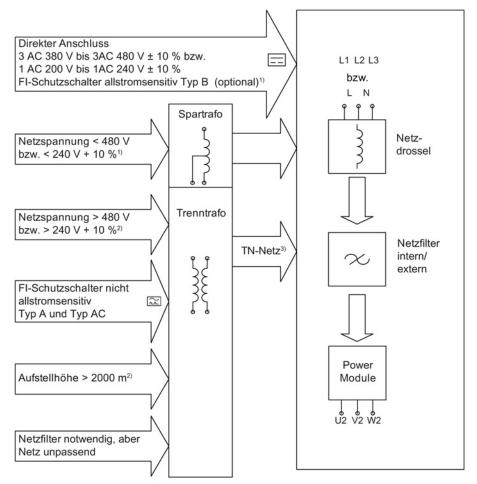
In einem IT-System ist das Spannungsnetzwerk nicht oder nur über eine hochohmige Impedanz mit der Erde verbunden. Das Gehäuse des Verbrauchers ist mit einer separaten Leitung mit der Erde verbunden.

- Power Modules ohne Netzfilter können an allen IT-Netzen betrieben werden.
- Power Modules mit integriertem oder externem Netzfilter können nicht an IT-Netzen betrieben werden.

3.9 Netzanschaltungsvarianten

ACHTUNG

Beschädigung des Antriebsverbandes beim Betrieb am IT-Netz ohne Motordrossel


Wenn der Antriebsverband ohne Motordrossel in einem IT-Netz betrieben wird, kann ein Erdschluss auf der Motorseite der Power Modules zu einer Beschädigung des Antriebsverbandes oder dem Auslösen der Überstromschutzeinrichtungen führen.

• Betreiben Sie die Power Modules an IT-Netzen immer mit Motordrosseln.

3.9.2 Möglichkeiten der Netzanschaltung

Folgende Netzanschaltungsarten werden unterschieden:

- Direkter Betrieb der Netzanschaltungskomponenten am Netz
- Betrieb der Netzanschaltungskomponenten über einen Spartransformator
- Betrieb der Netzanschaltungskomponenten über einen Trenntransformator

- 1) TN- oder TT-Netze mit geerdetem Sternpunkt oder IT-Netzte mit Überwachung
- 2) Netzsystem beliebig
- Mit geerdetem Sternpunkt

Bild 3-29 Übersicht der Netzanschaltungsvarianten

/!\GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Trenntransformator

Um eine sichere elektrische Trennung zu realisieren, muss bei hohen Spannungen ein Trenntransformator eingesetzt werden.

 Installieren Sie einen Trenntransformator bei Spannungen > 3 AC 480 V +10 % oder 1 AC 240 V + 10 %.

3.9 Netzanschaltungsvarianten

Hinweis

Netzanschaltung von Motoren

Die Motoren sind in Zusammenhang mit dem Antriebssystem generell für den Betrieb an TNund TT-Netzen mit geerdetem Sternpunkt und an IT-Netzen zugelassen.

Bei Betrieb an IT-Netzen muss das Auftreten eines ersten Fehlers zwischen einem aktiven Teil und der Erde durch eine Überwachungseinrichtung gemeldet werden. Um die temporäre Überlastung der Motorisolation zu minimieren, muss der erste Fehler so schnell wie möglich beseitigt werden.

Bei allen anderen Netzen außer TN- und TT-Netzen mit geerdetem Sternpunkt und IT-Netzen, z. B. Netze mit geerdetem Außenleiter, ist ein Trenntransformator mit geerdetem Sternpunkt (Sekundärseite) zwischen Netz und Antriebssystem zu schalten, um eine dauerhafte unzulässige Beanspruchung der Motorisolierung zu vermeiden.

3.9.3 Betrieb der Netzanschaltungskomponenten am speisenden Netz

Das SINAMICS S-Antriebssystem ist für den direkten Betrieb an TN- und TT-Netzsystemen mit geerdetem Sternpunkt sowie ohne Netzfilter an IT-Netzsystemen mit Bemessungsspannungen von 3 AC 380 V bis 3 AC 480 V bzw. 1 AC 200 V bis 1 AC 240 V ausgelegt.

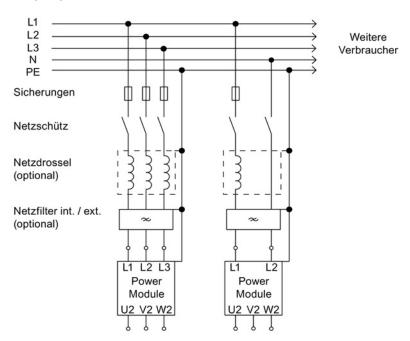


Bild 3-30 Direkter Betrieb am speisenden Netz

Betrieb einphasiger Geräte an der Netzform Single Phase Grounded Midpoint

Für den Betrieb einphasiger Geräte (1 AC 230 V) an der in den USA gebräuchlichen Netzform Single Phase Grounded Midpoint gilt folgende Netzanschaltung:

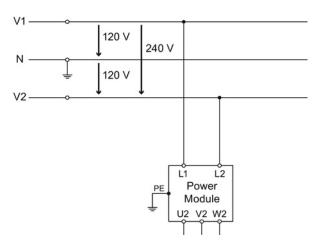


Bild 3-31 Direkter Betrieb an Single Phase Grounded Midpoint

3.9.4 Betrieb der Netzanschaltungskomponenten über einen Spartransformator

Ein Spartransformator kann im Bereich bis 3 AC 480 V +10 % bzw. 1 AC 240 V +10 % zur Spannungsanpassung genutzt werden.

Anwendungsfall:

• Die Motorisolation muss vor zu hohen Spannungen geschützt werden.

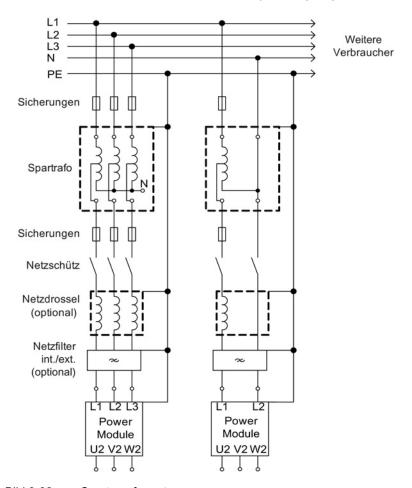


Bild 3-32 Spartransformator

3.9.5 Betrieb der Netzanschaltungskomponenten über einen Trenntransformator

Mit dem Trenntransformator wird die Netzform der Anlage (z. B. IT-Netz) in ein TN-Netz mit geerdetem Sternpunkt umgewandelt. Eine zusätzliche Spannungsanpassung an den zulässigen Spannungstoleranzbereich ist möglich.

In folgenden Fällen muss ein Trenntransformator eingesetzt werden:

- Die Isolation des Power Module und/oder des Motors ist für die auftretenden Spannungen nicht geeignet.
- Die Verträglichkeit mit einer vorhandenen FI-Schutzeinrichtung ist nicht gegeben.
- Die Aufstellhöhe ist größer als 2000 m über NN.
- Ein Netzfilter soll in einem Netzsystem eingesetzt werden, das kein TN- bzw. TT-Netzsystem mit geerdetem Sternpunkt ist.

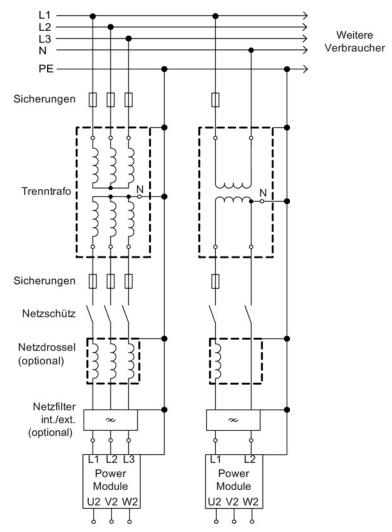


Bild 3-33 Trenntransformator

3.9 Netzanschaltungsvarianten

Power Modules 4

4.1 Sicherheitshinweise für Power Modules

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag wegen Restladung der Zwischenkreiskondensatoren

Durch die Zwischenkreiskondensatoren steht noch für bis zu 5 Minuten nach dem Abschalten der Versorgung gefährliche Spannung im Zwischenkreis an.

Das Berühren spannungsführender Teile führt zum Tod oder schweren Verletzungen.

- Führen Sie Arbeiten an den Komponenten erst nach Ablauf dieser Zeit durch.
- Messen Sie die Spannung vor Beginn der Arbeiten an den Zwischenkreisklemmen DCP und DCN.

/!\WARNUNG

Lebensgefahr durch gefährliche Spannung beim Anschluss einer nicht geeigneten Stromversorgung

Beim Berühren unter Spannung stehender Teile können Sie im Fehlerfall Tod oder schwere Verletzungen erleiden.

 Verwenden Sie zum Betrieb der Power Modules nur die vorgesehene Versorgungsspannung.

4.1 Sicherheitshinweise für Power Modules

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei nicht abgedeckten Klemmen (bei Baugrößen FSD bis FSF)

Das Berühren von unter Spannung stehenden Klemmen kann zu Tod oder schweren Verletzungen führen.

- Stellen Sie vor dem Beginn der Anschlussarbeiten sicher, dass das Power Module spannungsfrei ist.
- Bringen Sie nach dem Anschließen der Netz- und Motorleitungen an die entsprechenden Klemmen die vorderen Abdeckungen in die geschlossene Stellung zurück und rasten Sie sie ein.
- Schließen Sie das Power Module erst danach an die Versorgungsspannung an.

/ WARNUNG

Lebensgefahr bei Unterbrechen des externen Schutzleiters durch hohe Ableitströme

Die Antriebskomponenten führen einen hohen Ableitstrom über den Schutzleiter. Das Berühren leitfähiger Teile kann bei Unterbrechung des Schutzleiters zum Tod oder schweren Verletzungen führen.

- Sorgen Sie dafür, dass der externe Schutzleiter zumindest eine der nachfolgenden Bedingungen erfüllt:
 - Er ist gegen mechanische Beschädigung geschützt verlegt.¹⁾
 - Bei einem Einzelleiter weist er einen Querschnitt von mindestens 10 mm² Cu auf.
 - Als Ader eines Mehraderkabels weist er einen Querschnitt von mindestens 2,5 mm²
 Cu auf.
 - Er weist einen parallelen zweiten Schutzleiter mit gleichem Querschnitt auf.
 - Er entspricht den örtlichen Vorschriften für Ausrüstungen mit erhöhtem Ableitstrom.
 - ¹⁾ Innerhalb von Schaltschränken oder geschlossenen Maschinengehäusen verlegte Leitungen gelten als ausreichend geschützt gegen mechanische Beschädigungen.

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente oder Vibrationen können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

- Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss, Zwischenkreisverbindungen.
- Prüfen Sie in regelmäßigen Abständen die Anzugsdrehmomente aller Leistungsverbindungen und ziehen Sie diese entsprechend nach. Dies gilt insbesondere nach einem Transport.

Hinweis

Funktionsstörungen an Fremdgeräten durch hochfrequente Störungen in Wohnumgebungen

In der 1. Umgebung Kategorie C2 gemäß EMV-Produktnorm IEC 61800-3 (Wohn-, Geschäfts- und Gewerbebereich) kann das Gerät hochfrequente Störungen verursachen, die Funktionsstörungen bei anderen Geräten hervorrufen können.

 Lassen Sie die Installation und Inbetriebnahme mit geeigneten Entstörmaßnahmen durch Fachpersonal durchführen.

Hinweis

Anschlussgenehmigung

Power Modules sind für den Einsatz im Industriebereich konzipiert und erzeugen aufgrund der Gleichrichterschaltung Stromoberschwingungen auf der Netzseite.

Beim Anschluss einer Maschine mit eingebauten Power Modules an das öffentliche Niederspannungsnetz ist vom zuständigen Energieversorgungsunternehmen eine Anschlussgenehmigung zu beantragen, wenn

- der Bemessungs-Eingangsstrom der Maschine ≤ 16 A je Leiter und
- der Bemessungs-Eingangsstrom der Maschine die Anforderungen der EN 61000-3-2 bezüglich Stromoberschwingungen nicht erfüllt.

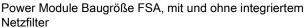
Hinweis

Bei Aufbau eines UL-approbierten Systems dürfen nur UL-approbierte Leitungen eingesetzt werden.

4.2.1 Beschreibung

Die Power Modules der Bauform Blocksize sind folgendermaßen aufgebaut:

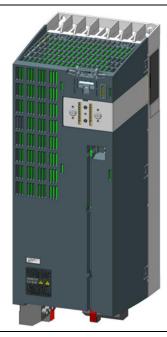
- Netzseitiger Diodengleichrichter
- · Zwischenkreis-Elektrolytkondensatoren mit Vorladeschaltung
- Ausgangs-Wechselrichter
- Brems-Chopper f
 ür (externen) Bremswiderstand
- Stromversorgung DC 24 V / 1 A
- Steuersatz, Istwerterfassungen
- Lüfter zur Entwärmung der Leistungshalbleiter


Die Power Modules decken den Leistungsbereich von 0,55 kW bis 15 kW ab und sind in Ausführungen mit und ohne Netzfilter erhältlich.

Die Power Modules PM240-2 sind für den Einbau im Schaltschrank ausgelegt und in folgenden Kühlvarianten verfügbar:

- Einbaugerät mit interner Luftkühlung
- Push Through-Gerät mit externer Luftkühlung

Tabelle 4- 1 Übersicht Power Modules PM240-2 (Auswahl)


Power Module Push Through Baugröße FSA, mit und ohne integriertem Netzfilter

Power Module Baugröße FSB, mit und ohne integriertem Netzfilter

Power Module Push Through Baugröße FSB, mit und ohne integriertem Netzfilter

Power Module Push Through Baugröße FSC, mit und ohne integriertem Netzfilter

4.2.2 Sicherheitshinweise für Power Modules 240-2

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen und Montageabständen

Unzureichende Lüftungsfreiräume und Montageabstände führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

- Montieren Sie die Power Modules immer senkrecht mit unten liegenden Netz- und Motoranschlüssen.
- Halten Sie bei der Montage 1 mm Abstand zwischen den Komponenten ein.
- Halten Sie folgende Lüftungsfreiräume oberhalb und unterhalb der Komponente ein:
 - Oberhalb: 80 mm (3.15 inch)
 - Unterhalb: 100 mm (3.93 inch)
- Bauen Sie Geräte, die den Kühlluftstrom behindern könnten, nicht in diesem Bereich ein
- Achten Sie darauf, dass der Kühlluftstrom die Power Modules ungehindert durchströmen kann.

4.2.3 Schnittstellenbeschreibung

4.2.3.1 Übersicht

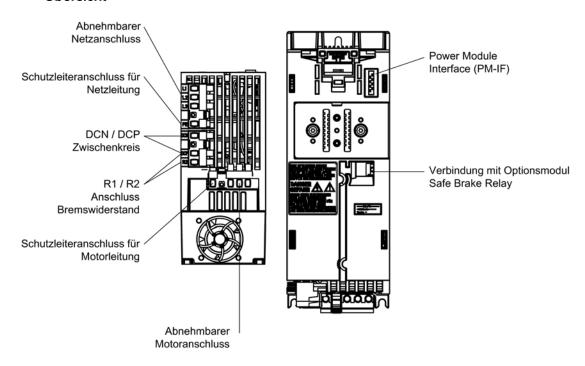


Bild 4-1 PM240-2, Baugröße FSA (Ansicht von unten und vorne)

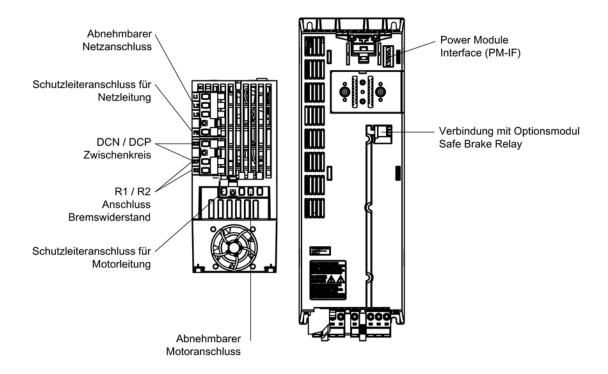


Bild 4-2 PM240-2, Baugröße FSB (Ansicht von unten und vorne)

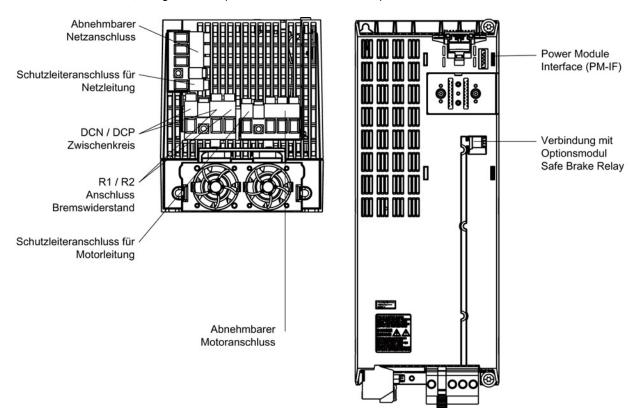


Bild 4-3 PM240-2, Baugröße FSB (Ansicht von unten und vorne)

4.2.3.2 Anschlussbeispiel

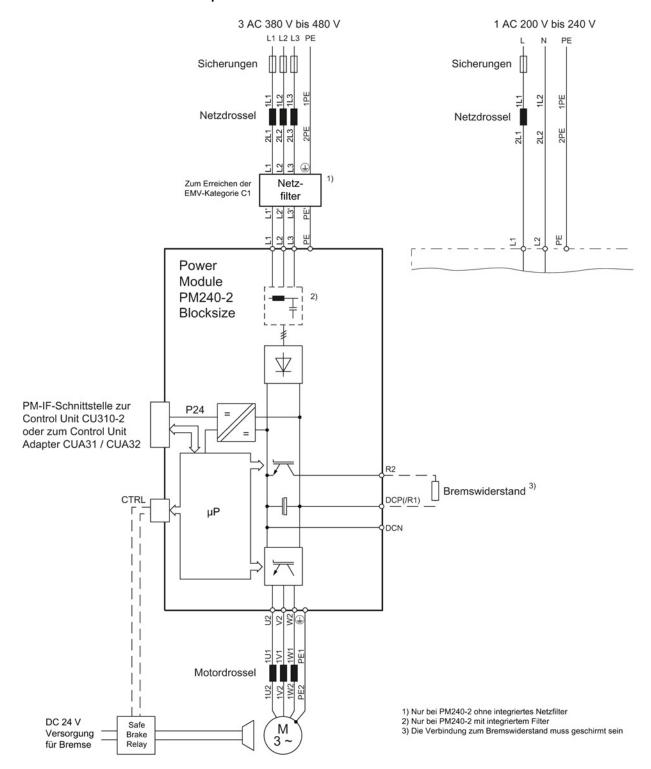


Bild 4-4 Anschlussbeispiel PM240-2

4.2.3.3 Netzanschluss

Tabelle 4-2 Abnehmbarer Netzanschluss-Stecker

	Klemme	Signalname	Technische Angaben
	1	L1	Außenleiter L1
	2	L2	Außenleiter L2
0000	3	L3	Außenleiter L3
1 2 3 4	4	PE	PE-Anschluss
1 2 3 4		_	

4.2.3.4 Bremswiderstand und Zwischenkreis-Anschluss

Tabelle 4-3 Abnehmbarer Bremswiderstand- und Zwischenkreisanschluss-Stecker

	Klemme	Signalname	Technische Angaben
	1	DCN	DC-Zwischenkreis negativ
	2	DCP/R1	DC-Zwischenkreis positiv und positiver Anschluss für Bremswiderstand
1 2 3	3	R2	Negativer Anschluss für Bremswiderstand

4.2.3.5 Motoranschluss

Tabelle 4-4 Abnehmbarer Motoranschluss-Stecker

	Klemme	Signalname	Technische Angaben
	1		PE-Anschluss
	2	U2	Motorphase U
	3	V2	Motorphase V
1 2 3 4	4	W2	Motorphase W

4.2.3.6 Safe Brake Relay-Anschluss

Tabelle 4-5 Stecker

Klemme	Bezeichnung	Technische Angaben
1	Low	Low-Signal Safe Brake Relay an PM240-2
2	High	High-Signal Safe Brake Relay an PM240-2

Hinweis

Weitere Informationen finden Sie im Kapitel Optionsmodul Safe Brake Relay (Seite 382).

4.2.4 Maßbilder

Power Modules Baugröße FSA / FSB / FSC

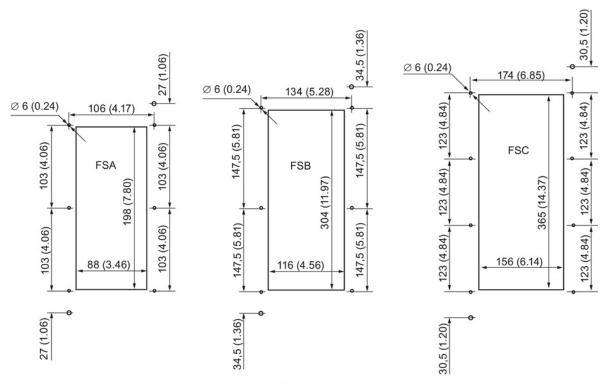



Bild 4-5 Bohrbild Power Modules PM240-2, Baugrößen FSA, FSB, FSC; alle Angaben in mm und (inch)

- Befestigungsbohrungen für das PM240-2, \varnothing 6 (0.24)
- o Befestigungsbohrungen für den Montagerahmen, Ø 6 (0.24)

Bild 4-6 Bohrbild Power Modules PM240-2 Push Through, Baugrößen FSA, FSB, FSC; alle Angaben in mm und (inch)

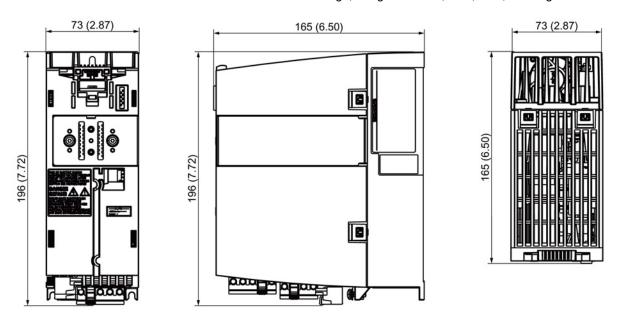


Bild 4-7 Maßbild Power Modules PM240-2, Baugröße FSA, alle Angaben in mm und (inch)

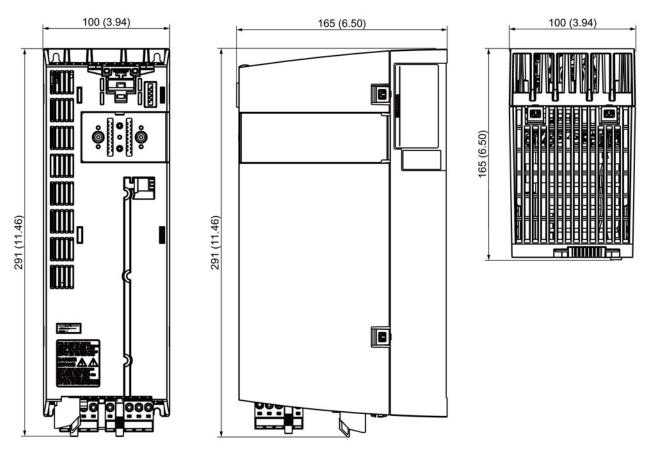


Bild 4-8 Maßbild Power Modules PM240-2, Baugröße FSB, alle Angaben in mm und (inch)

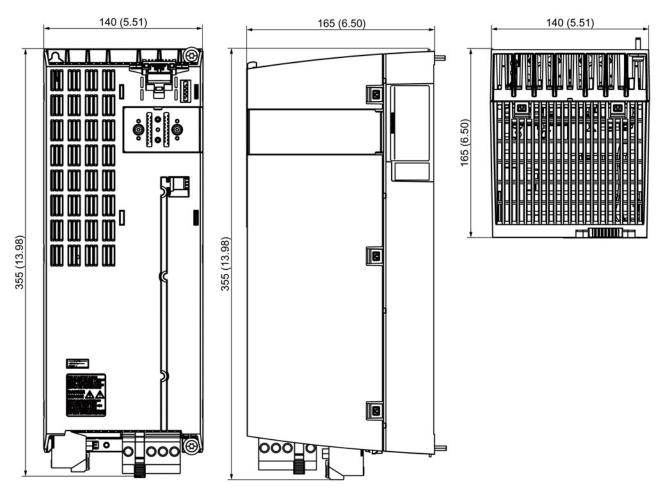


Bild 4-9 Maßbild Power Modules PM240-2, Baugröße FSC, alle Angaben in mm und (inch)

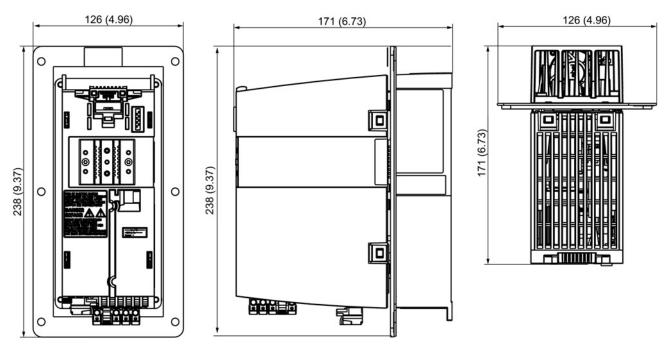


Bild 4-10 Maßbild Power Modules PM240-2 Push Through, Baugröße FSA, alle Angaben in mm und (inch)

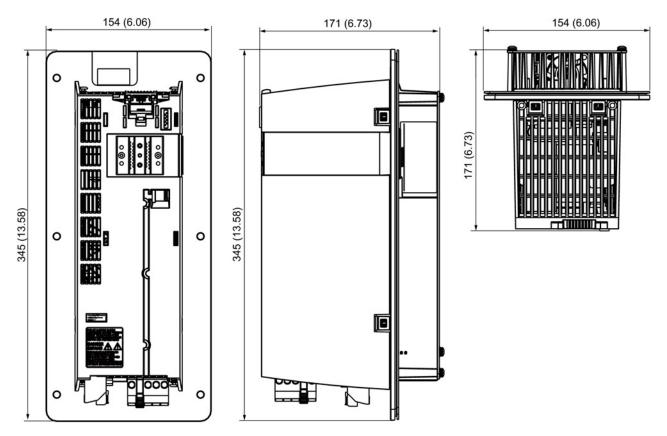


Bild 4-11 Maßbild Power Modules PM240-2 Push Through, Baugröße FSB, alle Angaben in mm und (inch)

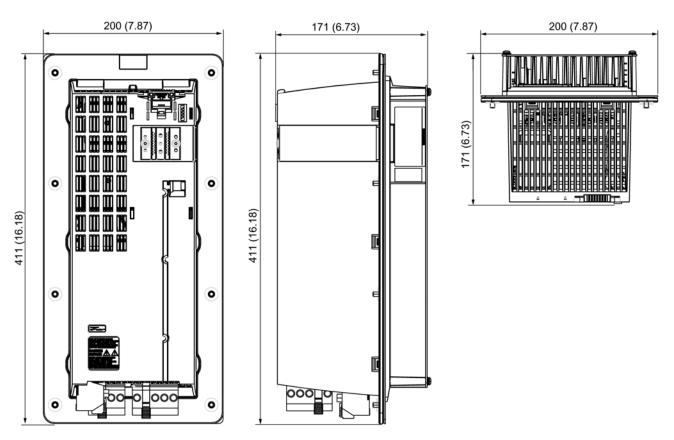
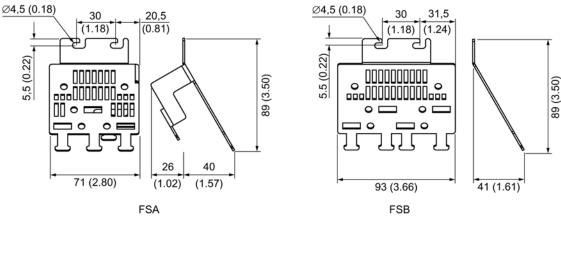



Bild 4-12 Maßbild Power Modules PM240-2 Push Through, Baugröße FSC, alle Angaben in mm und (inch)

Schirmanschlussbleche Baugröße FSA / FSB / FSC

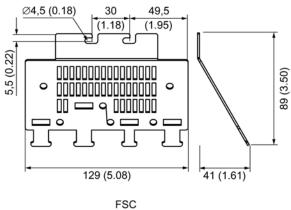


Bild 4-13 Maßbild Schirmanschlussbleche für Power Modules PM240-2, Baugröße FSA bis FSC, alle Angaben in mm und (inch)

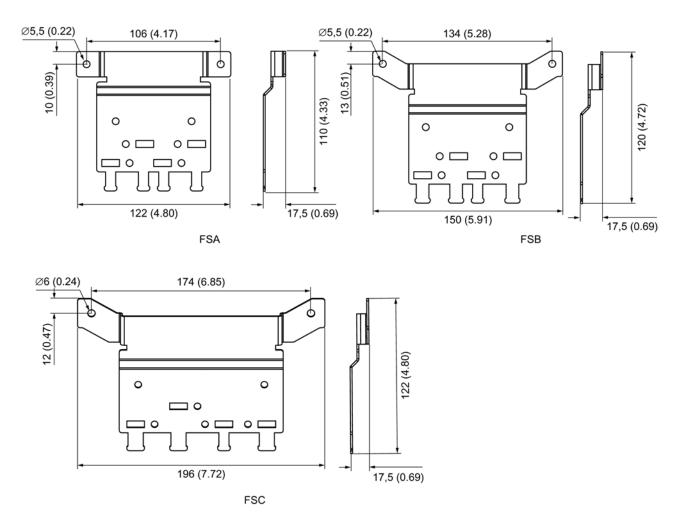


Bild 4-14 Maßbild Schirmanschlussbleche für Power Modules PM240-2 Push Through, Baugröße FSA bis FSC, alle Angaben in mm und (inch)

4.2.5 Montage

Hinweis

Montagehinweise

- Beachten Sie die Hinweise zur Montage der Power Modules im Kapitel Sicherheitshinweise für Power Modules 240-2 (Seite 92).
- Um die EMV-Anforderungen zu erfüllen, müssen Sie die Power Modules PM240-2 Push Through auf einer unlackierten Metalloberfläche montieren.
- Für die Montage von Power Modules PM240-2 Push Through muss die Wandstärke des Schaltschranks ≤ 3.5 mm sein.

Hinweis

Einbaurahmen für Push Through-Geräte

Für die Montage der Push Through-Geräte im Schaltschrank sollte ein Einbaurahmen verwendet werden. Weitere Informationen zum Einbaurahmen finden Sie im Kapitel Einbaurahmen (Seite 405).

Der Einbaurahmen enthält die notwendigen Dichtungen und den Rahmen zur Einhaltung der Schutzart IP54.

Wenn Sie den Einbaurahmen nicht verwenden, müssen Sie die erforderliche Schutzart durch andere Maßnahmen sicherstellen.

4.2.5.1 Montagemaße und Anzugsdrehmomente

Die Montagemaße und die Anzugsdrehmomente für die Befestigung des Power Module sind in nachstehender Tabelle angegeben.

Tabelle 4- 6 PM240-2, Montagemaße und Anzugsdrehmomente für die Montage

Baugröße		Höhe, Breite, Tiefe (ohne	Control Unit)	Befestigung	Anzugsdrehmoment
		Ohne Schirmanschlussblech	Mit Schirmanschlussblech		
FSA	mm	196 x 73 x 165	276 x 73 x 165	3 x M4 Bolzen,	2,5 Nm mit
	inch	7.72 x 2.87 x 6.50	10.87 x 2.87 x 6.50	3 x M4 Muttern, 3 x M4 Unterlegscheiben	eingesetzten Unterlegscheiben
FSB	mm	291 x 100 x 165	370 x 100 x 165	4 x M4 Bolzen,	2,5 Nm mit
	inch	11.46 x 3.94 x 6.50	14.57 x 9.94 x 6.50	4 x M4 Muttern, 4 x M4 Unterlegscheiben	eingesetzten Unterlegscheiben
FSC	mm	355 x 140 x 165	409 x 140 x 165	4 x M5 Bolzen,	3,0 Nm mit
inch		13.98 x 5.51 x 6.50	16.10 x 5.51 x 6.50	4 x M5 Muttern, 4 x M5 Unterlegscheiben	eingesetzten Unterlegscheiben

Tabelle 4-7 PM240-2 Push Through, Montagemaße und Anzugsdrehmomente für die Montage

Baugröße		Höhe, Breite, Tiefe (ohne	Control Unit)	Befestigung	Anzugsdrehmoment	
		Ohne Schirmanschlussblech	Mit Schirmanschlussblech			
FSA	mm	238 x 126 x 171	322 x 126 x 171	6 x M5 Bolzen,	3,5 Nm mit eingesetzten Unterlegscheiben	
	inch	9.37 x 4.96 x 6.73	12.68 x 4.96 x 6.73	6 x M5 Muttern, 6 x M5 Unterlegscheiben		
FSB	mm	345 x 154 x 171	430 x 154 x 171	8 x M5 Bolzen,	3,5 Nm mit	
	inch	13.58 x 6.06 x 6.73	16.93 x 6.06 x 6.73	8 x M5 Muttern, 8 x M5 Unterlegscheiben	eingesetzten Unterlegscheiben	
FSC	mm	411 x 200 x 171	500 x 200 x 171	8 x M5 Bolzen,	3,5 Nm mit	
inch		16.18 x 7.87 x 6.73	19.69 x 7.87 x 6.73	8 x M5 Muttern, 8 x M5 Unterlegscheiben	eingesetzten Unterlegscheiben	

4.2.5.2 Montage Schirmblech

Das Schirmanschlussblech dient der Schirmauflage der 2 Leistungsleitungen.

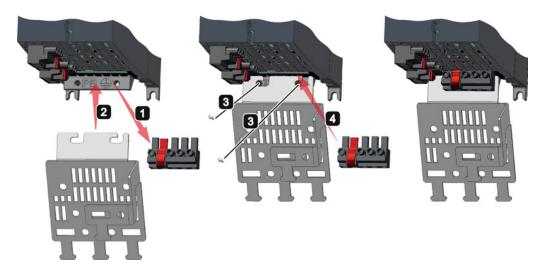


Bild 4-15 Montage Schirmanschlussblech an PM240-2

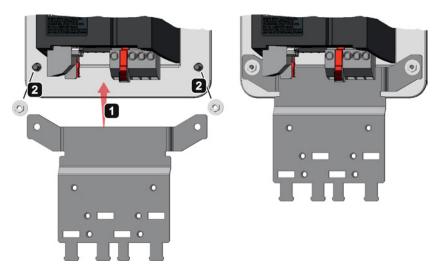


Bild 4-16 Montage Schirmanschlussblech an PM240-2 Push Through

4.2.6 Technische Daten

Hinweis

Schutzart der Power Modules PM240-2

Die Schutzart der Power Modules PM240-2 beträgt IP20.

Wenn Push Through Power Modules mit den entsprechenden Einbaurahmen und Dichtungen in einem Schaltschrank mit IP54 eingebaut werden, übernehmen die Power Modules diese Schutzart.

Gemäß UL erfüllen Push Through-Geräte nur die Anforderungen an eine ungekapselte Komponente.

4.2.6.1 Power Modules 200 V

Tabelle 4-8 Technische Daten PM240-2, FSA (200 V)

Netzspannung 1 AC / 3 AC 200	240 V ±	± 10 %		
			Intern	Push Through
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB13-0UL0 1PB13-0AL0	6SL3210- 1PB13-8UL0 1PB13-8AL0	6SL3211- 1PB13-8UL0 1PB13-8AL0
Ausgangsstrom Bemessungsstrom In Grundlaststrom IH bei S6-Betrieb (40 %) Is6 Spitzenstrom Imax	A A A	3,0 2,3 3,3 4,6	3,9 3,0 4,3 6,0	3,9 3,0 4,3 6,0
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	0,55 0,37	0,75 0,55	0,75 0,55
Bemessungspulsfrequenz	kHz	4	4	4
Verlustleistung	kW	0,04	0,04	0,044)
Kühlluftbedarf	m³/s	0,005	0,005	0,005
Versorgung DC 24 V für Control Unit Bemessungseingangsstrom ²⁾	A A	1,0 7,5	1,0 9,6	1,0 9,6
mit / ohne Netzdrossel Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom SCCR	A kA	10 65	15 65	15 65
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	А	3NA3 803	3NA3 805	3NA3 805
Widerstandswert des externen Bremswiderstandes	Ω	≥ 200	≥ 200	≥ 200

Netzspannung 1 AC / 3 AC 200	240 V :	± 10 %					
		Int	ern	Push Through			
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB13-0UL0 1PB13-0AL0	6SL3210- 1PB13-8UL0 1PB13-8AL0	6SL3211- 1PB13-8UL0 1PB13-8AL0			
Max. Leitungslänge zum Bremswiderstand	m	15	15	15			
Netzanschluss L1, L2, PE		Schraubklemmen	Schraubklemmen				
Motoranschluss U2, V2, W2, 🕒		Leitungsquerschnitt: 1,5 2,5 mm ²					
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsdrehmoment: 0,5 Nm					
PE-Anschluss		Am Netzanschluss-Stecke	er				
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 100					
Schutzart		IP20 IP54		IP54			
Gewicht ohne Netzfilter mit Netzfilter	kg kg	1,4 1,6	1,4 1,6	1,8 2,0			

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 230 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,02 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

Tabelle 4- 9 Technische Daten PM240-2, FSB (200 V)

			Intern		Push Through
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB15-5UL0 1PB15-5AL0	6SL3210- 1PB17-4UL0 1PB17-4AL0	6SL3210- 1PB21-0UL0 1PB21-0AL0	6SL3211- 1PB21-0UL0 1PB21-0AL0
Ausgangsstrom Bemessungsstrom In Grundlaststrom IH bei S6-Betrieb (40 %) Is6 Spitzenstrom Imax	A A A	5,5 3,9 6,1 8,3	7,4 5,5 8,2 11,1	10,4 7,4 11,5 15,6	10,4 7,4 11,5 15,6
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	1,1 0,75	1,5 1,1	2,2 1,5	2,2 1,5
Bemessungspulsfrequenz	kHz	4	4	4	4
Verlustleistung	kW	0,05	0,07	0,12	0,124)
Kühlluftbedarf	m³/s	0,0092	0,0092	0,0092	0,0092
Versorgung DC 24 V für Control Unit	Α	1,0	1,0	1,0	1,0
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	Α	13,5	18,1	24,0	24,0
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom SCCR	A kA	20 65	25 65	35 65	35 65
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	А	3NE 1814-0 20	3NE 1815-0 25	3NE1803-0 35	3NE 1803-0 35
Widerstandswert des externen Bremswiderstands	Ω	≥ 68	≥ 68	≥ 68	≥ 68
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	15
Netzanschluss L1, L2, PE		Schraubklemmer			
Motoranschluss U2, V2, W2,		Leitungsquerschi Anzugsdrehmom	nitt: 1,5 6 mm²		
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsarenmom	ent. U,O NM		
PE-Anschluss		Am Netzanschlus	ss-Stecker		

Netzspannung 1 AC / 3 AC 200 240 V ± 10 %							
			Intern				
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB15-5UL0 1PB15-5AL0	6SL3210- 1PB17-4UL0 1PB17-4AL0	6SL3210- 1PB21-0UL0 1PB21-0AL0	6SL3211- 1PB21-0UL0 1PB21-0AL0		
Max. Motorleitungslänge 3) geschirmt / ungeschirmt	m	50 / 100					
Schutzart		IP20	IP20 IP54				
Gewicht ohne Netzfilter mit Netzfilter	kg kg	2,9 3,1	2,9 3,1	2,9 3,1	3,4 3,7		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 230 V

Tabelle 4- 10 Technische Daten PM240-2, FSC (200 V)

Netzspannung 1 AC / 3 AC 200 240 V ± 10 %						3 AC 200 240 V ± 10 %	
		Int	ern	Push Through	Intern		
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB21-4UL0 1PB21-4AL0	6SL3210- 1PB21-8UL0 1PB21-8AL0	6SL3211- 1PB21-8UL0 1PB21-8AL0	6SL3210- 1PC22-2UL0 1PC22-2AL0	6SL3210- 1PC22-8UL0 1PC22-8AL0	
Ausgangsstrom Bemessungsstrom I _n Grundlaststrom I _H bei S6-Betrieb (40 %) I _{s6} Spitzenstrom I _{max}	A A A	13,6 10,4 15,0 20,8	17,5 13,6 19,3 27,2	17,5 13,6 19,3 27,2	22,0 17,5 24,2 35,0	28,0 22,0 30,8 44,0	
Typleistung¹) auf Basis In auf Basis Iн	kW kW	3,0 2,2	4,0 3,0	4,0 3,0	5,5 4,0	7,5 5,5	
Bemessungspulsfrequenz	kHz	4	4	4	4	4	
Verlustleistung	kW	0,14	0,18	0,184)	0,2	0,26	
Kühlluftbedarf	m³/s	0,0185	0,0185	0,0185	0,0185	0,0185	
Versorgung DC 24 V für Control Unit	А	1,0	1,0	1,0	1,0	1,0	
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	А	35,9	43,0	43,0	29,0	37,0	
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom	A	50	60	60	40	50	
SCCR	kA	65	65	65	65	65	

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis In) bei einer Netzimpedanz entsprechend uk = 1 %.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,045 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

Netzspannung 1 AC / 3 AC 200 240 V ± 10 %					3 AC 200 240 V ± 10 %			
		Int	ern	Push Through	Intern			
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PB21-4UL0 1PB21-4AL0	6SL3210- 1PB21-8UL0 1PB21-8AL0	6SL3211- 1PB21-8UL0 1PB21-8AL0	6SL3210- 1PC22-2UL0 1PC22-2AL0	6SL3210- 1PC22-8UL0 1PC22-8AL0		
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	A	3NE 1817-0 50	3NE 1818-0	3NE 1818-0	3NE 1802-0	3NE 1817-0 50		
Widerstandswert des externen Bremswiderstands	Ω	≥ 75	≥ 75	≥ 37	≥ 20	≥ 20		
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	15	15		
Netzanschluss L1, L2, PE		Schraubklemm						
Motoranschluss U2, V2, W2, 🔔		• •	chnitt: 6 16 mr	n ²				
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsurenino	Anzugsdrehmoment: 1,3 Nm					
PE-Anschluss		Am Netzansch	uss-Stecker					
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 100						
Schutzart		IP20	IP20 IP54					
Gewicht ohne Netzfilter mit Netzfilter	kg kg	5,0 5,2	5,0 5,2	5,8 6,3	5,0 5,2	5,0 5,2		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 230 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,075 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

4.2.6.2 Power Modules 400 V

Tabelle 4- 11 Technische Daten PM240-2, FSA (400 V) (1/2)

Netzspannung 3 AC 380 480 V	± 10 %					
				Intern		
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PE11-8UL1 1PE11-8AL1	6SL3210- 1PE12-3UL1 1PE12-3AL1	6SL3210- 1PE13-2UL1 1PE13-2AL1	6SL3210- 1PE14-3UL1 1PE14-3AL1	
Ausgangsstrom Bemessungsstrom I _n Grundlaststrom I _H bei S6-Betrieb (40 %) I _{s6} Spitzenstrom I _{max}	A A A	1,7 1,3 2,0 2,6	2,2 1,7 2,5 3,4	3,1 2,2 3,5 4,7	4,1 3,1 4,5 6,2	
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	0,55 0,37	0,75 0,55	1,1 0,75	1,5 1,1	
Bemessungspulsfrequenz	kHz	4	4	4	4	
Verlustleistung	kW	0,04	0,04	0,04	0,07	
Kühlluftbedarf	m³/s	0,005	0,005	0,005	0,005	
Versorgung DC 24 V für Control Unit	А	1,0	1,0	1,0	1,0	
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	А	2,3	2,9	4,1	5,5	
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom SCCR	A kA	4 65	4 65	6 65	10 65	
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	A	3NA3 804	3NA3 804 4	3NA3 801 6	3NA3 803	
Widerstandswert des externen Bremswiderstands	Ω	≥ 370	≥ 370	≥ 370	≥ 370	
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	15	
Netzanschluss L1, L2, L3, PE		Schraubklemme				
Motoranschluss U2, V2, W2,			nitt: 1,5 2,5 mm ²			
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsdrehmoment: 0,5 Nm				
PE-Anschluss		Am Netzanschlu	ss-Stecker			

Netzspannung 3 AC 380 480 V ± 10 %							
			Int	ern			
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PE11-8UL1 1PE11-8AL1	6SL3210- 1PE12-3UL1 1PE12-3AL1	6SL3210- 1PE13-2UL1 1PE13-2AL1	6SL3210- 1PE14-3UL1 1PE14-3AL1		
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 100					
Schutzart		IP20	IP20				
Gewicht ohne Netzfilter mit Netzfilter	kg kg	1,4 1,5	1,4 1,5	1,4 1,5	1,4 1,5		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 400 V

Tabelle 4- 12 Technische Daten PM240-2, FSA (400 V) (2/2)

£ 10 %			
	I	ntern	Push Through
	6SL3210- 1PE16-1UL1 1PE16-1AL1	6SL3210- 1PE18-0UL1 1PE18-0AL1	6SL3211- 1PE18-0UL1 1PE18-0UL1
A A A	5,9 4,1 6,5 8,9	7,7 5,9 8,5 11,8	7,7 5,9 8,5 11,8
kW kW	2,2 1,5	3,0 2,2	3,0 2,2
kHz	4	4	4
kW	0,1	0,12	0,124)
m³/s	0,005	0,005	0,007
А	1,0	1,0	1,0
А	7,7	10,1	10,1
A	10	15	10
kA		+	65
Δ			3NA3 805
	A A A kW kW kHz kW m³/s	GSL3210- 1PE16-1UL1 1PE16-1AL1	Intern 6SL3210-

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

Netzspannung 3 AC 380 480 V	± 10 %	T						
		Int	ern	Push Through				
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PE16-1UL1 1PE16-1AL1	6SL3210- 1PE18-0UL1 1PE18-0AL1	6SL3211- 1PE18-0UL1 1PE18-0UL1				
Widerstandswert des externen Bremswiderstands	Ω	≥ 140	≥ 140	≥ 140				
Max. Leitungslänge zum Bremswiderstand	m	15	15	15				
Netzanschluss L1, L2, L3, PE		Schraubklemmen	Leitungsquerschnitt: 1,5 2,5 mm²					
Motoranschluss U2, V2, W2, 🚇								
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsarenmoment: 0,5	Anzugsdrehmoment: 0,5 Nm					
PE-Anschluss		Am Netzanschluss-Steck	er					
Max. Motorleitungslänge ³⁾ (ohne externe Optionen)	m	50 / 100						
Schutzart		IP20	IP20 IP54					
Gewicht ohne Netzfilter mit Netzfilter	kg kg	1,4 1,5	1,4 1,5	1,7 1,8				

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 400 V

Tabelle 4- 13 Technische Daten PM240-2, FSB (400 V)

Netzspannung 3 AC 380 480	V ± 10 %					
			Intern			
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PE21-1UL0 1PE21-1AL0	6SL3210- 1PE21-4UL0 1PE21-4AL0	6SL3210- 1PE21-8UL0 1PE21-8AL0	6SL3211- 1PE21-8UL0 1PE21-8AL0	
Ausgangsstrom Bemessungsstrom I _n Grundlaststrom I _H bei S6-Betrieb (40 %) I _{s6} Spitzenstrom I _{max}	A A A	10,2 7,7 11,2 15,4	13,2 10,2 14,5 20,4	18,0 13,2 19,8 27,0	18,0 13,2 19,8 27,0	
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	4,0 3,0	5,5 4,0	7,5 5,5	7,5 5,5	
Bemessungspulsfrequenz	kHz	4	4	4	4	
Verlustleistung	kW	0,11	0,15	0,2	0,24)	

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,02 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

Netzspannung 3 AC 380 480 V	± 10 %						
		Intern			Push Through		
Bestellnummer ohne integriertes Netzfilter mit integriertem Netzfilter		6SL3210- 1PE21-1UL0 1PE21-1AL0	6SL3210- 1PE21-4UL0 1PE21-4AL0	6SL3210- 1PE21-8UL0 1PE21-8AL0	6SL3211- 1PE21-8UL0 1PE21-8AL0		
Kühlluftbedarf	m³/s	0,0092	0,0092	0,0092	0,0092		
Versorgung DC 24 V für Control Unit	А	1,0	1,0	1,0	1,0		
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	A	13,3	17,2	22,2	22,2		
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom	A	20	25	35	35		
SCCR Schmelzsicherungen	kA	65 3NE 1814-0	65 3NE 1815-0	65 3NE 1803-0	65 3NE 1803-0		
NH IEC 60947 Bemessungsstrom	A	20	25	35	35		
Widerstandswert des externen Bremswiderstands	Ω	≥ 75	≥ 75	≥ 75	≥ 75		
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	15		
Netzanschluss L1, L2, L3, PE		Schraubklemmen					
Motoranschluss U2, V2, W2,		Leitungsquerschn					
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugsarenmome	Anzugsdrehmoment: 0,6 Nm				
PE-Anschluss		Am Netzanschlus	s-Stecker				
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 100					
Schutzart		IP20			IP54		
Gewicht ohne Netzfilter mit Netzfilter	kg kg	2,9 3,1	2,9 3,1	3,0 3,2	3,6 3,9		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 400 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,045 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

Tabelle 4- 14 Technische Daten PM240-2, FSC (400 V)

		Intern		Push Through	
Bestellnummer ohne integriertes Netzfilter mit internem Netzfilter		6SL3210- 1PE22-7UL0 1PE22-7AL0	6SL3210- 1PE23-3UL0 1PE23-3AL0	6SL3211- 1PE23-3UL0 1PE23-3AL0	
Ausgangsstrom Bemessungsstrom In	А	26,0	32,0	32,0	
Grundlaststrom I _H bei S6-Betrieb (40 %) I _{s6} Spitzenstrom I _{max}	A A A	18,0 28,6 39,0	26,0 37,1 52,0	26,0 37,1 52,0	
Typleistung ¹⁾	' '	00,0	02,0	02,0	
auf Basis I _n auf Basis I _H	kW kW	11,0 7,5	15,0 11,0	15,0 11,0	
Bemessungspulsfrequenz	kHz	4	4	4	
Verlustleistung	kW	0,3	0,37	0,374)	
Kühlluftbedarf	m ³ /s	0,0185	0,0185	0,0185	
Versorgung DC 24 V für Control Unit	А	1,0	1,0	1,0	
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	А	32,6	39,9	39,9	
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom	А	50	50	50	
SCCR	kA	65	65	65	
Schmelzsicherungen NH IEC 60947		3NE 1817-0	3NE 1817-0	3NE 1817-0	
Bemessungsstrom	Α	50	50	50	
Widerstandswert des externen Bremswiderstands	Ω	≥ 30	≥ 30	≥ 30	
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	
Netzanschluss L1, L2, L3, PE		Schraubklemmen			
Motoranschluss U2, V2, W2,		Leitungsquerschnitt: 6 16 mm²			
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2		Anzugdrehmoment: 1,3 Nm			
PE-Anschluss	+	Am Netzanschluss-Stecker			

Netzspannung 3 AC 380 480 V ± 10 %				
		Intern		Push Through
Bestellnummer ohne integriertes Netzfilter mit internem Netzfilter		6SL3210- 1PE22-7UL0 1PE22-7AL0	6SL3210- 1PE23-3UL0 1PE23-3AL0	6SL3211- 1PE23-3UL0 1PE23-3AL0
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 100		
Schutzart		IP20 IP54		IP54
Gewicht ohne Netzfilter mit Netzfilter	kg kg	4,7 5,3	4,8 5,4	5,8 6,3

- 1) Bemessungsleistung eines typischen Norm-Asynchronmotors bei 400 V
- ²⁾ Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend u_k = 1 %.
- ³⁾ Max. Motorleitungslänge 50 m (geschirmt) bei Power Modules PM240-2 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.
- ⁴⁾ Im Schaltschrank auftretende Verlustleistung: 0,075 kW. Die restliche Verlustleistung wird über den Kühlkörper abgeführt.

4.2.6.3 Kennlinien

Überlastfähigkeit

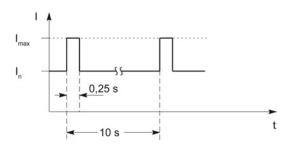


Bild 4-17 Lastspiel mit Vorlast (für Servoantriebe)

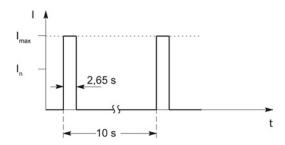


Bild 4-18 Lastspiel ohne Vorlast (für Servoantriebe)

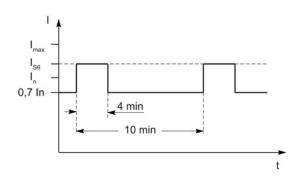


Bild 4-19 S6-Lastspiel mit Vorlast (für Servoantriebe)

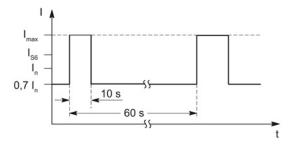


Bild 4-20 Lastspiel mit Vorlast (für Servoantriebe)

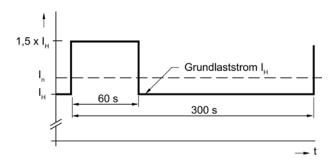


Bild 4-21 Lastspiel mit 60 s Überlast bei einer Lastspieldauer von 300 s

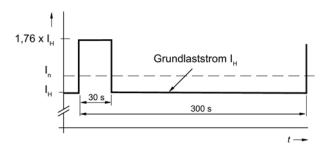


Bild 4-22 Lastspiel mit 30 s Überlast bei einer Lastspieldauer von 300 s

Hinweis

Die kurzen Anstiegsflanken der dargestellten Lastspiele sind nur mit Drehzahl- oder Drehmomentregelung realisierbar.

Derating-Kennlinien für Power Modules Bauform Blocksize PM240-2

Weitere Informationen finden Sie im Kapitel Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe (Seite 37).

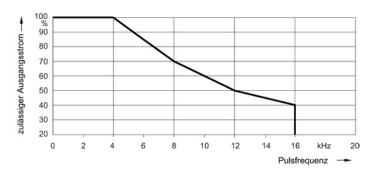


Bild 4-23 Ausgangsstrom in Abhängigkeit von der Pulsfrequenz

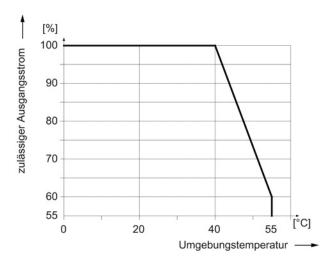


Bild 4-24 Ausgangsstrom in Abhängigkeit von der Umgebungstemperatur

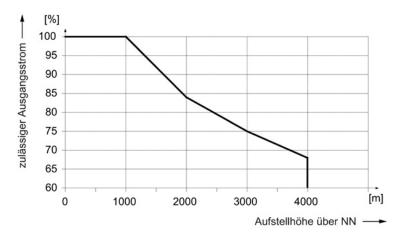


Bild 4-25 Ausgangsstrom in Abhängigkeit von der Aufstellhöhe

Bei Ausgangsfrequenzen unter 10 Hz darf das Power Module nicht mit seinem maximalen Bemessungsstrom betrieben werden. Anderenfalls kann dies zu einer Reduktion der Lebensdauer führen.

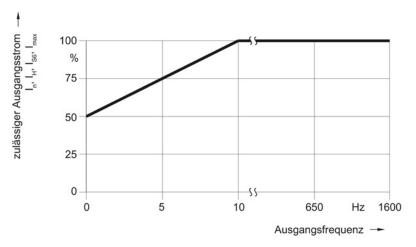


Bild 4-26 Ausgangsstrom in Abhängigkeit von der Ausgangsfrequenz

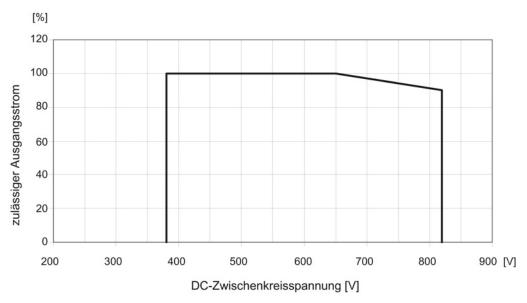


Bild 4-27 Strom-Derating in Abhängigkeit von der DC-Zwischenkreisspannung

4.3.1 Beschreibung

Die Power Modules der Bauform Blocksize sind folgendermaßen aufgebaut:

- Netzseitiger Diodengleichrichter
- · Zwischenkreis-Elektrolytkondensatoren mit Vorladeschaltung
- Ausgangs-Wechselrichter
- Brems-Chopper für (externen) Bremswiderstand
- Stromversorgung DC 24 V / 1 A
- Steuersatz, Istwerterfassungen
- Lüfter zur Entwärmung der Leistungshalbleiter

Die Power Modules decken den Leistungsbereich von 0,12 kW bis 90,0 kW ab und sind in Ausführung mit und ohne Netzfilter erhältlich.

Tabelle 4- 15 Übersicht Power Modules PM340 (Auswahl)

Power Module (230 V) Baugröße FSA, mit und ohne integriertem Netzfilter

Power Module (400 V) Baugröße FSA, ohne integriertem Netzfilter

Power Module Baugröße FSB, mit und ohne integriertem Netzfilter

Power Module Baugröße FSC mit und ohne integriertem Netzfilter

Power Module Baugröße FSD, mit und ohne integriertem Netzfilter

Power Module Baugröße FSE, mit und ohne integriertem Netzfilter

Power Module Baugröße FSF, mit und ohne integriertem Netzfilter

4.3.2 Sicherheitshinweise für Power Modules Blocksize

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen und Montageabständen

Unzureichende Lüftungsfreiräume und Montageabstände führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

- Montieren Sie die Power Modules immer senkrecht.
- Halten Sie bei der Montage folgende Abstände zwischen den Komponenten ein¹):
 - Baugröße FSA: 30 mm (1.18 inch)
 - Baugröße FSB: 40 mm (1.57 inch)
 - Baugröße FSC: 50 mm (1.96 inch)
- Halten Sie folgende Lüftungsfreiräume oberhalb und unterhalb der Komponente ein:
 - Baugrößen FSA und FSB: 100 mm (3.93 inch),
 - Baugröße FSC: 125 mm (4.92 inch),
 - Baugrößen FSD und FSE: 300 mm (11.81 inch)
 - Baugröße FSF: 350 mm (13.77 inch).
- Halten Sie folgende Lüftungsfreiräume vor der Komponente ein:
 - Baugrößen FSB bis FSF: 30 mm (1.18 inch)
- Bauen Sie Geräte, die den Kühlluftstrom behindern könnten, nicht in diesem Bereich ein.
- Achten Sie darauf, dass der Kühlluftstrom die Power Modules ungehindert durchströmen kann.

mit unterschiedlichen Baugrößen gilt der größere der beiden Abstände.

¹⁾ Die Power Modules können ohne Unterbaukomponenten bis zu einer Umgebungstemperatur von 40°C nebeneinander montiert werden. In Kombination mit Unterbaukomponenten und bei Umgebungstemperaturen 40 °C bis 55 °C sind die angegebenen seitlichen Mindestabstände einzuhalten. Für Kombinationen

4.3.3 Schnittstellenbeschreibung

4.3.3.1 Übersicht

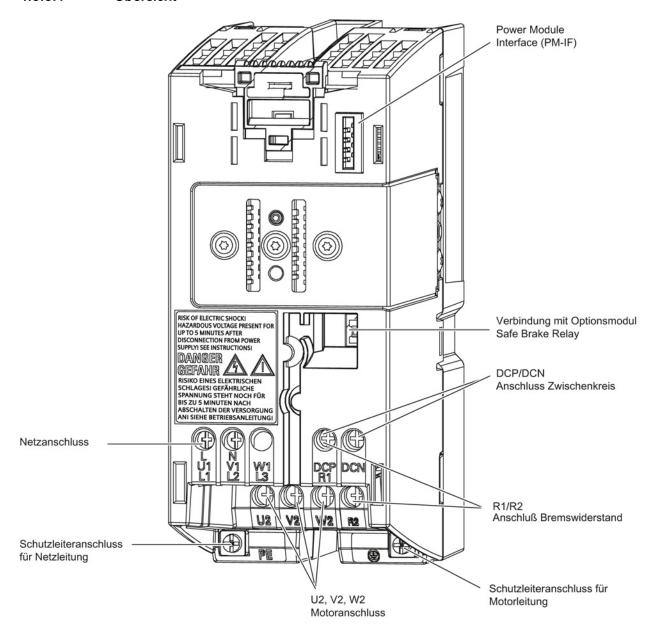


Bild 4-28 PM340, Baugröße FSA

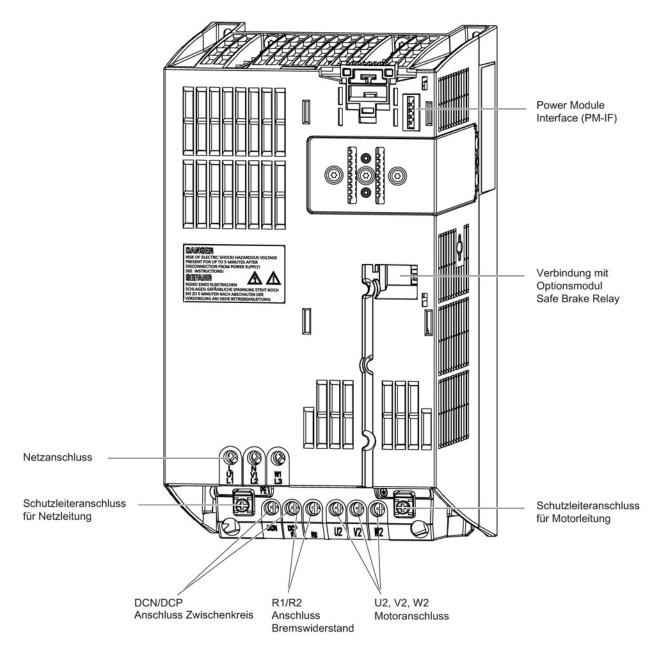


Bild 4-29 PM340, Baugröße FSB

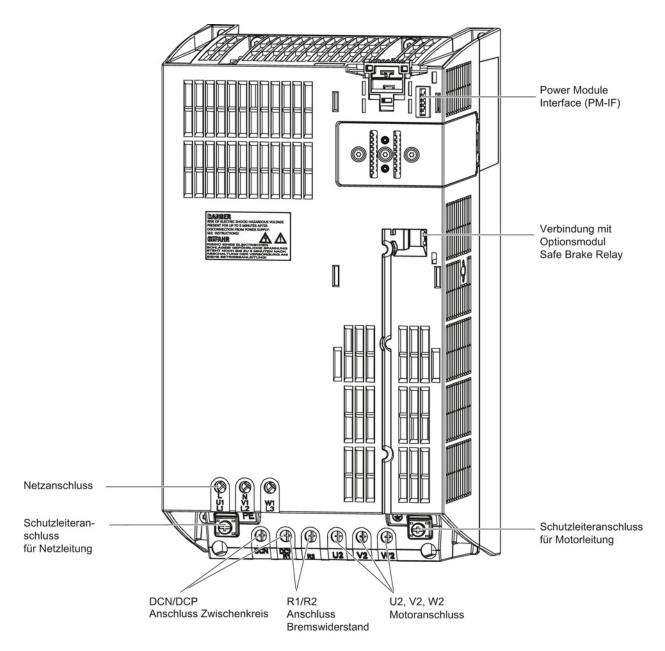


Bild 4-30 PM340, Baugröße FSC

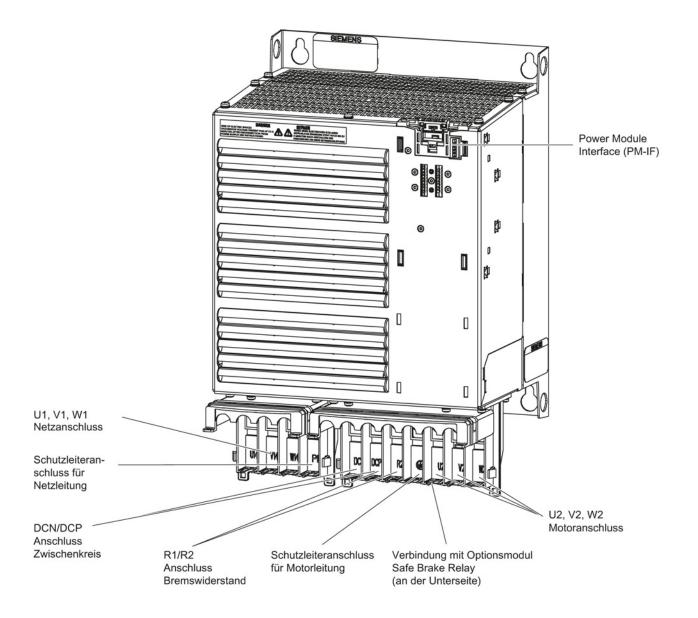


Bild 4-31 PM340, Baugröße FSD

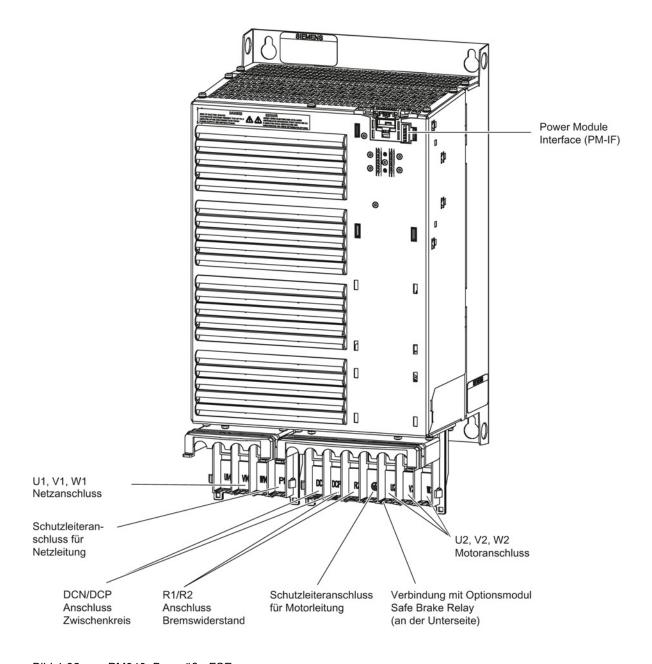


Bild 4-32 PM340, Baugröße FSE

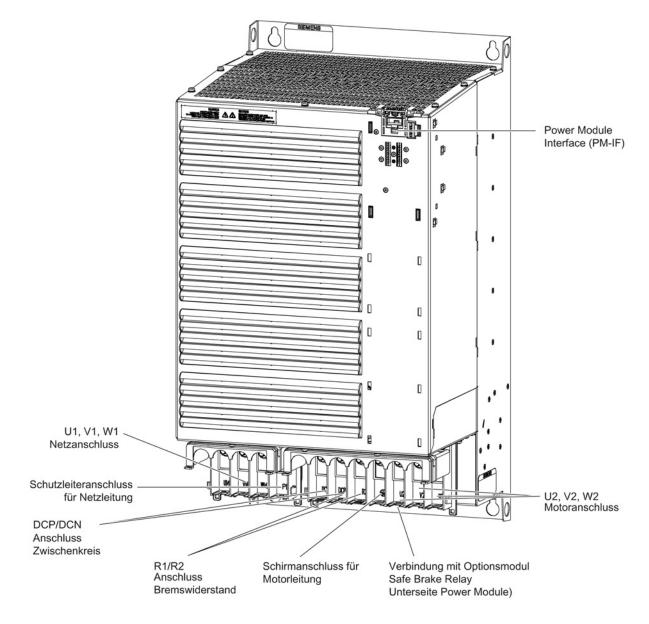


Bild 4-33 PM340, Baugröße FSF

4.3.3.2 Anschlussbeispiel

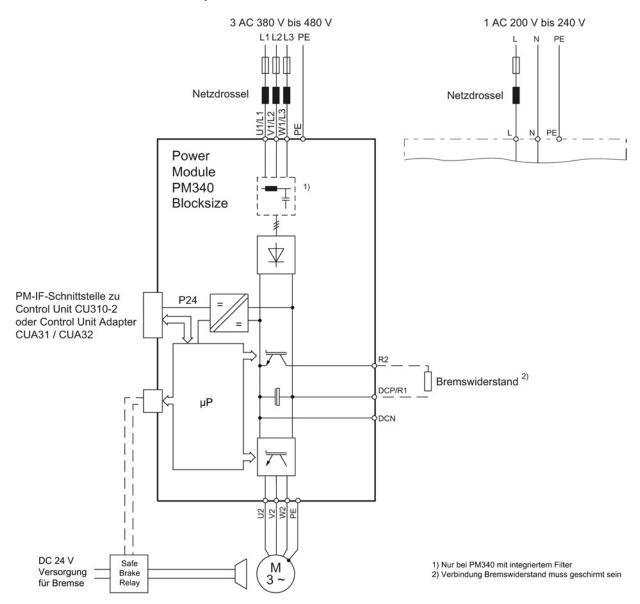
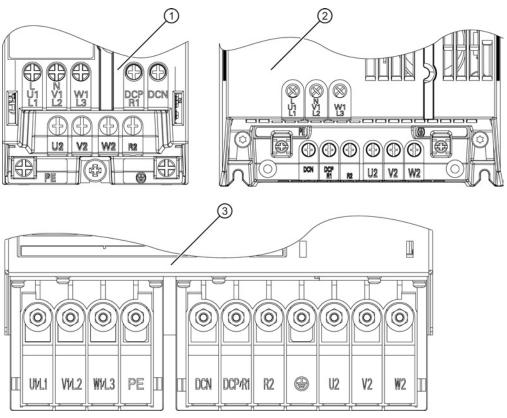



Bild 4-34 Anschlussbeispiel PM340

Anordnung der Netz- und Motorklemmen

Die nachstehende Abbildung zeigt die Anordnung der Netz- und der Motorklemmen bei den Baugrößen FSA bis FSF des Power Modules PM340.

- ① Baugröße FSA
- ② Baugröße FSB / FSC
- 3 Baugröße FSD / FSE / FSF

Bild 4-35 PM340: Anordnung der Netz- und Motorklemmen

4.3.3.3 Netzanschluss

Tabelle 4- 16 Klemmenleiste Netzanschluss 1 AC 200 V bis 240 V

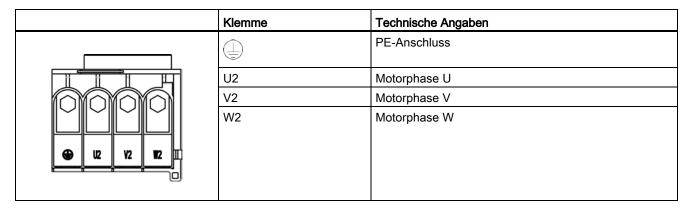
	Klemme	Signalname	Technische Angaben
	1	L	Netzphase L
L N V1 L1 L2	2	N	Netzphase N
Max. Leitungsquerschnitt: 2,5 mm²			

Tabelle 4- 17 Klemmenleiste Netzanschluss 3 AC 380 V bis 480 V

	Klemme	Signalname	Technische Angaben
	1	U1/L1	Außenleiter L1
	2	V1/L2	Außenleiter L2
	3	W1/L3	Außenleiter L3
I UK1 VK2 WK3 PE	4	PE	PE-Anschluss

4.3.3.4 Bremswiderstand und Zwischenkreis-Anschluss

Tabelle 4- 18 Klemmenleiste Bremswiderstand und Zwischenkreis-Anschluss


	Klemme	Technische Angaben
	DCN	DC-Zwischenkreis negativ
	DCP/R1	DC-Zwischenkreis positiv und positiver Anschluss für Bremswiderstand
DON DOPAN R2	R2	Negativer Anschluss für Bremswiderstand

Hinweis

Um die Kabelschuhe der Bremswiderstandsleitung bei einem Power Module PM340 der Baugröße FSA anzuschließen, muss die Nase am Anschluss R2 mit einem schmalen Seitenschneider abgezwickt werden. Es ist darauf zu achten, dass dabei kein Teil des Kunststoffs in das Gehäuse fällt.

4.3.3.5 Motoranschluss

Tabelle 4- 19 Klemmenleiste Motoranschluss

4.3.3.6 Safe Brake Relay-Anschluss

Tabelle 4- 20 Stecker

Klemme	Bezeichnung	Technische Angaben
1	Low	Low-Signal Safe Brake Relay an PM340
2	High	High-Signal Safe Brake Relay an PM340

Hinweis

Weitere Informationen finden Sie im Kapitel Optionsmodul Safe Brake Relay (Seite 382).

4.3.4 Maßbilder

Baugröße FSA / FSB / FSC

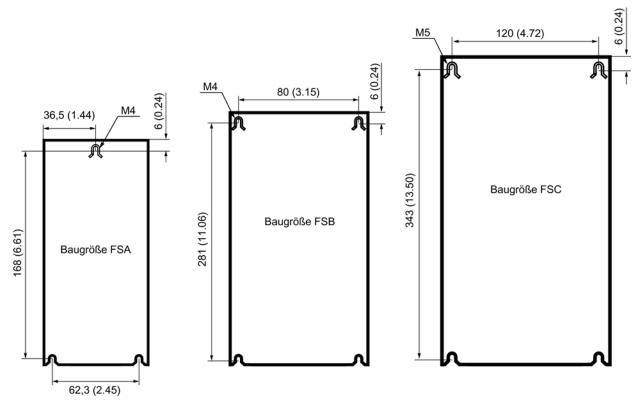
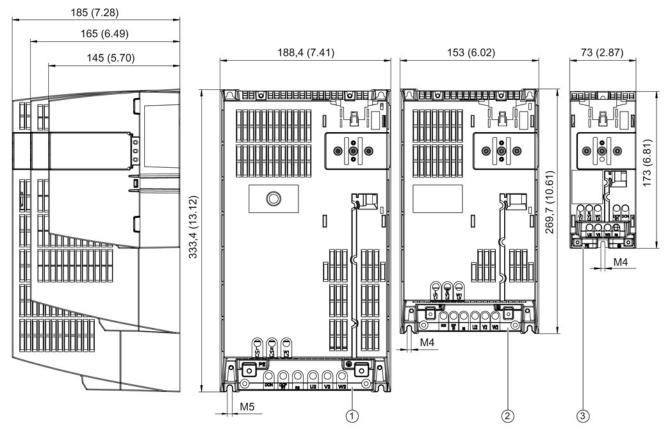



Bild 4-36 Bohrbild Power Modules PM340, Baugrößen FSA, FSB, FSC; alle Angaben in mm und (inch)

- ① Baugröße FSC
- 2 Baugröße FSB
- 3 Baugröße FSA

Bild 4-37 Maßbild Power Modules PM340, Baugrößen FSA, FSB, FSC; alle Angaben in mm und (inch)

Baugröße FSD

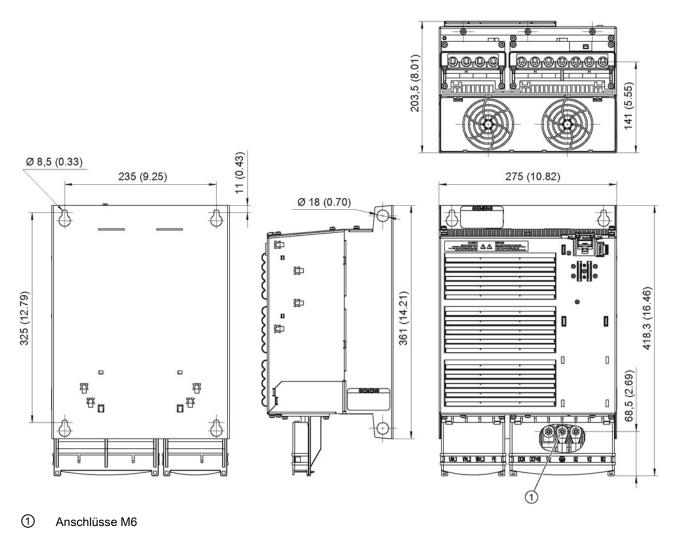


Bild 4-38 Maßbild Power Module PM340, Baugröße FSD (ohne integriertem Netzfilter); alle Angaben in mm und (inch)

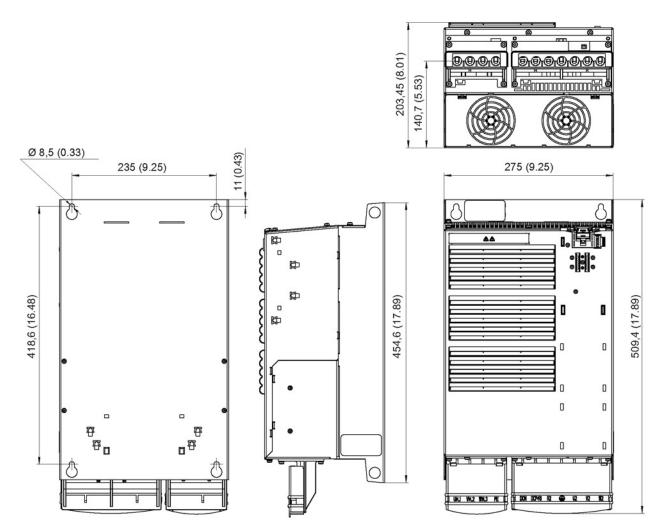
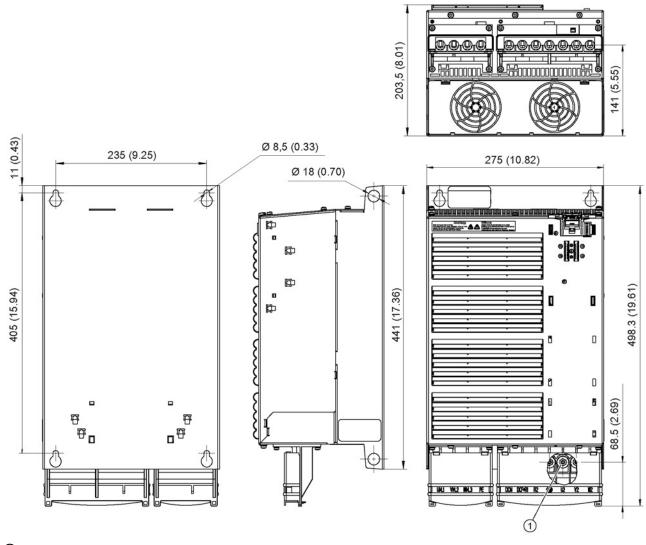



Bild 4-39 Maßbild Power Module PM340, Baugröße FSD (mit integriertem Netzfilter); alle Angaben in mm und (inch)

Baugröße FSE (ohne / mit integriertem Netzfilter)

1 Anschlüsse M6

Bild 4-40 Maßbild Power Module PM340, Baugröße FSE (ohne integriertem Netzfilter); alle Angaben in mm und (inch)

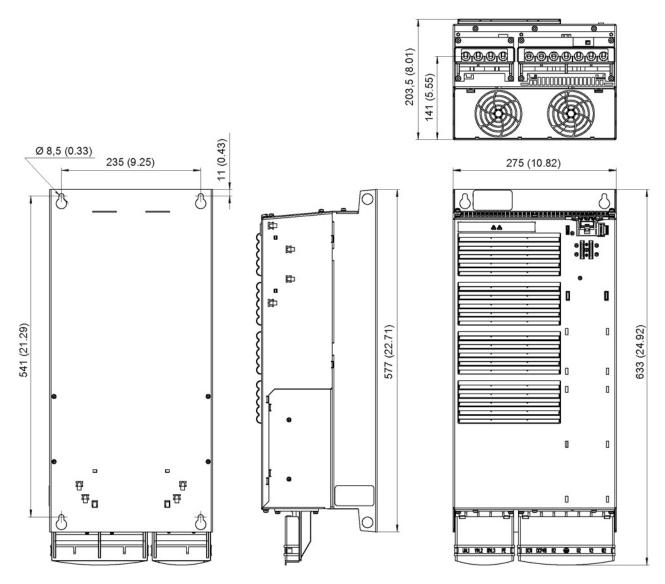
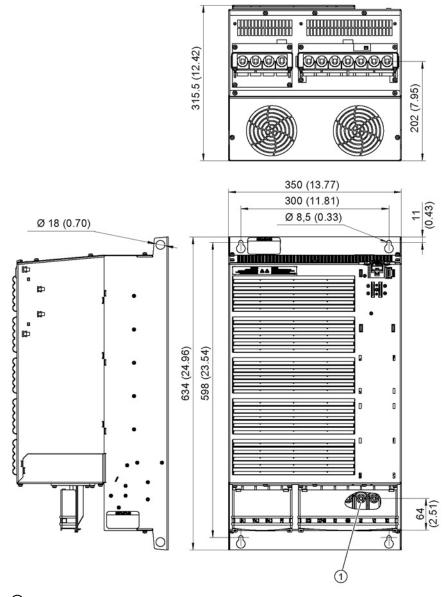



Bild 4-41 Maßbild Power Module PM340, Baugröße FSE (mit integriertem Netzfilter); alle Angaben in mm und (inch)

Baugröße FSF (ohne / mit integriertem Netzfilter)

1 Anschlüsse M6

Bild 4-42 Maßbild Power Module PM340, Baugröße FSF (ohne integriertem Netzfilter); alle Angaben in mm und (inch)

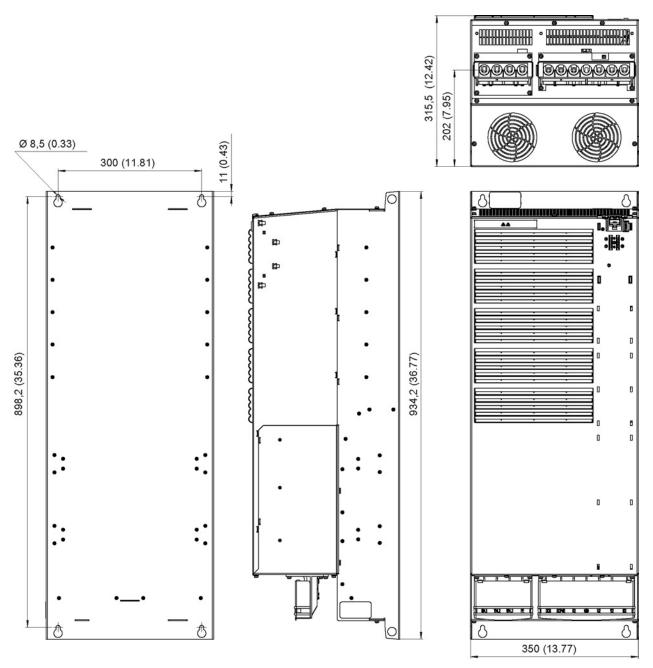


Bild 4-43 Maßbild Power Module PM340, Baugröße FSF (mit integriertem Netzfilter); alle Angaben in mm und (inch)

4.3.5 Montage

4.3.5.1 Montagemaße und Anzugsdrehmomente

Die Montagemaße und die Anzugsdrehmomente für die Befestigung des Power Modules sind in nachstehender Tabelle angegeben.

Tabelle 4- 21 PM340, Montagemaße und Anzugsdrehmomente für die Montage

Baugröße	Baugröße Höhe, Breite, Tiefe Maße (ohne Control Unit)		Befestigungsart	Anzugsdrehmomente		
FSA	HxBxT	mm	173 x 73 x 145	2 x M4 Bolzen,	2,5 Nm mit	
		inch	6.81 x 2.87 x 5.71	2 x M4 Muttern, 2 x M4 Unterlegscheiben	eingesetzten Unterlegscheiben	
FSB	HxBxT	mm	270 x 153 x 165	4 x M4 Bolzen,		
		inch	10.63 x 6.02 x 6.50	4 x M4 Muttern, 4 x M4 Unterlegscheiben		
FSC	HxBxT	mm	334 x 189 x 185	4 x M5 Bolzen,		
		inch	13.1 x 7.41 x 7.28	4 x M5 Muttern, 4 x M5 Unterlegscheiben		
FSD	HxBxT	mm	419 x 275 x 204	4 x M6 Bolzen,	6 Nm mit eingesetzten	
ohne Netzfilter		inch	16.3 x 10.8 x 8.0	4 x M6 Muttern, 4 x M6 Unterlegscheiben	Unterlegscheiben	
FSD	HxBxT	mm	512 x 275 x 204			
mit integriertem Netzfilter		inch	20.1 x 10.8 x 8.0			
FSE	HxBxT	mm	499 x 275 x 204			
ohne Netzfilter		inch	19.6 x 10.8 x 8.0			
FSE	HxBxT	mm	635 x 275 x 204			
mit integriertem Netzfilter		inch	25 x 10.8 x 8.0			
FSF	HxBxT	mm	635 x 350 x 316	4 x M8 Bolzen,	13 Nm mit	
ohne Netzfilter		inch	25.0 x 13.8 x 12.4	4 x M8 Muttern, 4 x M8 Unterlegscheiben	eingesetzten Unterlegscheiben	
FSF	HxBxT	mm	934 x 350 x 316			
mit integriertem Netzfilter		inch	36.8 x 13.8 x 12.4			

Tabelle 4- 22 PM340, Lastklemmen - Anzugsdrehmomente

Baugröße	Anzugsdrehmomente (Nm)
FSA	1,1
FSB	1,5
FSC	2,25
FSD	6
FSE	6
FSF	13

4.3.5.2 Zugang zu Netz- und Motorklemmen

Zugang zu Netz- und Motorklemmen

Der Zugang zu den Netz- und Motorklemmen erfolgt durch Lösen der Lasche an der Seite der Klemmenabdeckungen mit einem geeigneten Schraubendreher. Die Abdeckung kann nach oben gedrückt und in dieser Stellung eingerastet werden, wie in nachstehender Abbildung gezeigt.

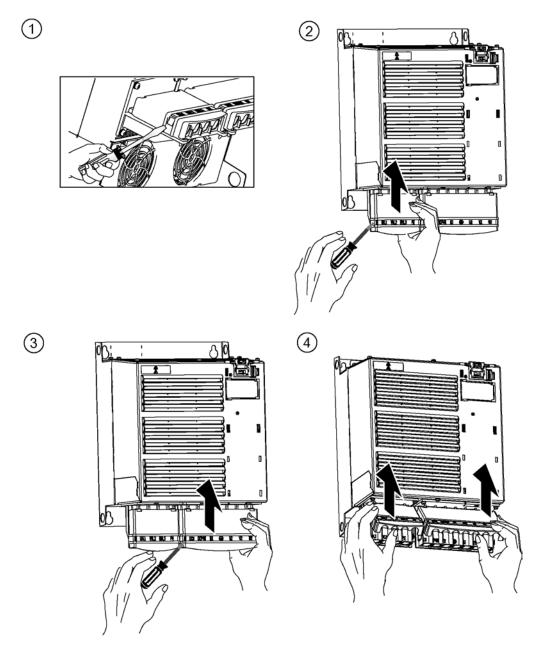


Bild 4-44 Zugang zu den Netz- und Motorklemmen bei Power Modules PM340

/ GEFAHR

Lebensgefahr durch elektrischen Schlag bei offenliegenden Klemmen

Das Berühren spannungsführender Teile führt zum Tod oder schweren Verletzungen.

• Betreiben Sie das Power Module nur mit geschlossener Klemmenabdeckung.

4.3.6 Technische Daten

4.3.6.1 Power Modules Blocksize, 1 AC

Tabelle 4-23 Technische Daten PM340, FSA (1 AC)

PM340	6SL3210-	1SB11-0UA0	1SB12-3UA0	1SB14-0UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SB11-0AA0	1SB12-3AA0	1SB14-0AA0
Ausgangsstrom				
Bemessungsstrom I _n	Α	0,9	2,3	3,9
Grundlaststrom I _H	Α	0,8	2,0	3,4
bei S6-Betrieb (40 %) Is6	Α	1,4	3,3	5,5
Spitzenstrom I _{max}	Α	2,0	4,6	7,8
Typleistung auf Basis In ¹⁾	kW	0,12	0,37	0,75
Bemessungspulsfrequenz	kHz	4	4	4
Verlustleistung	kW	0,06	0,075	0,11
Kühlluftbedarf	m ³ /s	0,005	0,005	0,005
Schalldruckpegel LpA (1 m)	dB	< 45	< 45	< 45
Versorgung DC 24 V				
für Control Unit	Α	1,0	1,0	1,0
Bemessungseingangsstrom ²⁾				
mit / ohne Netzdrossel	Α	1,4 / 2,2	4 / 6	6,5 / 10
UL Schmelzsicherungen Class J				
Bemessungsstrom	Α	6	10	15
Bemessungskurzschlussstrom				
SCCR	kA	65	65	65
Typbezeichnung Leistungsschalter EN 60947		5SJ4206-7HG41	5SJ4210-7HG41	5SJ4216-7HG41
Bemessungsstrom	Α	6	10	16
Typbezeichnung Leistungsschalter UL489 / CSA C22.2 No. 5-02		5SJ4206-7HG41	5SJ4210-7HG41	5SJ4216-7HG41
Bemessungsstrom Bemessungskurzschlussstrom	Α	6	10	16
SCCR	kA	14	14	14
Widerstandswert des externen Bremswiderstands	Ω	> 180	> 180	> 180

Netzspannung 1 AC 200 240 V ±10 %						
PM340	6SL3210-	1SB11-0UA0	1SB12-3UA0	1SB14-0UA0		
PM340 mit integriertem Netzfilter	6SL3210-	1SB11-0AA0	1SB12-3AA0	1SB14-0AA0		
Max. Leitungslänge zum Bremswiderstand	m	15	15	15		
Netzanschluss L, N		Schraubklemmen für L	eitungsquerschnitt 1,	0 bis 2,5 mm ²		
Motoranschluss U2, V2, W2						
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2						
PE-Anschluss		Am Gehäuse mit Schr	aube M4			
Max. Motorleitungslänge ³⁾ (ohne externe Optionen)	m	50 (geschirmt) 75 (ungeschirmt)				
Schutzart		IP20 bzw. IPXXB	_			
Gewicht	kg	1,2	1,3	1,3		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 230 V

4.3.6.2 Power Modules Blocksize, 3 AC

Tabelle 4- 24 Technische Daten PM340, FSA (3 AC 380 ... 480 V $\pm 10~\%$)

PM340 (ohne integrierten Netzfilter)	6SL3210-	1SE11-3UA0	1SE11-7UA0	1SE12-2UA0	1SE13-1UA0	1SE14-1UA0
Ausgangsstrom						
Bemessungsstrom In	Α	1,3	1,7	2,2	3,1	4,1
Grundlaststrom I _H	Α	1,1	1,5	1,9	2,7	3,6
bei S6-Betrieb (40 %) Is6	Α	1,3	2,0	2,5	3,5	4,5
Spitzenstrom I _{max}	Α	2,6	3,4	4,4	6,2	8,2
Typleistung ¹⁾						
auf Basis In	kW	0,37	0,55	0,75	1,1	1,5
auf Basis I _H	kW	0,37	0,55	0,75	1,1	1,5
Bemessungspulsfrequenz	kHz	4	4	4	4	4
Verlustleistung	kW	0,10	0,10	0,10	0,11	0,11
Kühlluftbedarf	m³/s	0,005	0,005	0,005	0,005	0,005
Schalldruckpegel L _{pA} (1 m)	dB(A)	< 45	< 45	< 45	< 45	< 45
Versorgung DC 24 V						
für Control Unit	Α	1,0	1,0	1,0	1,0	1,0
Bemessungs- eingangsstrom ²⁾						
mit / ohne Netzdrossel	Α	1,3 / 1,7	1,7 / 2,2	2,2 / 2,6	3,1 / 3,9	4,1 / 4,8

²⁾ Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend u_k = 1 %.

³⁾ Max. Motorleitungslänge 15 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

PM340 (ohne integrierten Netzfilter)	6SL3210-	1SE11-3UA0	1SE11-7UA0	1SE12-2UA0	1SE13-1UA0	1SE14-1UA0
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss- Strom SCCR	A kA	4 65	4	6	8	10
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	А	3NA3804 4	3NA3804 4	3NA3801 6	3NA3803 10	3NA3803 10
Typbezeichnung Leistungsschalter IEC 60947 Bemessungsstrom	А	3RV2011- 1DA10 2,2 3,2	3RV2011- 1DA10 2,2 3,2	3RV2011- 1FA10 3,5 5	3RV2011- 1GA10 4,5 6,3	3RV2011- 1HA10 5,5 8
Widerstandswert ext. Bremswiderstand	Ω	> 390	> 390	> 390	> 390	> 390
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	15	15
Netzanschluss L1, L2, L3		Schraubklemm Leitungsquerso	en für chnitt 1,0 2,5 ı	mm²		
Motoranschluss U2, V2, W2						
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2						
PE-Anschluss		Am Gehäuse n	nit Schraube M4			
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 75				
Schutzart		IP20 bzw. IPXXB				
Gewicht	kg	1,2	1,2	1,2	1,2	1,2

 $^{^{\}rm 1)}$ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

Max. Motorleitungslänge 25 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

Tabelle 4- 25 Technische Daten PM340, FSB (3 AC 380 \dots 480 V \pm 10 %)

PM340	6SL3210-	1SE16-0UA0	1SE17-7UA0	1SE21-0UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE16-0AA0	1SE17-7AA0	1SE21-0AA0
Ausgangsstrom Bemessungsstrom In Grundlaststrom IH bei S6-Betrieb (40 %) Is6 Spitzenstrom Imax	A A A	5,9 5,2 6,4 11,8	7,7 6,8 8,3 15,4	10,2 9,1 10,8 20,4
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	2,2 2,2	3 3	4 4
Bemessungspulsfrequenz	kHz	4	4	4
Verlustleistung	kW	0,14	0,16	0,18
Kühlluftbedarf	m ³ /s	0,009	0,009	0,009
Schalldruckpegel L _{pA} (1 m)	dB	< 50	< 50	< 50
Versorgung DC 24 V für Control Unit	A	1,0	1,0	1,0
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	A	5,6 / 6,7	7,5 / 8,9	9,8 / 12,4
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom	A	10	12	15
SCCR	kA	65	65	65
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	A	3NA3803	3NA3805	3NA3805
Typbezeichnung Leistungsschalter IEC 60947 Bemessungsstrom	A	3RV2011-1KA10 9 12,5	3RV2011-4AA10	3RV2021-4BA10
Widerstandswert ext. Bremswiderstand	Ω	> 160	> 160	> 160
Max. Leitungslänge zum Bremswiderstand	m	15	15	15
Netzanschluss L1, L2, L3		Schraubklemmen fi Leitungsquerschnit		
Motoranschluss U2, V2, W2				
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2				
PE-Anschluss		Am Gehäuse mit S	chraube M5	

PM340	6SL3210-	1SE16-0UA0	1SE17-7UA0	1SE21-0UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE16-0AA0	1SE17-7AA0	1SE21-0AA0
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 75		
Schutzart		IP20 bzw. IPXXB		
Gewicht	kg	4,0	4,0	4,0

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

Tabelle 4- 26 Technische Daten PM340, FSC (3 AC 380 ... 480 V ±10 %)

PM340	6SL3210-	1SE21-8UA0	1SE22-5UA0	1SE23-2UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE21-8AA0	1SE22-5AA0	1SE23-2AA0
Ausgangsstrom Bemessungsstrom In Grundlaststrom IH bei S6-Betrieb (40 %) Is6 Spitzenstrom Imax	A A A	18 14 19,6 26,4	25 21 27,8 38	32 27 37,1 52
Typleistung ¹⁾ auf Basis In auf Basis IH Bemessungspulsfrequenz	kW kW	7,5 5,5 4	11 7,5	15 11 4
Verlustleistung	kW	0,24	0,30	0,40
Kühlluftbedarf	m³/s	0,038	0.038	0,038
Schalldruckpegel L _{pA} (1 m)	dB	< 60	< 60	< 60
Versorgung DC 24 V für Control Unit	A	1,0	1,0	1,0
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	А	17,1 / 23,1	24,6 / 32,6	33 / 39
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom SCCR	A kA	25 65	35 65	45 65
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	A	3NA3810	3NA3814	3NA3817
Typbezeichnung Leistungsschalter IEC 60947		3RV1031-4EA10	3RV1031-4FA10	3RV1031-4HA10
Bemessungsstrom	A	22 32	28 40	40 50
Widerstandswert ext. Bremswiderstand	Ω	> 56	> 56	> 56
Max. Leitungslänge zum Bremswiderstand	m	15	15	15

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis In) bei einer Netzimpedanz entsprechend uk = 1 %.

³⁾ Max. Motorleitungslänge 25 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

PM340	6SL3210-	1SE21-8UA0	1SE22-5UA0	1SE23-2UA0	
PM340 mit integriertem Netzfilter	6SL3210-	1SE21-8AA0	1SE22-5AA0	1SE23-2AA0	
Netzanschluss L1, L2, L3		Schraubklemmen für Leitungsquerschnitt 2,5 10 mm²			
Motoranschluss U2, V2, W2					
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2					
PE-Anschluss		Am Gehäuse mit	Schraube M5		
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	50 / 75			
Schutzart		IP20 bzw. IPXXB			
Gewicht	kg	6,5	6,5	6,5	

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

Tabelle 4- 27 Technische Daten PM340, FSD (3 AC 380 V bis 480 V ±10 %)

PM340	6SL3210-	1SE23-8UA0	1SE24-5UA0	1SE26-0UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE23-8AA0	1SE24-5AA0	1SE26-0AA0
Ausgangsstrom Bemessungsstrom I _n Grundlaststrom I _H bei S6-Betrieb (40 %) I _{s6} Spitzenstrom I _{max}	A A A	38 33 49 64	45 40 58 76	60 48 78 90
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	18,5 15	22 18,5	30 22
Bemessungspulsfrequenz	kHz	4	4	4
Verlustleistung	kW	0,38	0,51	0,69
Kühlluftbedarf	m³/s	0,022	0,022	0,039
Schalldruckpegel L _{pA} (1 m)	dB(A)	< 60	< 60	< 60
Versorgung DC 24 V für Control Unit	А	1,0	1,0	1,0
Bemessungseingangsstrom ²⁾ mit / ohne Netzdrossel	A	40 / 46	47 / 53	63 / 72
Schmelzsicherungen UL Class J Bemessungsstrom Bemessungskurzschluss-Strom SCCR	A kA	3NE1817-0 50 65	3NE1818-0 60 65	3NE1820-0 90 65

²⁾ Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend u_k = 1 %.

Max. Motorleitungslänge 25 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

PM340	6SL3210-	1SE23-8UA0	1SE24-5UA0	1SE26-0UA0	
PM340 mit integriertem Netzfilter	6SL3210-	1SE23-8AA0	1SE24-5AA0	1SE26-0AA0	
Schmelzsicherungen NH IEC 60947		3NA3820	3NA3822	3NA3824	
Bemessungsstrom	Α	50	63	80	
Typbezeichnung Leistungsschalter IEC 60947		3RV1042-4JA10	3RV1042-4KA10	3RV1042-4MA10	
Bemessungsstrom	Α	45 63	57 75	80 100	
Widerstandswert des externen Bremswiderstands	Ω	> 27	> 27	> 27	
Max. Leitungslänge zum Bremswiderstand	m	15	15	15	
Netzanschluss L1, L2, L3		Schraubbolzen M6, anschließbarer Leitungsquerschnitt 10 50 mm²			
Motoranschluss U2, V2, W2					
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2					
PE-Anschluss		am Gehäuse mit Sc	hraube M6		
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	70 / 100			
Schutzart		IP20 bzw. IPXXB			
Höhe PM 340 ohne / mit integriertem Netzfilter	mm (inch)	418,3 (16.47) / 511 (20.11)	418,3 (16.47) / 511 (20.11)	418,3 (16.47) / 511 (20.11)	
Gewicht ohne / mit integriertem Netzfilter	kg	15,9 / 19,3	15,9 / 19,3	15,9 / 19,3	

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

Max. Motorleitungslänge 25 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

Tabelle 4- 28 Technische Daten PM340, FSE und FSF (3 AC 380 V bis 480 V ±10 %)

PM340	6SL3210-	1SE27-5UA0	1SE31-0UA0	1SE31-1UA0	1SE31-5UA0	1SE31-8UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE27-5AA0	1SE31-0AA0	1SE31-1AA0	1SE31-5AA0	1SE31-8AA0
Baugröße		FSE	FSE	FSF	FSF	FSF
Ausgangsstrom Bemessungsstrom In Grundlaststrom IH bei S6-Betrieb (40 %) Is6 Spitzenstrom Imax	A A A	75 65 98 124	90 80 117 150	110 95 143 180	145 115 188 220	178 155 231 290
Typleistung ¹⁾ auf Basis I _n auf Basis I _H	kW kW	37 30	45 37	55 45	75 55	90 75
Bemessungspulsfrequenz	kHz	4	4	4	4	4
Verlustleistung	kW	0,99	1,21	1,42	1,93	2,31
Kühlluftbedarf	m ³ /s	0,022	0,039	0,094	0,094	0,117
Schalldruckpegel L _{pA} (1 m)	dB	< 60	62	< 60	< 60	65
Versorgung DC 24 V für Control Unit	A	1,0	1,0	1,0	1,0	1,0
Bemessungs- eingangsstrom ²⁾ mit / ohne Netzdrossel	A	78 / 88	94 / 105	115 / 129	151 / 168	186 / 204
Schmelzsicherungen UL Class J Bemessungsstrom	A	3NE1021-0 100	3NE1022-0 125	3NE1224-0 150	3NE1225-0 200	3NE1227-0 250
Bemessungskurzschluss- Strom SCCR	kA	65	65	65	65	65
Schmelzsicherungen NH IEC 60947 Bemessungsstrom	A	3NA3830 100	3NA3832 125	3NA3836 160	3NA3140 200	3NA3144 250
Typbezeichnung Leistungsschalter IEC 60947		3VL1712- 1DD33-0AA0	3VL1716- 1DD33-0AA0	3VL3720- 1DC36-0AA0	3VL3720- 1DC36-0AA0	3VL3725- 1DC36-0AA0
Bemessungsstrom	Α	100 125	125 160	160 200	160 200	200 250
Widerstandswert des externen Bremswiderstands	Ω	> 15		> 8,2		
Max. Leitungslänge zum Bremswiderstand	m	15				
Netzanschluss L1, L2, L3		Schraubbolzer anschließbarer	Leitungsquer-	Schraubbolzen M8, max. anschließbarer Leitungsquerschnitt		
Motoranschluss U2, V2, W2		schnitt 10 5	U mm²	120 mm ²		
Zwischenkreisanschluss, Anschluss für Bremswiderstand DCP/R1, DCN, R2						
PE-Anschluss		am Gehäuse n M6	nit Schraube	am Gehäuse m	nit Schraube M8	

PM340	6SL3210-	1SE27-5UA0	1SE31-0UA0	1SE31-1UA0	1SE31-5UA0	1SE31-8UA0
PM340 mit integriertem Netzfilter	6SL3210-	1SE27-5AA0	1SE31-0AA0	1SE31-1AA0	1SE31-5AA0	1SE31-8AA0
Max. Motorleitungslänge ³⁾ geschirmt / ungeschirmt	m	70 / 100				
Schutzart		IP20 bzw. IPXXB				
Höhe PM 340 ohne / mit integriertem Netzfilter	mm (inch)	498,3 (19.62) / 633 (24.92) 634 (24.96) / 934 (36.77)				
Gewicht ohne / mit integriertem Netzfilter	kg	19,8 / 27,1		50,7 / 66,7		

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

Der Eingangsstrom ist abhängig von Motorlast und Netzimpedanz. Die Eingangsströme gelten für Belastung mit Typleistung (auf Basis I_n) bei einer Netzimpedanz entsprechend $u_k = 1 \%$.

Max. Motorleitungslänge 25 m (geschirmt) bei Power Modules PM340 mit integriertem Netzfilter zur Einhaltung der Grenzwerte von EN 61800-3 Kategorie C2.

4.3.6.3 Kennlinien

Überlastfähigkeit

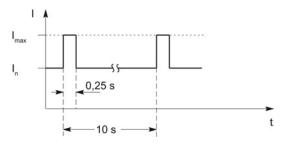


Bild 4-45 Lastspiel mit Vorlast (für Servoantriebe)

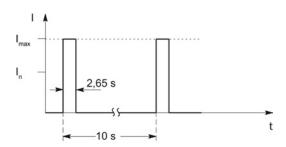


Bild 4-46 Lastspiel ohne Vorlast (für Servoantriebe)

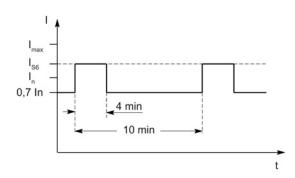


Bild 4-47 S6-Lastspiel mit Vorlast (für Servoantriebe)

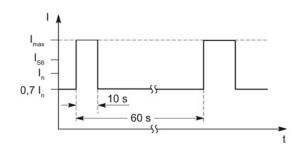


Bild 4-48 Lastspiel mit Vorlast (für Servoantriebe)

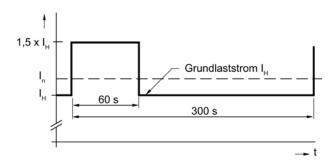


Bild 4-49 Lastspiel mit 60 s Überlast bei einer Lastspieldauer von 300 s

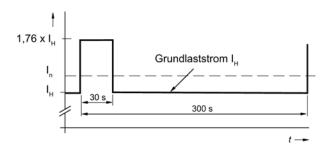


Bild 4-50 Lastspiel mit 30 s Überlast bei einer Lastspieldauer von 300 s

Hinweis

Die kurzen Anstiegsflanken der dargestellten Lastspiele sind nur mit Drehzahl- oder Drehmomentregelung realisierbar.

Derating-Kennlinien für Power Modules Bauform Blocksize PM340

Weitere Informationen finden Sie im Kapitel Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe (Seite 37).

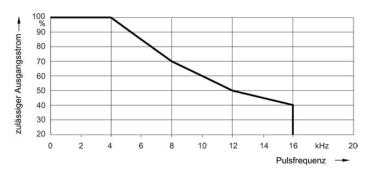


Bild 4-51 Baugrößen FSA bis FSE: Ausgangsstrom in Abhängigkeit von der Pulsfrequenz

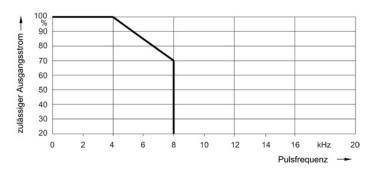


Bild 4-52 Baugröße FSF: Ausgangsstrom in Abhängigkeit von der Pulsfrequenz

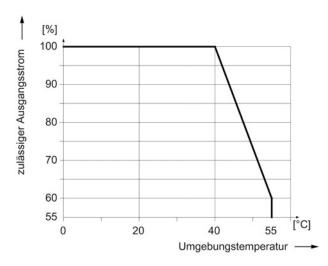


Bild 4-53 Ausgangsstrom in Abhängigkeit von der Umgebungstemperatur

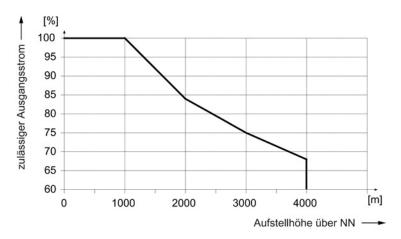


Bild 4-54 Ausgangsstrom in Abhängigkeit von der Aufstellhöhe

Bei Ausgangsfrequenzen unter 10 Hz darf das Power Module nicht mit seinem maximalen Bemessungsstrom betrieben werden. Anderenfalls kann dies zu einer Reduktion der Lebensdauer führen.

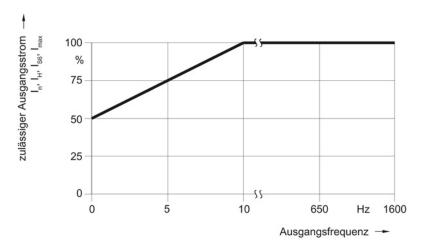


Bild 4-55 Ausgangsstrom in Abhängigkeit von der Ausgangsfrequenz

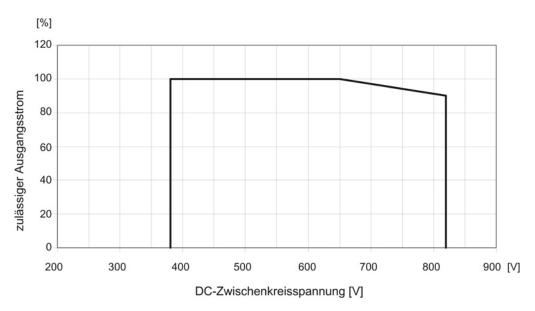


Bild 4-56 Strom-Derating in Abhängigkeit von der DC-Zwischenkreisspannung

4.4.1 Beschreibung

Ein Power Module ist ein Leistungsteil (Frequenzumrichter), das die Energie für den angeschlossenen Motor zur Verfügung stellt. Ein Power Module muss über DRIVE-CLiQ mit einer Control Unit verbunden werden, in der seine Steuer- und Regelungsfunktionalitäten hinterlegt sind.

Eigenschaften der Power Modules

- Ausführung von 210 A bis 490 A
- Interne Luftkühlung
- Kurzschluss-/Erdschlussfestigkeit
- Elektronisches Typenschild
- Betriebszustand und Fehleranzeige über LED
- DRIVE-CLiQ-Schnittstelle zur Kommunikation mit der Control Unit und/oder anderen Komponenten im Antriebsverband
- Einbindung in die Systemdiagnose

4.4.2 Sicherheitshinweise für Power Modules Chassis

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

 Halten Sie die in den Maßbildern angegebenen Lüftungsfreiräume oberhalb, unterhalb und vor der Komponente ein.

4.4.3 Schnittstellenbeschreibung

4.4.3.1 Übersicht

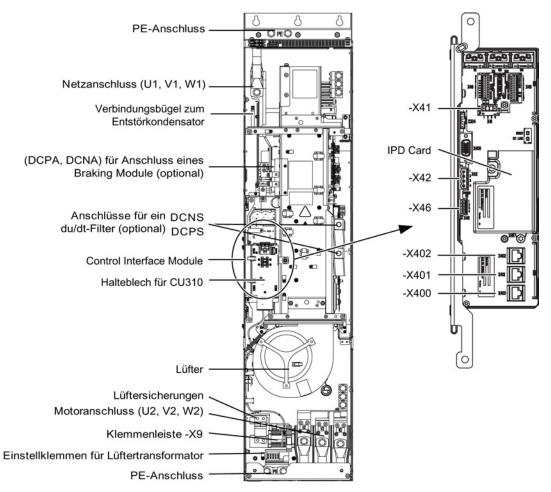


Bild 4-57 Power Module, Baugröße FX

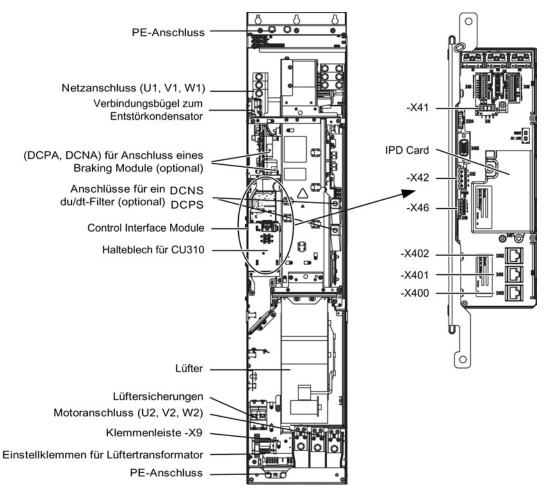


Bild 4-58 Power Module, Baugröße GX

4.4.3.2 Anschlussbeispiel

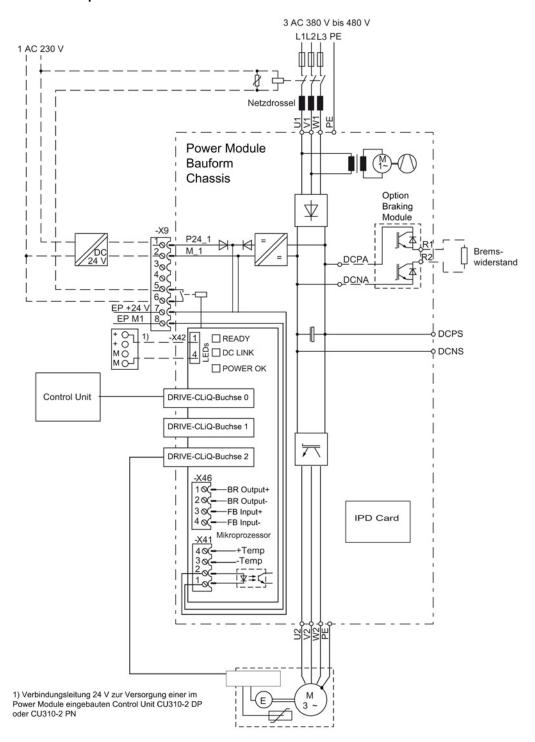


Bild 4-59 Anschlussbeispiel: Power Module Chassis

4.4.3.3 X9 Klemmenleiste

Tabelle 4-29 Klemmenleiste X9

	Klemme	Signalname	Technische Angaben
	1	P24V	Spannung: DC 24 V (20,4 28,8 V)
	2	M	Stromaufnahme: max 1,4 A
8 8	3	reserviert, nicht belegen	
8 % 8	4	reserviert, nicht belegen	
	5	Hauptschütz	AC 240 V / max. 8 A
	6	Hauptschütz	DC 30 V / max. 1 A
	7	EP +24 V (Enable Pulses)	Anschlussspannung: DC 24 V (20,8 V 28,8 V)
	8	EP M1 (Enable Pulses)	Stromaufnahme: 10 mA Signallaufzeiten: L->H: 100 µs H->L: 1000 µs Die Pulssperrfunktion wird nur gegeben, wenn Safety Integrated Basic Functions frei gegeben sind.

Hinweis

Die Funktion der EP-Klemmen steht nur bei frei gegebenen Safety Integrated Basic Functions zur Verfügung.

Hinweis

Wenn die Funktion "Safe Torque Off" angewählt ist, müssen zum Betrieb an die Klemme -X9:7 DC 24 V und an die Klemme -X9:8 Masse angelegt werden. Bei Wegnahme wird eine Impulslöschung aktiviert.

4.4.3.4 DCPS, DCNS Anschluss für einen du/dt-Filter

Tabelle 4-30 DCPS, DCNS

Baugröße	Anschließbarer Querschnitt	Anschlussschraube
FX	1 x 35 mm²	M8
GX	1 x 70 mm²	M8

Die Anschlusskabel werden nach unten durch das Power Module herausgeführt.

4.4.3.5 X41 EP-Klemmen / Temperatursensor-Anschluss

Tabelle 4- 31 Klemmenleiste -X41

	Klemme	Funktion	Technische Angaben
1 2 3 4	2	EP M1 (Enable Pulses) EP +24 V (Enable Pulses)	Anschlussspannung: DC 24 V (20,4 28,8 V) Stromaufnahme: 10 mA Signallaufzeiten: $L \rightarrow H: 100 \ \mu s$ $H \rightarrow L: 1000 \ \mu s$
	3	-Temp	Temperatursensor KTY84-1C130 / PTC / PT100 Sensoren
	4	+Temp	
Max. anschließt	oarer Quersch	nnitt: 1,5 mm²	

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie nur Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

ACHTUNG

Geräteausfall durch ungeschirmte oder falsch verlegte Leitungen zu Temperatursensoren

Ungeschirmte oder falsch verlegte Leitungen zu Temperatursensoren können zu Einkopplungen von der Leistungsseite in die Signalverarbeitungs-Elektronik führen. Dies kann zu massiven Störungen aller Signale (Fehlermeldungen) bis hin zum Ausfall einzelner Bauteile (Zerstörung der Geräte) führen.

- Verwenden Sie als Leitungen zu Temperatursensoren ausschließlich geschirmte Leitungen.
- Wenn Leitungen zu Temperatursensoren gemeinsam mit der Motorleitung geführt werden, verwenden Sie paarweise verdrillte und separat geschirmte Leitungen.
- Verbinden Sie den Leitungsschirm beidseitig großflächig mit Massepotential.
- Empfehlung: Verwenden Sie geeignete Motion Connect-Leitungen.

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Hinweis

Der Temperaturfühleranschluss kann benutzt werden bei Motoren, die mit einem KTY84-1C130-, PTC- oder PT100-Messfühler in den Ständerwicklungen ausgerüstet sind.

Hinweis

Die Klemmen -X41:1 und -X41:2 sind über ein Formkabel mit den Klemmen -X9:8 und -X9:7 verbunden.

4.4.3.6 X42 Klemmenleiste

Tabelle 4-32 Klemmenleiste -X42

	Klemme	Funktion	Technische Angaben				
	1	P24L	Spannungsversorgung für Control Unit, Sensor Module und Terminal				
	2		Module (18 28,8 V) Maximaler Laststrom: 3 A				
	3	M	Waximaler Laststrom. 3 A				
	4						
Max. anschließ	Max. anschließbarer Querschnitt: 2,5 mm ²						

Hinweis

Im Auslieferungszustand sind die Klemmen 1 und 4 durch eine Verbindungsleitung zur Versorgung einer Control Unit CU310-2 DP oder CU310-2 PN vorbelegt.

Hinweis

Anschlussmöglichkeiten der X42 Klemmleiste

Die Klemmenleiste ist nicht zur freien DC 24 V-Verfügbarkeit (etwa zur Versorgung weiterer anlagenseitiger Komponenten) vorgesehen, weil damit auch die Spannungsversorgung des Control Interface Module überlastet werden und somit die Funktionsfähigkeit gefährdet werden könnte.

4.4.3.7 X46 Bremsenansteuerung und -überwachung

Tabelle 4-33 Klemmenleiste -X46

	Klemme	Funktion	Technische Angaben				
	1	BR Output +	Die Schnittstelle ist für den Anschluss des Safe Brake				
	2	BR Output -	Adapters vorgesehen.				
	3	FB Input +					
	4	FB Input -					
Max. anschli	Max. anschließbarer Querschnitt: 1,5 mm ²						

Hinweis

Weitere Informationen finden Sie im Kapitel Optionsmodul Safe Brake Adapter (Seite 388).

/ WARNUNG

Brandgefahr durch Überhitzung bei Überschreiten der zulässigen Längen von Anschlussleitungen

Durch zu lange Anschlussleitungen an der Klemmenleiste X46 kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

- Die Leitungslänge von 10 m darf nicht überschritten werden.
- Die Anschlussleitung darf nicht aus dem Schaltschrank bzw. der Schaltschrankgruppe herausgeführt werden.

4.4.3.8 X400-X402 DRIVE-CLiQ-Schnittstelle

Tabelle 4- 34 X400-X402 DRIVE-CLiQ-Schnittstelle

	Pin	Name	Technische Angaben
	1	TXP	Sendedaten +
	2	TXN	Sendedaten -
8	3	RXP	Empfangsdaten +
8 B A	4	Reserviert, nicht belegen	
	5	Reserviert, nicht belegen	
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	Α	+ (24 V)	Spannungsversorgung
	В	M (0 V)	Elektronikmasse

4.4.3.9 Bedeutung der LEDs am Power Module

Tabelle 4-35 Bedeutung der LEDs "READY" und "DC LINK" auf dem Control Interface Module am Power Module

LED, Zustand		Beschreibung
READY	DC LINK	
Aus	Aus	Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.
	Aus	Die Komponente ist betriebsbereit und zyklische DRIVE-CLiQ-Kommunikation findet statt.
Grün	Orange	Die Komponente ist betriebsbereit und zyklische DRIVE-CLiQ-Kommunikation findet statt. Die Zwischenkreisspannung liegt an.
	Rot	Die Komponente ist betriebsbereit und zyklische DRIVE-CLiQ-Kommunikation findet statt. Die Zwischenkreisspannung ist zu hoch.
Orange	Orange	Die DRIVE-CLiQ-Kommunikation wird aufgebaut.
Rot		Es liegt mindestens eine Störung von dieser Komponente an. Hinweis: Die LED wird unabhängig vom Umprojektieren der entsprechenden Meldungen angesteuert.
Grün/Rot (0,5 Hz)		Firmware-Download wird durchgeführt.
Grün/Rot (2 Hz)		Firmware-Download ist abgeschlossen. Warten auf POWER ON.
Grün Orange oder Rot Orange		Erkennung der Komponente über LED ist aktiviert (siehe SINAMICS S120/S150 Listenhandbuch) Hinweis: Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren über den Parameter ab.

/ WARNUNG

Lebensgefahr durch Berühren unter Spannung stehender Teile des Zwischenkreises

Unabhängig vom Zustand der LED "DC LINK" kann gefährliche Zwischenkreisspannung anliegen, die bei Berührung spannungsführender Teile zum Tod oder schweren Körperverletzungen führt.

• Beachten Sie die Warnhinweise auf der Komponente.

Tabelle 4- 36 Bedeutung der LED "POWER OK" auf dem Control Interface Module im Power Module

LED	Farbe	Zustand	Beschreibung
POWER OK	Grün	Aus	Zwischenkreisspannung < 100 V und Spannung an –X9:1/2 kleiner 12 V.
		Ein	Die Komponente ist betriebsbereit.
		Blinklicht	Es liegt eine Störung an. Falls nach einem POWER ON das Blinklicht weiterhin ansteht, kontaktieren Sie den SIEMENS-Service.

4.4.4 Maßbilder

Maßbild Baugröße FX

Die einzuhaltenden Lüftungsfreiräume werden durch die gestrichelte Linie gekennzeichnet.

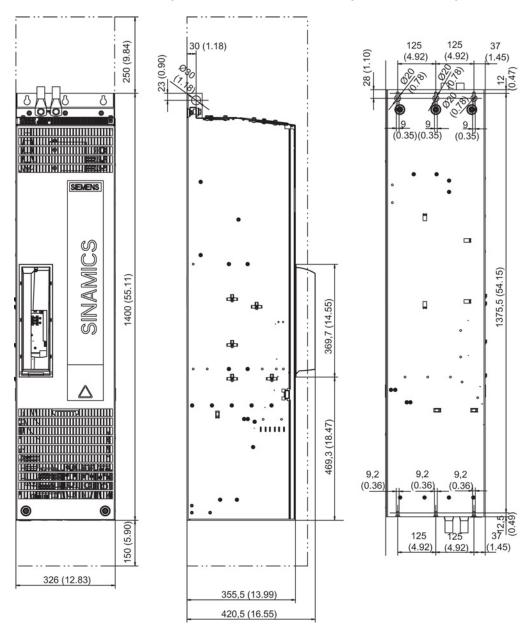


Bild 4-60 Maßbild Power Module, Baugröße FX

Maßbild Baugröße GX

Die einzuhaltenden Lüftungsfreiräume werden durch die gestrichelte Linie gekennzeichnet.

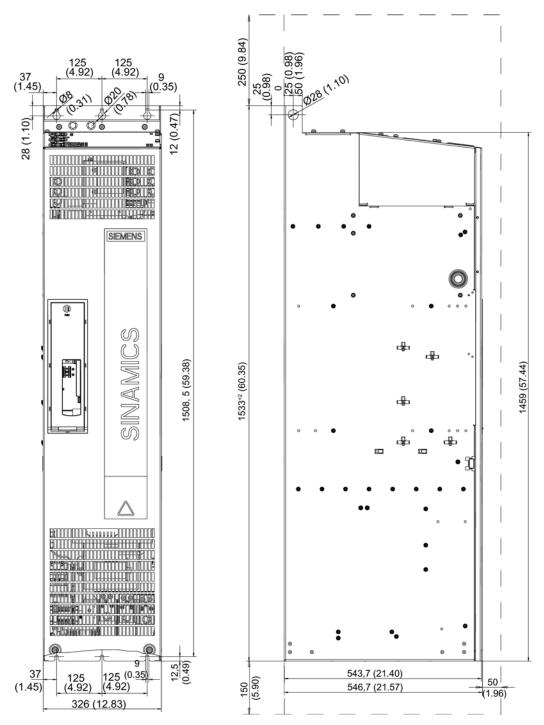


Bild 4-61 Maßbild Power Module, Baugröße GX

4.4.5 Elektrischer Anschluss

Anpassen der Lüfterspannung (-T10)

Die Spannungsversorgung der Gerätelüfter (1 AC 230 V) im Power Module (-T10) wird aus dem Hauptnetz mithilfe eines Transformators erzeugt. Die Einbaulage des Transformators ist in den Schnittstellenbeschreibungen zu finden.

Zur Feinanpassung an die jeweilige Netzspannung sind die Transformatoren mit primärseitigen Anzapfungen versehen. Im Auslieferzustand sind die Anzapfungen immer auf die höchste Stufe eingestellt. Beim Einsatz an einer niedrigeren Netzspannung muss am Transformator die jeweilige Anzapfung aktiviert werden.

Die Anschlüsse an den Einstellklemmen müssen auf "0" und die Netzspannung geklemmt werden.

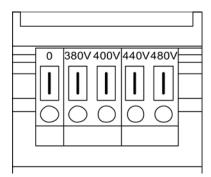


Bild 4-62 Einstellklemmen für die Lüftertransformatoren

Die Zuordnung der vorhandenen Netzspannung zur Einstellung am Lüftertransformator geht aus der nachfolgenden Tabelle hervor (werksseitige Vorbelegung: 480 V/0 V)

Brandgefahr durch Überhitzung bei unzureichender Gerätelüfterspannung

Werden die Klemmen nicht auf die tatsächliche Netzspannung umgeklemmt, kann dies zu einer Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand führen. Weiterhin kann es zum Ausfall der Lüftersicherungen durch Überlast kommen.

• Belegen Sie die Klemmen entsprechend der tatsächlichen Netzspannung.

Tabelle 4- 37 Zuordnung der vorhandenen Netzspannung zur Einstellung am Lüftertransformator

Netzspannung	Anzapfung am Lüftertransformator (-T10)
380 V ± 10 %	380 V
400 V ± 10 %	400 V
440 V ± 10 %	440 V
480 V ± 10 %	480 V

Entfernen des Verbindungsbügels zum Entstörkondensator bei Betrieb am ungeerdeten Netz/IT-Netz

Wenn das Power Module an einem ungeerdeten Netz (IT–Netz) betrieben wird, so muss der Verbindungsbügel zum Entstörkondensator des Power Modules entfernt werden.

Die Einbaulage des Verbindungsbügels ist den Übersichten der Power Modules zu entnehmen.

Hinweis

Warnschild am Verbindungsbügel

An jedem Verbindungsbügel ist zur besseren Auffindbarkeit ein gelbes Warnschild befestigt.

- Das Warnschild muss (durch kräftiges Ziehen) vom Verbindungsbügel entfernt werden, wenn der Verbindungsbügel im Gerät verbleiben soll (Betrieb an einem geerdeten Netz).
- Das Warnschild muss gemeinsam mit dem Verbindungsbügel entfernt werden, wenn das Gerät an einem ungeerdeten Netz (IT-Netz) betrieben wird.

Bild 4-63 Warnschild am Verbindungsbügel

ACHTUNG

Beschädigung bei intaktem Verbindungsbügel zum Entstörkondensator

Wenn bei einem ungeerdeten Netz (IT-Netz) der Verbindungsbügel zum Entstörkondensator nicht entfernt wird, kann ein erheblicher Schaden am Einbaugerät entstehen.

• Entfernen Sie den Verbindungsbügel zum Entstörkondensator.

4.4.6 Technische Daten

Tabelle 4-38 Technische Daten Power Modules Chassis

Bestellnummer	6SL3310-	1TE32-1AA3	1TE32-6AA3	1TE33-1AA3	1TE33-8AA3	1TE35-0AA3
Baugröße		FX	FX	GX	GX	GX
Ausgangsstrom						
Bemessungsstrom In	Α	210	260	310	380	490
Grundlaststrom I _L	Α	205	250	302	370	477
Grundlaststrom I _H	Α	178	233	277	340	438
bei S6-Betrieb (40 %) Is6	Α	230	285	340	430	540
Spitzenstrom I _{max}	Α	307	375	453	555	715
Anschlussspannungen Elektronikstromversorgung Überspannungsabschaltung Unterspannungsabschaltung	V _{DC} V _{DC} V _{DC}	24 (20,4 28 820 ± 2 % 424	,8)			
Typleistung ¹⁾						
auf Basis In	kW	110	132	160	200	250
auf Basis I _H	kW	90	110	132	160	200
Bemessungspulsfrequenz						
ohne Derating	kHz	2	2	2	2	2
mit Derating	kHz	8	8	8	8	8
Verlustleistung	kW	2,46	3,27	4,0	4,54	5,78
Kühlluftbedarf	m³/s	0,17	0,23	0,36	0,36	0,36
Schalldruckpegel bei 50/60 Hz	dB(A)	66 / 67	68 / 72	68 / 72	68 / 72	68 / 72
Bemessungseingangsstrom	А	229	284	338	395	509
Strombedarf ²⁾ bei DC 24 V, max.	А	0,8	0,8	0,9	0,9	0,9
Schmelzsicherungen NH		3NA3144	3NA3250	3NA3254	3NA3260	3NA3372
Bemessungsstrom	Α	250	300	355	400	630
Schmelzsicherungen UL Class J		3NE1227	3NE1230			
Bemessungsstrom Bemessungskurzschluss-	Α	250	300	350	400	600
Strom SCCR	kA	65	65	65	65	65
Typbezeichnung Leistungsschalter IEC 60947 Bemessungsstrom	A	3VL4725- 1DC36-0AA0 200 250	3VL4731- 1DC36-0AA0 250 315	3VL4740- 1DC36-0AA0 320 400	3VL5750- 1DC36-0AA0 400 500	3VL5763- 1DC36-0AA0 500 630
	A					
Typbezeichnung Leistungsschalter UL489 / CSA C22.2 No. 5-02		3VL3125- 3KN30-0AA0	3VL4130- 3KN30-0AA0	3VL4135- 3KN30-0AA0	3VL4140- 3KN30-0AA0	3VL4560- 3KN30-0AA0
Bemessungsstrom Bemessungskurzschluss-	А	250	300	350	400	600
Strom SCCR	kA	65	65	65	65	65
Netzanschluss U1, V1, W1		Flachanschlus Kabelschuh M max. Anschlus 2 x 185 mm ²	10,	Flachanschluss für Kabelschuh M10, max. Anschlussquerschnitt 2 x 240 mm²		

Netzspannung 3AC 380 V bis 480 V ±10 % (-15 % < 1 min)						
Bestellnummer	6SL3310-	1TE32-1AA3	1TE32-6AA3	1TE33-1AA3	1TE33-8AA3	1TE35-0AA3
Motoranschluss U2, V2, W2		Flachanschluss für Kabelschuh M10, max. Anschlussquerschnitt 2 x 185 mm²		Flachanschluss für Kabelschuh M10, max. Anschlussquerschnitt 2 x 240 mm²		
Zwischenkreisanschlüsse DCPA, DCNA, (Option Braking Module)		Flachanschluss für Kabelschuh M6, Anschluss- querschnitt 1 x 35 mm²		Flachanschluss für Kabelschuh M6, Anschlussquerschnitt 1 x 50 mm²		
Zwischenkreisanschlüsse DCPS, DCNS (Option du/dt-Filter)		Flachanschluss für Kabelschuh M8, Anschluss- querschnitt 1 x 35 mm²		Flachanschluss für Kabelschuh M8, Anschlussquerschnitt 1 x 70 mm²		
PE-Anschluss		Flachanschluss für Kabelschuh M10, max. Anschlussquerschnitt 2 x 185 mm²		Flachanschluss für Kabelschuh M10, max. Anschlussquerschnitt 2 x 240 mm²		
Max. Motorleitungslänge ³⁾	m	300 (geschirmt) / 450 (ungeschirmt)				
Max. Umgebungstemperatur ohne Derating mit Derating	°C °C	40 55	40 55	40 55	40 55	40 55
Schutzart		IP 20 bzw. IPXXB				
Breite	mm	326	326	326	326	326
Höhe	mm	1400	1400	1533	1533	1533
Tiefe	mm	356 ⁴⁾	356 ⁴⁾	545	545	545
Gewicht	kg	104	104	162	162	162

¹⁾ Bemessungsleistung eines typischen Norm-Asynchronmotors bei 3 AC 400 V

²⁾ Nur Strombedarf des Power Modules. Wird eine Control Unit über das Power Module mit DC 24 V versorgt, ist deren Strombedarf zu addieren.

Max. Motorleitungslänge 100 m (geschirmt) in Verbindung mit Netzfilter zur Einhaltung der EMV-Grenzwerte von EN 61800-3 Kategorie C2.

⁴⁾ Tiefe = 421 mm einschließlich Frontklappe bei eingebauter Control Unit

4.4.6.1 Kennlinien

Überlastfähigkeit

Die Power Modules bieten eine Überlastreserve, um z. B. Losbrechmomente zu überwinden.

Bei Antrieben mit Überlastforderungen ist deshalb für die jeweilige geforderte Belastung der entsprechende Grundlaststrom zugrunde zu legen.

Die Überlasten gelten unter der Voraussetzung, dass das Power Module vor und nach der Überlast mit seinem Grundlaststrom betrieben wird, hierbei liegt eine Lastspieldauer von 300 s zugrunde.

Geringe Überlast

Dem Grundlaststrom für geringe Überlast I_L liegt das Lastspiel 110 % für 60 s bzw. 150 % für 10 s mit einer Lastspieldauer von 300 s zugrunde.

Umrichterstrom

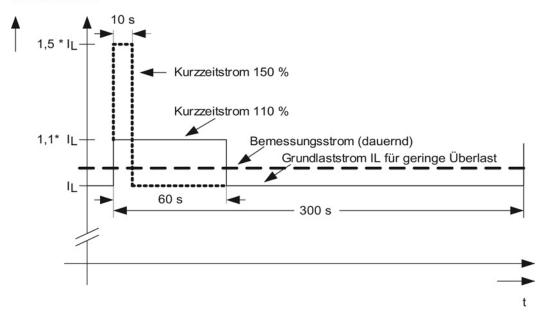


Bild 4-64 Kennlinie: Geringe Überlast

Hohe Überlast

Dem Grundlaststrom für hohe Überlast I_H liegt das Lastspiel 150 % für 60 s bzw. 160 % für 10 s mit einer Lastspieldauer von 300 s zugrunde.

Umrichterstrom

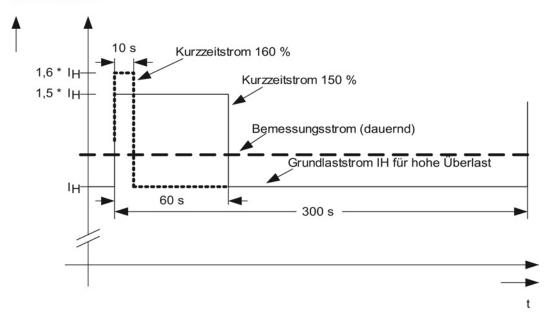


Bild 4-65 Kennlinie: Hohe Überlast

Derating für Power Modules Bauform Chassis

Weitere Informationen finden Sie im Kapitel Derating in Abhängigkeit von Umgebungstemperatur, Pulsfrequenz und Aufstellhöhe (Seite 37).

Tabelle 4- 39 Strom-Derating für Einbaugeräte in Abhängigkeit von der Umgebungstemperatur (Zulufttemperatur am Lufteintritt des Einbaugeräts) und der Aufstellhöhe

Aufstellhöhe über NN in m	Strom-Derating-Faktor (in % vom Bemessungsstrom) bei einer Umgebungstemperatur (Zulufttemperatur) von							
	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C	55 °C
0 2000	100 %	100 %	100 %	100 %	100 %	93,3 %	86,7 %	80 %
2500	100 %	100 %	100 %	100 %	96,3 %			
3000	100 %	100 %	100 %	98,7 %				
3500	100 %	100 %	100 %					
4000	100 %	100 %	96,3 %					
4500	100 %	97,5 %						
5000	98,2 %							

Die Werte gelten unter der Voraussetzung, dass der in den technischen Daten angegebene Kühlluftstrom durch die Geräte gewährleistet ist.

Tabelle 4- 40 Deratingfaktor des Ausgangsstroms in Abhängigkeit der Pulsfrequenz

Bestellnummer 6SL3310	Leistung [kW]	Ausgangsstrom bei 2 kHz Pulsfrequenz [A]	Deratingfaktor bei 4 kHz Pulsfrequenz	Deratingfaktor bei 8 kHz Pulsfrequenz
1TE32-1AAx	110	210	82 %	50 %
1TE32-6AAx	132	260	83 %	50 %
1TE33-1AAx	160	310	88 %	50 %
1TE33-8AAx	200	380	87 %	50 %
1TE35-0AAx	250	490	78 %	50 %

Durch ganzzahlige Vervielfachung der Bemessungspulsfrequenz lassen sich unter Berücksichtigung der Deratingfaktoren in folgende Ausgangsfrequenzen erzielen:

Tabelle 4- 41 Maximale Ausgangsfrequenzen durch Erhöhung der Pulsfrequenz in der Betriebsart VECTOR

Pulsfrequenz [kHz]	Maximale Ausgangsfrequenz [Hz]		
2	160		
4	3201)		
8	6401)		

Durch die Regelung ist die maximale Ausgangsfrequenz auf 300 Hz begrenzt (siehe SINAMICS S120/S150 Listenhandbuch).

Tabelle 4- 42 Maximale Ausgangsfrequenzen durch Erhöhung der Pulsfrequenz in der Betriebsart SERVO

Pulsfrequenz [kHz]	Maximale Ausgangsfrequenz [Hz]		
2	300		
4	300 / 650 ¹⁾		

Die maximale Ausgangsfrequenz von 650 Hz ist nur bei einem Stromreglertakt von 125 μs (Werkseinstellung: 250 μs) zu erzielen. Dies ist nur bei Power Modules mit den Bestellnummern 6SL3310–1TExx–xAA3 und ab Firmware V4.3 möglich.

Bei Ausgangsfrequenzen unter 10 Hz darf das Power Module nicht mit seinem maximalen Bemessungsstrom betrieben werden. Anderenfalls kann dies zu einer Reduktion der Lebensdauer führen.

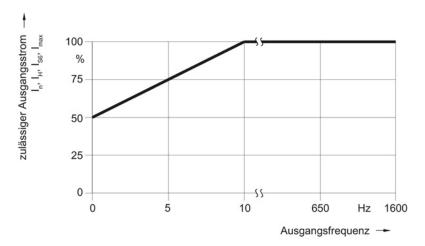


Bild 4-66 Ausgangsstrom in Abhängigkeit von der Ausgangsfrequenz

4.4 Power Modules Chassis

Zwischenkreiskomponenten

5.1 Blocksize

5.1.1 Bremswiderstände

5.1.1.1 Beschreibung

Die Power Modules PM240-2 und PM340 können generatorische Energie nicht in das Netz zurückspeisen. Für generatorischen Betrieb, z. B. Abbremsen einer Schwungmasse, ist ein Bremswiderstand anzuschließen, der die entstehende Energie in Wärme umwandelt.

Ein Thermoschalter überwacht den Bremswiderstand auf Übertemperatur und stellt beim Überschreiten des Grenzwerts eine Meldung auf einem potenzialgetrennten Kontakt zur Verfügung.

5.1.1.2 Sicherheitshinweise für Bremswiderstände Blocksize

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/!\warnung

Brandgefahr und Geräteschäden durch Erdschluss / Kurzschluss

Die Leitungen zum Bremswiderstand müssen so verlegt werden, dass ein Erdschluss bzw. Kurzschluss ausgeschlossen werden kann. Ein Erdschluss kann einen Brand mit Rauchentwicklung auslösen.

- Wenden Sie lokale Installationsvorschriften an, die diesen Fehlerausschluss ermöglichen.
- Schützen Sie die Leitungen vor einer mechanischen Beschädigung.
- Ergreifen Sie zusätzlich eine der folgenden Maßnahmen:
 - Verwenden Sie Leitungen mit doppelter Isolation.
 - Halten Sie ausreichende Abstände ein, z. B. mithilfe von Abstandshaltern.
 - Verlegen Sie die Leitungen in getrennten Installationskanälen bzw. -rohren.

/\vorsicht

Verbrennungsgefahr oder Beschädigungen durch hohe Oberflächentemperatur des Bremswiderstandes

Der Bremswiderstand kann sehr heiß werden. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen. Benachbarte Komponenten können beschädigt werden.

- Montieren Sie den Bremswiderstand so, dass ein Berühren ausgeschlossen ist. Wo dies nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.
- Um temperaturbedingte Schäden an den benachbarten Komponenten zu vermeiden, halten Sie folgende Bedingungen ein:

Für Power Modules PM340:

Lüftungsfreiräume von 100 mm rings um den Bremswiderstand

Für Power Modules PM240-2 bei waagerechtem Einbau am Boden:

- Montage auf Stahlblech > 2 mm
- Lüftungsfreiräume von 250 mm seitlich um den Bremswiderstand
- Lüftungsfreiraum von 1000 mm oberhalb des Bremswiderstandes

Für Power Modules PM240-2 bei senkrechtem Einbau an einer Wand:

- Montage auf Stahlblech > 2 mm
- Lüftungsfreiräume von 100 mm seitlich um den Bremswiderstand
- Lüftungsfreiraum von 1000 mm oberhalb des Bremswiderstandes

5.1.1.3 Anschlussbeispiele

Der Bremswiderstand wird direkt am Power Module an den Klemmen DCP/R1 und R2 angeschlossen.

Der Bremswiderstand muss vor Überhitzung geschützt werden. Diese Schutzfunktion übernimmt ein Thermoschalter (im Lieferumfang des Bremswiderstandes enthalten). Werten Sie die Temperaturüberwachung des Bremswiderstandes aus, sodass der Motor bei Übertemperatur des Widerstandes ausgeschaltet wird. Im Folgenden werden zwei Verfahren zum Anschluss des Thermoschalters beschrieben.

Anschluss des Thermoschalters an eine Control Unit

Verschalten Sie den Thermoschalter mit einem freien Digitaleingang der Control Unit. Setzen Sie die Funktion dieses Digitaleingangs auf den AUS2-Befehl. Wenn sich der Bremswiderstand überhitzt, wird das Power Module von der Stromversorgung getrennt.

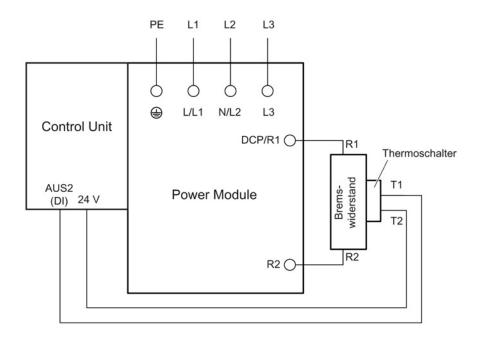


Bild 5-1 Anschluss des Thermoschalters am Bremswiderstand an eine Control Unit

5.1.1.4 Maßbilder

Bremswiderstände für Power Modules PM240-2

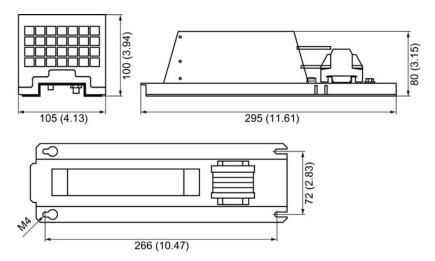


Bild 5-2 Maßbild Bremswiderstand für PM240-2, Baugröße FSA, 0,55 ... 1,5 kW, alle Angaben in mm und (inch)

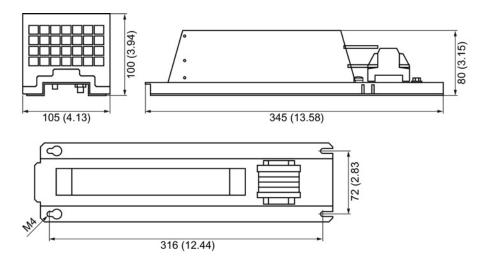


Bild 5-3 Maßbild Bremswiderstand für PM240-2, Baugröße FSA, 2,2 ... 3,0 kW, alle Angaben in mm und (inch)

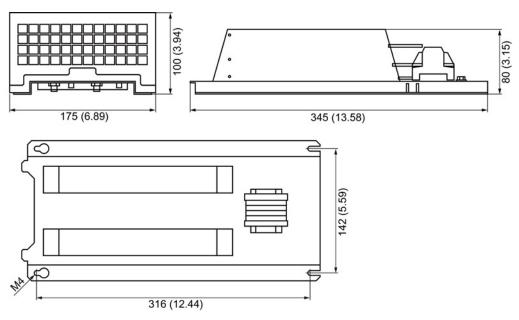


Bild 5-4 Maßbild Bremswiderstand für PM240-2, Baugröße FSB, alle Angaben in mm und (inch)

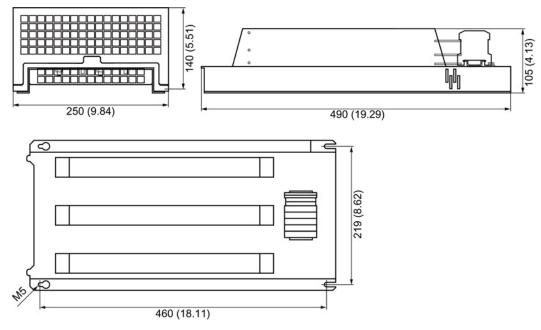


Bild 5-5 Maßbild Bremswiderstand für PM240-2, Baugröße FSC, alle Angaben in mm und (inch)

Bremswiderstände für Power Modules PM340

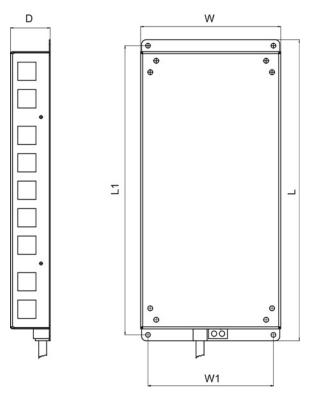


Bild 5-6 Maßbild Bremswiderstand für PM340, Baugröße FSA / FSB

Tabelle 5- 1 Abmessungen in mm (inch)

Bestellnummer	6SE6400-4BC05-0AA0	6SE6400-4BD11-0AA0	6SL3201-0BE12-0AA0
Baugröße	FSA	FSA	FSB
L	230 (9.05)	230 (9.05)	239 (9.40)
L1	217 (8.54)	217 (8.54)	226 (8.89)
L2	-	-	-
L3	-	-	-
D	43.5 (1.71)	43.5 (1.71)	43.5 (1.71)
D1	-	-	-
D2	-	-	-
W	72 (2.83)	72 (2.83)	149 (5.86)
W1	56 (2.20)	56 (2.20)	133 (5.24)

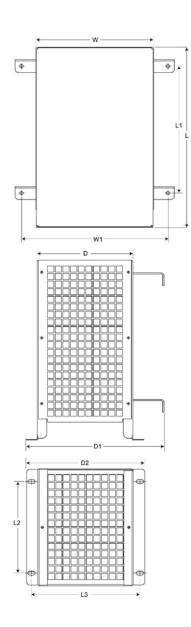


Bild 5-7 Maßbild Bremswiderstand für PM340, Baugröße FSC / FSD / FSE / FSF

Tabelle 5-2 Abmessungen in mm (inch)

Bestellnummer	6SE6400-4BD16- 5CA0	6SE6400-4BD21- 2DA0	6SE6400-4BD22- 2EA0	6SE6400-4BD24- 0FA0
Baugröße	FSC	FSD	FSE	FSF
L	285 (11.22)	515 (20.27)	645 (25.39)	650 (25.59)
L1	200 (7.87)	350 (13.77)	480 (18.89)	510 (20.07)
L2	145 (5.70)	205 (8.07)	205 (8.07)	270 (10.62)
L3	170 (6.69)	195 (7.67)	195 (7.67)	335 (13.18)
D	150 (5.90)	175 (6.88)	175 (6.88)	315 (12.40)

Bestellnummer	6SE6400-4BD16- 5CA0	6SE6400-4BD21- 2DA0	6SE6400-4BD22- 2EA0	6SE6400-4BD24- 0FA0
Baugröße	FSC	FSD	FSE	FSF
D1	217 (8.54)	242 (9.52)	242 (9.52)	382 (15.03)
D2	185 (7.28)	210 (8.26)	210 (8.26)	382 (15.03)
W	185 (7.28)	270 (10.62)	270 (10.62)	400 (15.74)
W1	230 (9.05)	315 (12.40)	315 (12.40)	435 (17.12)

5.1.1.5 Montage

Der Bremswiderstand für alle Baugruppen wird an die Klemmen DCP/R1 und R2 angeschlossen. Er sollte aufgrund der Wärmeentwicklung seitlich neben die Power Modules montiert werden.

Die Bremswiderstände für die Power Modules PM340 der Baugrößen FSA und FSB sind als Unterbaukomponenten konzipiert. Werden die Power Modules PM340 der Baugröße FSA oder FSB ohne Netzdrossel betrieben, lassen sich die Bremswiderstände auch unter den Power Modules montieren.

Die Bremswiderstände für die Power Modules PM340 der Baugrößen FSC bis FSF sollten außerhalb des Schaltschranks bzw. außerhalb des Schaltanlagenraums platziert werden, um die entstehende Verlustwärme aus dem Bereich der Power Modules herauszuführen. Dadurch reduziert sich der Klimatisierungsaufwand.

Die Bremswiderstände können waagrecht oder senkrecht montiert werden. Bei der senkrechten Montage müssen die Leitungsanschlüsse unten sein.

Tabelle 5-3 Befestigung Bremswiderstände für Power Modules PM240-2 an der Montagefläche

Baugröße	Befestigung	Anzugsdrehmoment
FSA	4 x M4-Schrauben	Anzugsdrehmoment: 2,5 Nm
FSB	4 x M4-Muttern 4 x M4-Unterlegscheiben	
FSC	4 x M5-Schrauben 4 x M5-Muttern 4 x M5-Unterlegscheiben	Anzugsdrehmoment: 2,5 Nm

Hinweis

PE-Anschluss

Für die Baugrößen FSA bis FSF erfolgt der PE-Anschluss des Bremswiderstandes über den Schirmanschluss.

Für eine Installation nach EN 60204-1 und EN 61800-5-1 ist der PE-Anschluss am Gehäuse zu verwenden. Die PE-Ader im Pigtail ist in diesem Fall nicht zu verwenden, sondern kann geeignet weggebunden bzw. abgeschnitten werden.

5.1.1.6 Technische Daten

Empfehlung

Verwenden Sie für die Power Modules PM240-2 200 V folgende oder vergleichbare Bremswiderstände. Es gelten die technischen Eigenschaften und Zusagen des Herstellers.

Tabelle 5-4 Technische Daten Bremswiderstände Blocksize PM240-2, 200 V

Hersteller		Fa. Heine Resistors GmbH					
Hersteller-Bezeichnung		GWHS 167-60x30-K IP20 200. ±7% 37,5W TS KA 100cm	GWHS 217-60x30-K IP20 68. ±7% 110W TS KA 100cm	GWHS 337-60x30-K IP20 37. ±7% 200W TS KA 100cm	GWHS 337-120x30-K IP20 20. ±7% 375W TS KA 100cm		
Hersteller-Bestellnummer		JJY 02 31467 2	JJY 02 31517 2	JJY 02 31637 2	JJY 02 34337 2		
		0008	0007	0018	0001		
Baugröße		FSA (0,55 0,75 kW)	FSB (1,1 2,2 kW)	FSC (3,0 4,0 kW)	FSC (5,5 7,5 kW)		
Passend zu Power Module ¹⁾		6SL3210- 1PB13-0xL0 1PB13-8xL0 6SL3211- 1PB13-8xL0	6SL3210- 1PB15-5xL0 1PB17-4xL0 1PB21-0xL0 6SL3211- 1PB21-0xL0	6SL3210- 1PB21-4xL0 1PB21-8xL0 6SL3211- 1PB21-8xL0	6SL3210- 1PC22-2xL0 1PC22-8xL0 6SL3211- 1PC22-2xL0		
Widerstand	Ω	200	68	37	20		
Typleistung P _{DB}	W	37,5	110	200	375		
Spitzenleistung P _{max}	kW	0,75	2,2	4,0	7,5		
Belastungsdauer für Spitzenleistung Ta	s	12	12	12	12		
Periodendauer des Bremslastspiels T	S	240	240	240	240		
Schutzart		IP20	IP20	IP20	IP20		
Leistungsanschlüsse (einschließlich PE) Max. anschließbarer Querschnitt: Anzugsdrehmoment: Thermoschalter		2,5 mm ² 0,5 Nm	4,0 mm ² 0,5 Nm	6,0 mm ² 0,8 Nm	6,0 mm ² 0,8 Nm		
Max. anschließbarer Querschnitt: Anzugsdrehmoment:		2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm		
Thermoschalter (Öffner) Maximale Kontaktlast Anschlussleitung		AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A		
Gewicht	kg	0,5	0,7	1,1	2,2		

 $^{^{1)}}$ x = A: Power Module mit integriertem Netzfilter, x = U: Power Module ohne integriertes Netzfilter

Tabelle 5-5 Technische Daten Bremswiderstände Blocksize PM240-2, 400 V

Netzspannung 3 AC 380 V	1 - 10 %				
Bestellnummer 6SL3201-		0BE14-3AA0	0BE21-0AA0	0BE21-8AA0	0BE23-8AA0
Baugröße		FSA (0,55 1,5 kW)	FSA (2,2 3,0 kW)	FSB (5,5 7,5 kW)	FSC (11 15 kW)
Passend zu Power Module ¹⁾		6SL3210- 1PE11-8xL1 1PE12-3xL1 1PE13-2xL1 1PE14-3xL1	6SL3210- 1PE16-1xL1 1PE18-0xL0 6SL3211- 1PE18-0xL1	6SL3210- 1PE21-1xL0 1PE21-4xL0 1PE21-8xL0 6SL3211- 1PE21-8xL0	6SL3210- 1PE22-7xL0 1PE23-3xL0 6SL3211- 1PE23-3xL0
Widerstand	Ω	370	140	75	30
Typleistung PDB	W	75	200	375	925
Spitzenleistung P _{max}	kW	1,5	4	7,5	18,5
Belastungsdauer für Spitzenleistung Ta	s	12	12	12	12
Periodendauer des Bremslastspiels T	s	240	240	240	240
Schutzart		IP20	IP20	IP20	IP20
Leistungsanschlüsse (einschließlich PE) Max. anschließbarer Querschnitt: Anzugsdrehmoment:		2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm	4,0 mm ² 0,5 Nm	6,0 mm ² 0,8 Nm
Thermoschalter Max. anschließbarer Querschnitt: Anzugsdrehmoment:		2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm	2,5 mm ² 0,5 Nm
Thermoschalter (Öffner) Maximale Kontaktlast Anschlussleitung		AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A
Gewicht	kg	1,5	1,8	2,7	6,2

¹⁾ x = A: Power Module mit integriertem Netzfilter, x = U: Power Module ohne integriertes Netzfilter

Tabelle 5-6 Technische Daten Bremswiderstände für Power Modules PM340, Baugrößen FSA bis FSC

Bestellnummer		6SE6400- 4BC05-0AA0	6SE6400- 4BD11-0AA0	6SL3201- 0BE12-0AA0	6SE6400- 4BD16-5CA0
Passend zu Power Module Baugröße		FSA (1 AC) ¹⁾	FSA (3 AC) ²⁾	FSB ²⁾	FSC ²⁾
Widerstand	Ω	180	390	160	56
Typleistung PDB	kW	0,05	0,1	0,2	0,65
Spitzenleistung P _{max}	kW	1	1,7	4,0	13
Belastungsdauer für Spitzenleistung Ta	s	27,6	13,8	12,6	13,1
Periodendauer des Bremslastspiels T	s	276	276	252	262
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB
Leistungsanschlüsse (einschließlich PE)		Pigtail 3 x 1,5 mm² geschirmt Länge 0,5 m	Pigtail 3 x 1,5 mm ² geschirmt, Länge 0,5 m	Pigtail 3 x 1,5 mm ² geschirmt, Länge 0,5 m	Pigtail 3 x 1,5 mm ² geschirmt, Länge 0,9 m
Thermoschalter (Öffner) Maximale Kontaktlast Anschlussleitung		AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A
Gewicht	kg	1,0	1,0	1,6	3,8

Informationen zu den Bestellnummern finden Sie im Kapitel: Power Modules, Abschnitt: Power Modules Blocksize (PM340), Technische Daten

Tabelle 5-7 Technische Daten Bremswiderstände für Power Modules PM340, Baugrößen FSD bis FSF

		6SE6400-				
Bestellnummer		4BD21-2DA0	4BD22-2EA0	4BD24-0FA0		
Passend zu Power Module Baugröße		FSD ¹⁾	FSE ¹⁾	FSF ¹⁾		
Widerstand	Ω	27	15	8,2		
Typleistung PDB	kW	1,2	2,2	4,0		
Spitzenleistung P _{max}	kW	24	44	80		
Belastungsdauer für Spitzenleistung Ta	s	13,6	14,5	13,1		
Periodendauer des Bremslastspiels T	s	271	290	252		
Schutzart		IP20 bzw. IPXXB	IP20 bzw. IPXXB	IP20 bzw. IPXXB		
Leistungsanschlüsse		Schraubbolzen M6	Schraubbolzen M6	Schraubbolzen M6		
Thermoschalter (Öffner) Maximale Kontaktlast Anschlussleitung		AC 250 V / 2,5 A	AC 250 V / 2,5 A	AC 250 V / 2,5 A		
Gewicht	kg	7,4	10,6	16,7		

Informationen zu den Bestellnummern finden Sie im Kapitel: Power Modules, Abschnitt: Power Modules Blocksize (PM340), Technische Daten,

¹⁾ Power Modules Blocksize, 1 AC

²⁾ Power Modules Blocksize, 3 AC

¹⁾ Power Modules Blocksize, 3 AC

Lastspiele

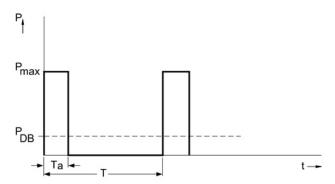


Bild 5-8 Belastungsdiagramm für Bremswiderstand Bauform Blocksize

T [s] Periodendauer des Bremslastspiels

Ta [s] Belastungsdauer für Spitzenleistung

P_{DB} [W] Typleistung des Bremswiderstandes

P_{max} [W] Spitzenleistung des Bremswiderstandes

5.2 Chassis

5.2.1 Braking Modules

5.2.1.1 Beschreibung

Ein Braking Module (und ein externer Bremswiderstand) wird benötigt, wenn der Antrieb in gelegentlichen Fällen abgebremst oder gezielt stillgesetzt werde soll (z. B. NOT-AUS Kategorie 1). Das Braking Module enthält die Leistungselektronik und die dazugehörige Ansteuerung. Die Versorgungsspannung für die Elektronik wird dem Zwischenkreis entnommen.

Im Betrieb wird die Zwischenkreisenergie in einem externen Bremswiderstand außerhalb des Schaltschranks in Verlustwärme umgewandelt.

Im Power Module steht hierfür ein Einbauplatz zur Verfügung.

Aufbau

Der Einbau des Braking Module im Chassis-Format erfolgt in einen Einbauplatz innerhalb des Power Module und wird über dessen Lüfter forciert gekühlt. Der Anschluss des Braking Module an den Zwischenkreis erfolgt durch im Lieferumfang enthaltene flexible Leitungen.

Das Braking Module hat standardmäßig folgende Schnittstellen:

- Zwischenkreisanschluss über flexible Leitungen
- Anschlussklemmen für externen Bremswiderstand
- 1 Digitaleingang (Braking Module sperren mit High-Signal/Fehler quittieren mit negativer Flanke High-Low)
- 1 Digitalausgang (Braking Module gestört)
- DIP-Schalter zur Anpassung der Einsatzschwelle

5.2.1.2 Sicherheitshinweise für Braking Modules Chassis

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

Lebensgefahr durch elektrischen Schlag wegen Restladung der Zwischenkreiskondensatoren

Durch die Zwischenkreiskondensatoren steht noch für bis zu 5 Minuten nach dem Abschalten der Versorgung gefährliche Spannung im Zwischenkreis an.

Das Berühren spannungsführender Teile führt zum Tod oder schweren Verletzungen.

- Führen Sie Arbeiten an den Komponenten erst nach Ablauf dieser Zeit durch.
- Messen Sie die Spannung vor Beginn der Arbeiten an den Zwischenkreisklemmen DCP und DCN.

/ WARNUNG

Brandgefahr und Geräteschäden durch Erdschluss/Kurzschluss

Die Leitungen zum Bremswiderstand müssen so verlegt werden, dass ein Erdschluss bzw. Kurzschluss ausgeschlossen werden kann. Ein Erdschluss kann einen Brand mit Rauchentwicklung auslösen.

- Wenden Sie lokale Installationsvorschriften an, die diesen Fehlerausschluss ermöglichen.
- Schützen Sie die Leitungen vor einer mechanischen Beschädigung.
- Ergreifen Sie zusätzlich eine der folgenden Maßnahmen:
 - Verwenden Sie Leitungen mit doppelter Isolation.
 - Halten Sie ausreichende Abstände ein, z. B. mithilfe von Abstandshaltern.
 - Verlegen Sie die Leitungen in getrennten Installationskanälen bzw. -rohren.

ACHTUNG

Beschädigung bei einem unzulässigen Bremswiderstand

Ein unzulässiger Bremswiderstand kann zerstört werden.

• Verwenden Sie nur Bremswiderstände, die von SIEMENS für SINAMICS frei gegeben sind.

5.2.1.3 Braking Module für Baugröße FX

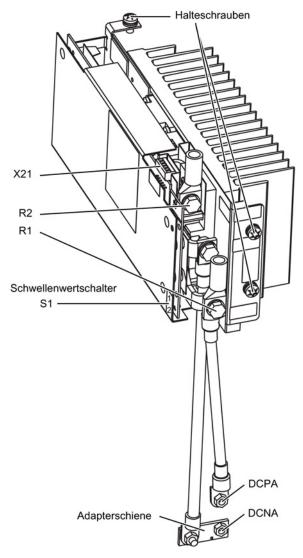


Bild 5-9 Braking Module für Power Module, Baugröße FX

Hinweis

Bei diesem Braking Module sind die Schnittstellen R1 und DCPA über einen gemeinsamen Anschluss realisiert.

5.2.1.4 Braking Module für Baugröße GX

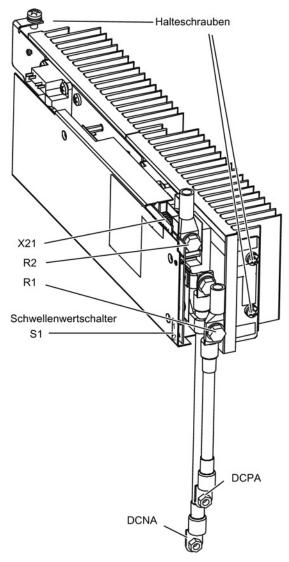


Bild 5-10 Braking Module für Power Module, Baugröße GX

Hinweis

Bei diesem Braking Module sind die Schnittstellen R1 und DCPA über einen gemeinsamen Anschluss realisiert.

5.2.1.5 Anschlussbeispiel

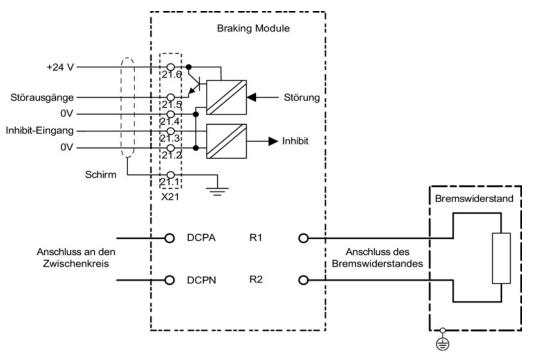


Bild 5-11 Anschlussbeispiel Braking Module

5.2 Chassis

5.2.1.6 X1 Bremswiderstandsanschluss

Tabelle 5-8 Anschluss Bremswiderstand

Klemme	Bezeichnung
R1	Bremswiderstandsanschluss R+
R2	Bremswiderstandsanschluss R-
Max. anschließbarer Quer	schnitt: 50 mm ²

5.2.1.7 X21 Digitaleingänge / -ausgänge

Tabelle 5-9 Klemmenleiste X21

	Klemme	Bezeichnung 1)	Technische Angaben
	1	Schirm	Schirmanschluss für Klemme 2 6
	2	0 V	Low-Pegel: -3 5 V
2 3	3	DI Inhibit-Eingang	High-Pegel: 15 30 V Stromaufnahme: 2 15 mA
4	4	0 V	Spannung: DC 24 V
5	5	DO Störausgang	Laststrom: 0,5 0,6 A
6	6	+24 V	Spannung: 18 30 V Stromaufnahme typisch (Eigenstromverbrauch): 10 mA bei DC 24 V
Max. anschlie	ßbarer Quer	schnitt 1,5 mm²	

¹⁾ DI: Digitaleingang; DO: Digitalausgang

Hinweis

Die Lage der einzelnen Klemmen der Klemmenleiste X21 der Braking Modules ist im eingebauten Zustand folgendermaßen: Klemme "1" ist hinten, Klemme "6" ist vorne

Hinweis

Durch Anlegen eines High-Pegels an Klemme X21.3 wird das Braking Module gesperrt. Bei einer abfallenden Flanke werden anstehende Fehlermeldungen quittiert.

Hinweis

Einstellhinweise zum Verdrahten der Signale finden Sie im Funktionshandbuch SINAMICS S120.

5.2.1.8 S1 Schwellenwertschalter

Die Ansprechschwelle für das Aktivwerden des Braking Module und damit die auftretende Zwischenkreisspannung bei Bremsbetrieb ist in der nachfolgenden Tabelle angegeben.

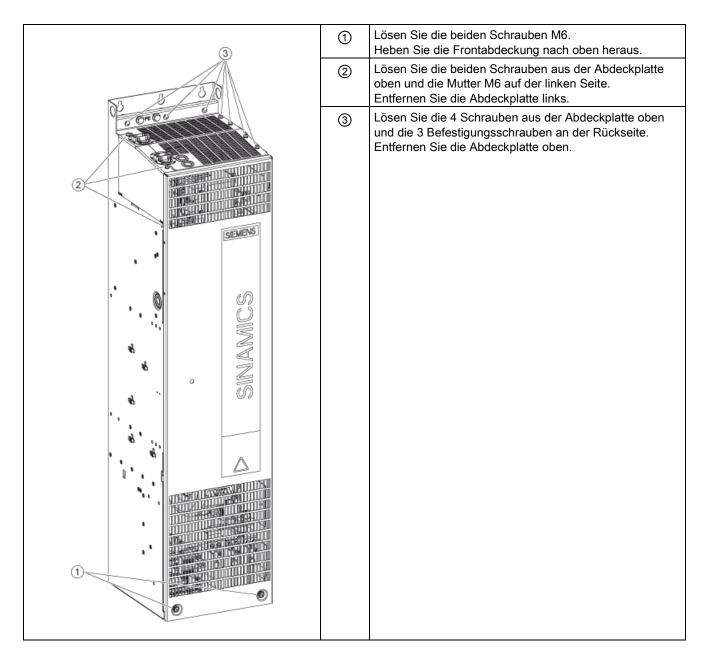
/!\WARNUNG

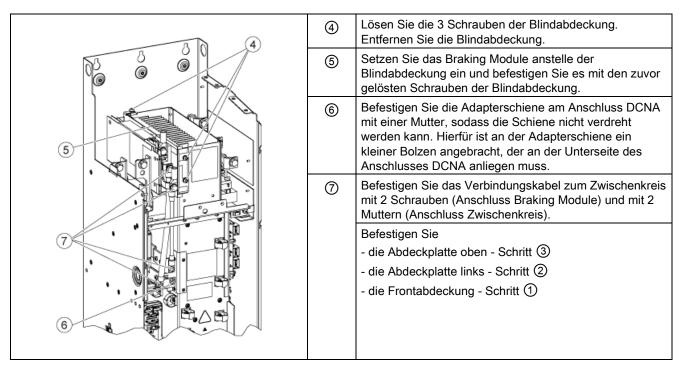
Lebensgefahr durch elektrischen Schlag bei Schalten des Schwellenwertschalters

Falls eine Spannung beim Umschalten des Schwellenwertschalters anliegt, erleiden Sie Tod oder schwere Verletzungen.

• Schalten Sie den Schwellenwertschalter nur bei ausgeschaltetem Power Module und bei entladenen Zwischenkreiskondensatoren.

Tabelle 5- 10 Ansprechschwellen der Braking Modules

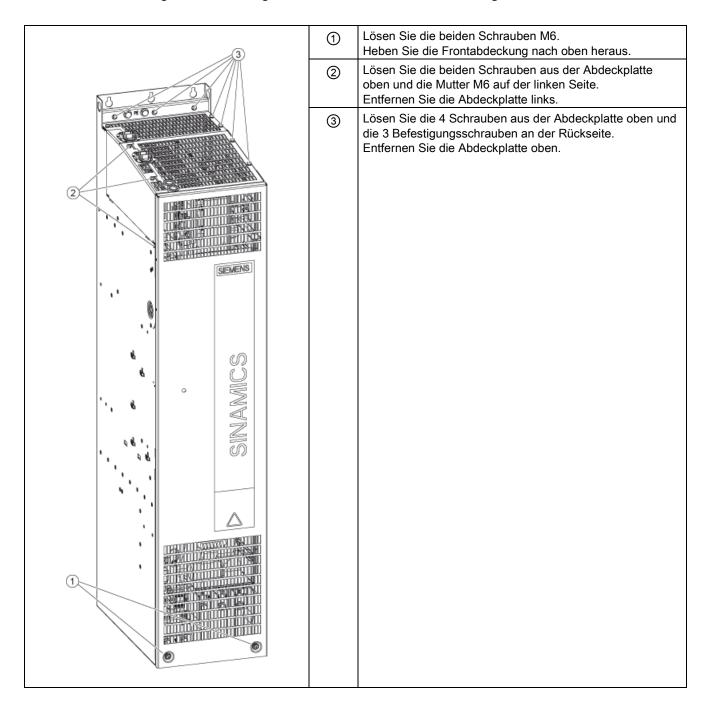

Ansprechschwelle	Schalterposition	Bemerkung
673 V	1	774 V ist in der Werkseinstellung voreingestellt. Bei Netzspannungen von 3
774 V	2	AC 380 V bis 400 V kann – zur Reduzierung der Spannungsbeanspruchung von Motor und Power Module – die Ansprechschwelle auf 673 V eingestellt werden. Damit geht allerdings auch die erzielbare Bremsleistung mit dem Quadrat der Spannung zurück (673/774)² = 0,75. Die verfügbare Bremsleistung beträgt somit max. 75 %.

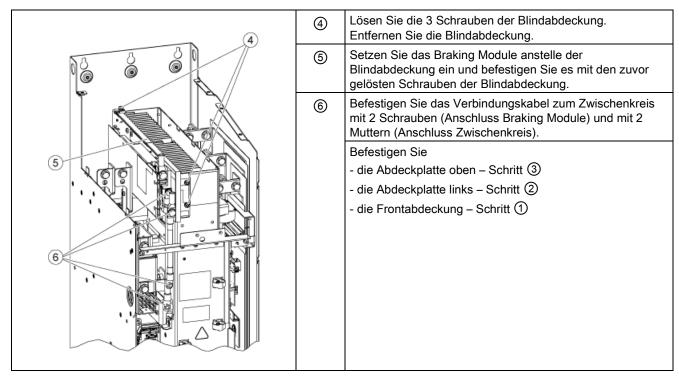

Hinweis

Die Schalterpositionen der Schwellenwertschalter der Braking Modules sind im eingebauten Zustand:

- Position "1" ist oben
- Position "2" ist unten

5.2.1.9 Montage eines Braking Module in Power Module der Baugröße FX




Für den Anschluss des Kabels zum Bremswiderstand ist oberhalb der Anschlüsse für den Bremswiderstand (R1, R2) eine Durchgangsöffnung in der Abdeckung vorgesehen.

Hinweis

Beachten Sie unbedingt die vorgeschriebenen Anzugsdrehmomente.

5.2.1.10 Montage eines Braking Module in Power Module der Baugröße GX

Für den Anschluss des Kabels zum Bremswiderstand ist oberhalb der Anschlüsse für den Bremswiderstand (R1, R2) eine Durchgangsöffnung in der Abdeckung vorgesehen.

Hinweis

Beachten Sie unbedingt die vorgeschriebenen Anzugsdrehmomente.

5.2 Chassis

5.2.1.11 Technische Daten

Tabelle 5- 11 Technische Daten Braking Modules

Bestellnummer	6SL3300-1AE31-3AA0	6SL3300-1AE32-5AA0
Passend zum Einbau in Power Module der Baugröße	FX	GX
P _{DB} Leistung (Typleistung)	25 kW	50 kW
P ₁₅ Leistung (Spitzenleistung)	125 kW	250 kW
P ₂₀ Leistung	100 kW	200 kW
P ₄₀ Leistung	50 kW	100 kW
Einstellbare Ansprechschwellen	774 V (673 V)	774 V (673 V)
Digitaleingang		
Bemessungsspannung	-3 30 V	-3 30 V
Low-Pegel (ein offener Digitaleingang wird als "Low" interpretiert)	-3 5 V	-3 5 V
High-Pegel	15 30 V	15 30 V
Stromaufnahme (typ. bei DC 24 V)	10 mA	10 mA
Max. anschließbarer Querschnitt	1,5 mm²	1,5 mm²
Digitalausgang (dauerkurzschlussfest)		
Bemessungsspannung	DC 24 V	DC 24 V
Max. Laststrom des Digitalausgangs	500 mA	500 mA
Max. anschließbarer Querschnitt	1,5 mm²	1,5 mm²
Anschluss R1/R2	Schraube M8	Schraube M8
Max. Anschlussquerschnitt R1/R2	35 mm²	50 mm²
Gewicht	3,6 kg	7,3 kg

5.2.2 Bremswiderstände

5.2.2.1 Beschreibung

Über den Bremswiderstand wird die überschüssige Energie des Zwischenkreises bei generatorischem Betrieb abgebaut.

Der Bremswiderstand wird an ein Braking Module angeschlossen. Durch die Platzierung des Bremswiderstandes außerhalb des Schaltschranks bzw. außerhalb des Schaltanlagenraums kann die entstehende Verlustwärme aus dem Bereich der Power Modules herausgeführt werden und es reduziert sich der Klimatisierungsaufwand.

Es stehen Widerstände mit der Typleistung von 25 kW und 50 kW zur Verfügung.

Da die Bremswiderstände an Power Modules mit einem großen Spannungsbereich eingesetzt werden können, ist eine Spannungsanpassung - zur Reduzierung der Spannungsbeanspruchung von Motor und Power Module - durch Einstellen der Ansprechschwellen am Braking Module möglich.

Ein Temperaturschutzschalter überwacht den Bremswiderstand auf Übertemperatur und stellt beim Überschreiten des Grenzwerts eine Meldung auf einem potenzialfreien Kontakt zur Verfügung.

5.2.2.2 Sicherheitshinweise für Bremswiderstände Chassis

/!\WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

Lebensgefahr durch elektrischen Schlag wegen anliegender Spannung und Restladung der Zwischenkreiskondensatoren am Braking Module

Das Berühren spannungsführender Anschlüsse am Braking Module führt zum Tod oder schweren Verletzungen.

- Schließen Sie das Braking Module nur bei spannungsfrei geschaltetem Power Module an.
- Schließen Sie das Braking Module erst nach Ablauf von 5 Minuten an. Messen Sie die Spannung vor Beginn der Arbeiten an den Zwischenkreisklemmen DCP und DCN.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume können zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand führen. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

 Halten Sie unbedingt die Lüftungsfreiräume von 200 mm an allen Seiten der Komponente mit Lüftungsgittern ein.

/ WARNUNG

Brandgefahr und Geräteschäden durch Erdschluss/Kurzschluss

Die Leitungen zum Bremswiderstand müssen so verlegt werden, dass ein Erdschluss bzw. Kurzschluss ausgeschlossen werden kann. Ein Erdschluss kann einen Brand mit Rauchentwicklung auslösen.

- Wenden Sie lokale Installationsvorschriften an, die diesen Fehlerausschluss ermöglichen.
- Schützen Sie die Leitungen vor einer mechanischen Beschädigung.
- Ergreifen Sie zusätzlich eine der folgenden Maßnahmen:
 - Verwenden Sie Leitungen mit doppelter Isolation.
 - Halten Sie ausreichende Abstände ein, z. B. mithilfe von Abstandshaltern.
 - Verlegen Sie die Leitungen in getrennten Installationskanälen bzw. -rohren.

/ VORSICHT

Verbrennungsgefahr durch hohe Oberflächentemperatur des Bremswiderstandes

Der Bremswiderstand kann sehr heiß werden. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie den Bremswiderstand so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

⚠ WARNUNG

Brandgefahr durch Überhitzung bei Überschreiten der zulässigen Längen von Anschlussleitungen

Durch zu lange Anschlussleitungen zwischen Braking Module und externem Bremswiderstand kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

• Die Verbindungsleitungslängen zwischen Braking Module und externem Bremswiderstand dürfen 100 m nicht überschreiten.

/ WARNUNG

Brandgefahr durch Abwärme eines Bremswiderstandes

Durch einen unsachgemäß montierten Bremswiderstand kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

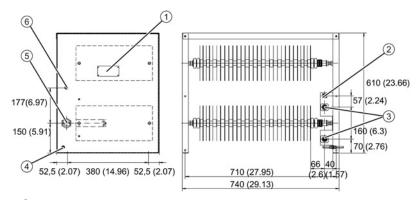
- Montieren Sie Bremswiderstände ausschließlich auf dem Boden.
- Stellen Sie den Bremswiderstand senkrecht und freistehend auf. Der Raum muss in der Lage sein, die vom Bremswiderstand umgesetzte Energie abführen zu können.
- Halten Sie einen ausreichenden Abstand zu brennbaren Gegenständen ein.
- Stellen Sie auf und oberhalb des Bremswiderstandes keine Gegenstände ab.

ACHTUNG

Beschädigung des Bremswiderstandes durch eindringendes Wasser

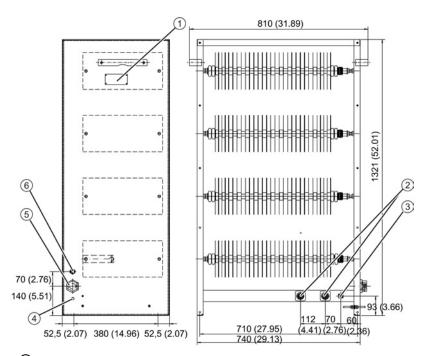
Eindringendes Wasser kann den Bremswiderstand beschädigen.

 Um die Schutzart IP20 einzuhalten, sehen Sie bei einer Installation im Freien eine Dachabdeckung gegen eindringenden Niederschlag vor.


Hinweis

Wechselwirkung Bremswiderstand-Brandmeldesensor

Wird ein Bremswiderstand unter einem Brandmeldesensor platziert, kann die entstehende Wärme den Brandmeldesensor auslösen.


5.2 Chassis

5.2.2.3 Maßbild

- 1 Typenschild
- ② T1/T2 Schraubklemme (2,5 mm²)
- 3 Gewindebolzen (M8)
- 4 Erdanschluss (M8)
- ⑤ M50
- ⑥ M12

Bild 5-12 Maßbild Widerstand 25 kW/125 kW

- 1 Typenschild
- ② Gewindebolzen (M10)
- 3 T1/T2 Schraubklemme (2,5 mm²)
- 4 Erdanschluss (M10)
- ⑤ M50
- ⑥ M12

Bild 5-13 Maßbild Widerstand 50 kW/250 kW

5.2.2.4 Elektrischer Anschluss

Die empfohlenen Anschlussquerschnitte betragen:

Bei 25 kW: 35 mm²
 Bei 50 kW: 50 mm²

Thermoschalter

Zum Schutz vor Überlastung des Bremswiderstandes ist intern ein Thermoschalter eingebaut, dessen potentialfreie Kontakte anlagenseitig in die Störkette eingebaut werden müssen

Tabelle 5- 12 Anschluss des Thermoschalters

Klemme	Funktion	Technische Angaben
T1	Anschluss Thermoschalter	Spannung: AC 250 V
T2	Anschluss Thermoschalter	Laststrom: max. 1 A

Max. anschließbarer Querschnitt: 2,5 mm²

5.2.2.5 Technische Daten

Tabelle 5- 13 Technische Daten Bremswiderstände

Bestellnummer	Einheit	6SL3000-1BE31-3AA0	6SL3000-1BE32-5AA0
P _{DB} Leistung (Typleistung)	kW	25	50
P ₁₅ Leistung (Spitzenleistung)	kW	125	250
Max. Strom	Α	189	378
Kabeleinführung		Über Kabelverschraubung M50	Über Kabelverschraubung M50
Leistungsanschluss		Über Bolzenklemme M10	Über Bolzenklemme M10
Max. anschließbarer Querschnitt	mm²	50	70
Schutzart		IP20	IP20
Breite x Höhe x Tiefe	mm	740 x 605 x 485	810 x 1325 x 485
Thermoschalter (Öffner) maximale Kontaktlast Anschlussleitung		AC 240 V / 10 A	AC 240 V / 10 A
Gewicht	kg	50	120

5.2 Chassis

Lastspiel

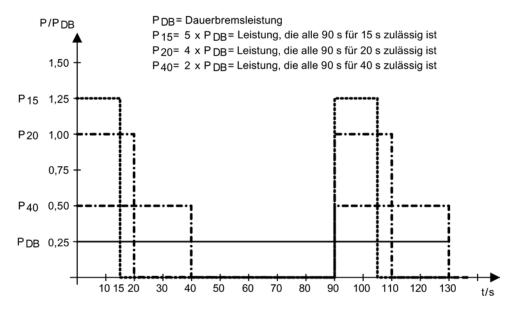


Bild 5-14 Lastspiel für Bremswiderstände

Motorseitige Leistungskomponenten

6.1 Blocksize

6.1.1 Motordrosseln

6.1.1.1 Beschreibung

Motordrosseln reduzieren die Spannungsbelastung der Motorwicklungen, indem die durch Umrichterbetrieb hervorgerufenen Spannungssteilheiten an den Motorklemmen verringert werden. Gleichzeitig werden die kapazitiven Umladeströme reduziert, die den Ausgang des Power Module beim Einsatz langer Motorkabel zusätzlich belasten.

Die Motordrosseln für Power Modules 3 AC 380 V bis 480 V sind für eine Pulsfrequenz von 4 kHz geeignet. Höhere Pulsfrequenzen sind nicht zulässig.

6.1.1.2 Sicherheitshinweise für Motordrosseln

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

<u>____</u>GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

 Setzen Sie für die Motordrosseln einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume können zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand führen. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

 Halten Sie unbedingt die Lüftungsfreiräume von 100 mm oberhalb und unterhalb der Komponente ein.

/\vorsicht

Verbrennungsgefahr durch hohe Oberflächentemperatur der Motordrossel

Die Motordrosseln können sehr heiß werden. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie die Motordrosseln so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung der Motordrosseln durch Verwendung nicht frei gegebener Komponenten

Beim Einsatz nicht frei gegebener Komponenten können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten. Es besteht die Gefahr einer thermischen Beschädigung der Motordrossel.

Verwenden Sie nur Motordrosseln, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

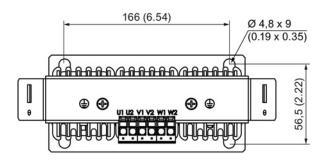
Beschädigung der Motordrosseln durch Überschreitung der maximalen Ausgangsfrequenz

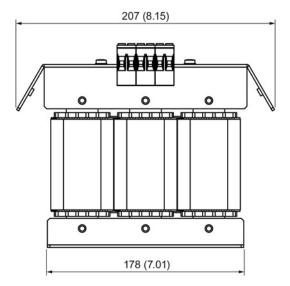
Die maximal zulässige Ausgangsfrequenz beträgt beim Einsatz der Motordrosseln 150 Hz. Die Überschreitung der Ausgangsfrequenz kann zur Beschädigung der Motordrosseln führen.

 Betreiben Sie die Motordrosseln nicht über der maximal zulässigen Ausgangsfrequenz von 150 Hz.

ACHTUNG

Schäden durch Überschreitung der maximalen Pulsfrequenz

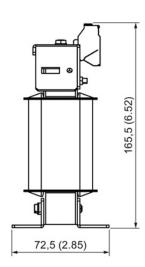

Die maximal zulässige Pulsfrequenz beträgt beim Einsatz der Motordrosseln 4 kHz. Die Überschreitung der Pulsfrequenz kann zur Beschädigung der Motordrosseln führen.


 Betreiben Sie die Motordrosseln am Power Module nicht über der maximal zulässigen Pulsfrequenz von 4 kHz.

Hinweis

Halten Sie die Anschlussleitungen zum Power Module möglichst kurz (max. 5 m).

6.1.1.3 Maßbilder



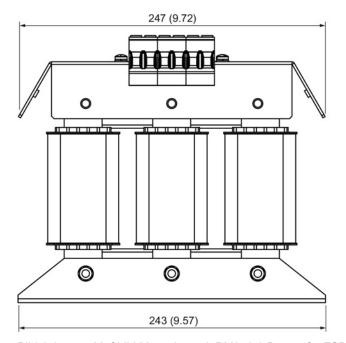


Bild 6-1 Maßbild Motordrossel, PM240-2 Baugröße FSA, alle Angaben in mm und (inch)

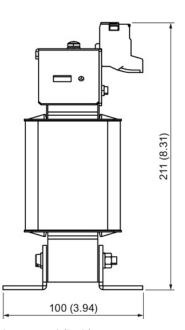
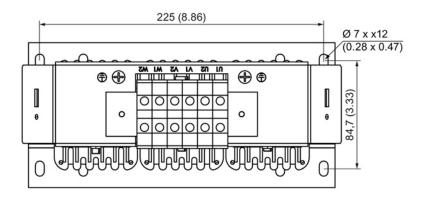



Bild 6-2 Maßbild Motordrossel, PM240-2 Baugröße FSB, alle Angaben in mm und (inch)

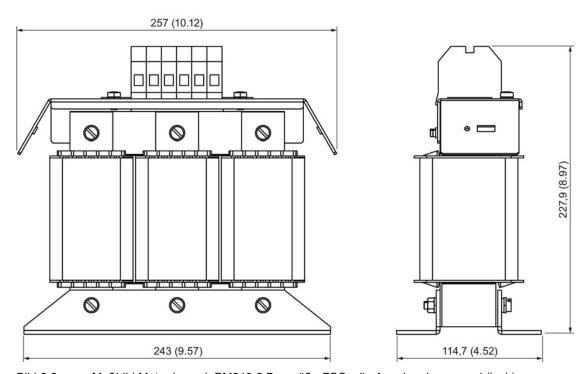


Bild 6-3 Maßbild Motordrossel, PM240-2 Baugröße FSC, alle Angaben in mm und (inch)

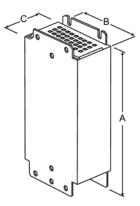
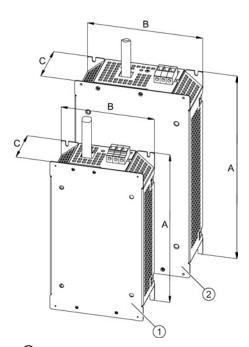
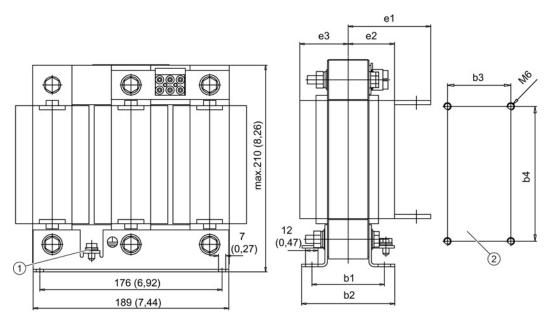



Bild 6-4 Maßbild Motordrossel, PM340 Baugröße FSA

Tabelle 6-1 Abmessungen Motordrossel, PM340 Baugröße FSA

Motordrossel 6SE6400-	3TC00-4AD2
Baugröße	FSA
A in mm (inch)	200 (7.87)
B in mm (inch)	75.5 (2.97)
C in mm (inch)	110 (4.33)

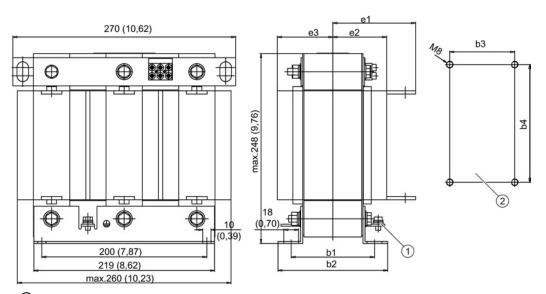


- 1 Baugröße FSB
- ② Baugröße FSC

Bild 6-5 Maßbild Motordrossel, PM340 Baugröße FSB / FSC

Tabelle 6- 2 Abmessungen Motordrossel, PM340 Baugröße FSB / FSC

Motordrossel 6SL3202-	0AE21-0CA0	0AJ23-2CA0
Baugröße	FSB	FSC
A in mm (inch)	270 (10.62)	334 (13.14)
B in mm (inch)	153 (6.02)	189 (7.44)
C in mm (inch)	70 (2.75)	50 (1.96)

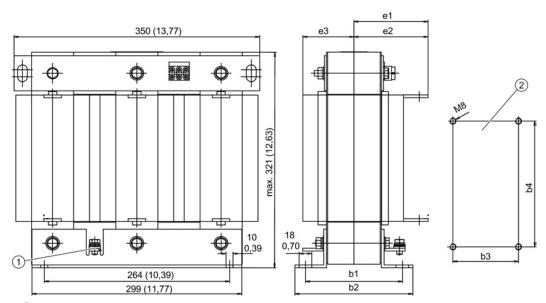


- ① Schutzleiteranschluss (M6 x 12)
- 2 Montagelochung

Bild 6-6 Maßbild Motordrossel, PM340 Baugröße FSD

Tabelle 6-3 Abmessungen Motordrossel, PM340 Baugröße FSD in mm (inch)

Motordrossel 6SE6400-	3TC05-4DD0	3TC03-8DD0
Baugröße	FSD	FSD
b1	70 (2.75)	94 (3.70)
b2	91 (3.58)	115 (4.52)
b3	70 (2.75)	94 (3.70)
b4	176 (6.92)	176 (6.92)
e1	91 (3.58)	103 (4.05)
e2	57 (2.24)	69 (2.71)
e3	49 (1.92)	61 (2.40)



- ① Schutzleiteranschluss (M 6x12)
- 2 Montagelochung

Bild 6-7 Maßbild Motordrossel, PM340 Baugröße FSE

Tabelle 6-4 Abmessungen Motordrossel, PM340 Baugröße FSE in mm (inch)

Motordrossel 6SE6400-	3TC07-5ED0	3TC08-0ED0
Baugröße	FSE	FSE
b1	101 (3.97)	70 (2.75)
b2	133 (5.23)	90 (3.54)
b3	101 (3.97)	70 (2.75)
b4	200 (7.87)	176 (6.92)
e1	110 (4.33)	89 ±2 (3.50 ±0.07)
e2	76 (2.99)	79 ±2 (3.50 ±0.07)
e3	68 (2.67)	-

- ① Schutzleiteranschluss (M 8x16)
- 2 Montagelochung

Bild 6-8 Maßbild Motordrossel, PM340 Baugröße FSF

Tabelle 6-5 Abmessungen Motordrossel, PM340 Baugröße FSF in mm (inch)

Motordrossel 6SE6400-	3TC14-5FD0	3TC15-4FD0
Baugröße	FSF	FSF
b1	138 (5.43)	101 (3.97)
b2	169 (6.65)	121 (4.76)
b3	138 (5.43)	101 (3.97)
b4	264 (10.39)	200 (7.87)
e1	131 (5.15)	119 ±2 (4.68 ±0.07)
e2	90 (3.54)	109 ±2 (4.29 ±0.07)
e3	78 (3.07)	-

6.1.1.4 Montage

Hinweis

Die Motordrossel sollte möglichst nahe beim Power Module montiert werden.

Montage der Motordrosseln für Power Modules PM240-2

Die Motordrosseln für Power Modules PM240-2 der Baugrößen FSA bis FSC sind zur Montage im Schaltschrank ausgelegt. Die Motordrossel wird auf der Montagefläche neben dem Power Module montiert.

Tabelle 6- 6 Befestigung Motordrosseln für Power Modules PM240-2

Baugröße	Befestigung	Anzugsdrehmoment
FSA	4 x M4-Schrauben 4 x M4-Muttern 4 x M4-Unterlegscheiben	3 Nm
FSB FSC	4 x M5-Schrauben 4 x M5-Muttern 4 x M5-Unterlegscheiben	5 Nm

Montage der Motordrossel für Power Modules PM340

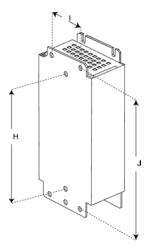
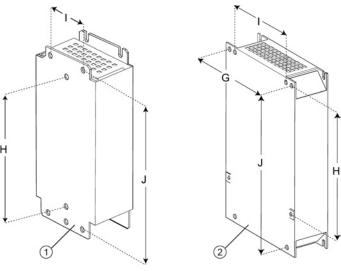



Bild 6-9 Montagemaße Motordrossel, Baugröße FSA

Tabelle 6-7 Montagemaße Motordrossel, Baugröße FSA in mm (inch)

Motordrossel 6SE6400-	3TC00-4AD2
Baugröße	FSA
Н	160 (6.29)
I	56 (2.20)
J	187 (7.36)
Anzugsdrehmoment	1,1 Nm
Empfohlener Leitungsmindestquerschnitt	1 mm ²
Leitungsquerschnitt max.	2,5 mm ²

- ① Baugröße FSB
- ② Baugröße FSC

Bild 6-10 Montagemaße Motordrosseln, Baugröße FSB / FSC

Tabelle 6-8 Montagemaße Motordrosseln, Baugröße FSB / FSC in mm (inch)

Motordrossel	6SL3202-	0AE21-0CA0	0AJ23-2CA0
Baugröße		FSB	FSC
Power Module	G	138 (5.43)	174 (6.85)
	Н	258 (10.16)	204 (8.03)
Montagefläche	1	133 (5.24)	156 (6.14)
	J	258 (10.16)	232 (9.13)
Befestigungsschraube	Befestigungsschraube		M5
Anzugsdrehmoment		1,5 Nm	2,25 Nm
Empfohlener Leitungsmindestquerschnitt		1,5 mm²	2,5 mm ²
Leitungsquerschnitt max.		6 mm ²	10 mm ²

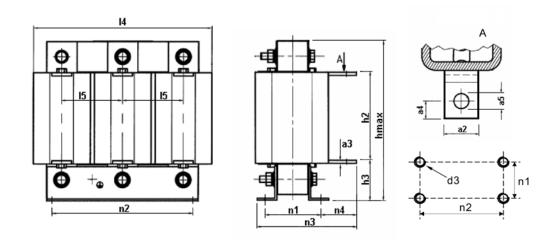


Bild 6-11 Montagemaße Motordrosseln, Baugröße FSD / FSE / FSF

Tabelle 6-9 Montagemaße Motordrosseln, Baugröße FSD / FSE in mm (inch)

Motordrossel	6SE6400-	3TC05-4DD0	3TC03-8DD0	3TC07-5ED0	3TC08-0ED0
Baugröße		FSD	FSD	FSE	FSE
Motordrossel	a2	20 (0.78)	20 (0.78)	20 (0.78)	20 (0.78)
	а3	4 (0.15)	4 (0.15)	4 (0.15)	4 (0.15)
	a4	10 (0.39)	10 (0.39)	10 (0.39)	10 (0.39)
	а5	Ø6 (0.23)	Ø6 (0.23)	Ø7 (0.27)	Ø 7
	14	225 (8.85)	225 (8.85)	270 (10.62)	225 (8.85)
	15	76 ±5 (2.99 ±0.19)	76 ±5 (2.99 ±0.19)	88 ±5 (3.46 ±0.19)	76 ±5 (2.99 ±0.19)
	h _{max}	210 (8.26)	210 (8.26)	248 (9.76)	210 (8.26)
	h2	120 ±2 (4.72 ±0.07)	120 ±2 (4.72 ±0.07)	140 ±2 (5.51 ±0.07)	120 ±2 (4.72 ±0.07)
	h3	45 ±2 (1.77 ±0.07)	45 ±2 (1.77 ±0.07)	50 ±2 (1.96 ±0.07)	45 ±2 (1.77 ^{±0.07})
	n1	70 (2.75)	94 (3.70)	101 (3.97)	70 (2.75)
	n2	176 (6.88)	176 (6.88)	200 (7.87)	176 (6.88)
	n3	max. 140 (5.51)	max. 164	max. 187,5 (7.38)	max. 140 (5.51)
	n4	54 ±2 (2.12 ±0.07)	54 ±2 (2.12 ±0.07)	68,5 ±2 (2.69 ±0.07)	54 ±2 (2.12 ±0.07)
	d3	M6	M6	M8	M6
	PE	M6	M6	M6	M6
Anzugsmoment		3,5 4,0 Nm	3,5 4,0 Nm	9,5 10,0 Nm 3,5 4,0 Nm	3,5 4,0 Nm

Tabelle 6- 10 Montagemaße Motordrossel, Baugröße FSF in mm (inch)

Motordrossel	6SE6400-	3TC14-5FD0	3TC15-4FD0
Baugröße		FSF	FSF
Motordrossel	a2	20 (0.78)	20 (0.78)
	a3	4 (0.15)	4 (0.15)
	a4	10 (0.39)	10 (0.39)
	a5	Ø9 (0.35)	Ø9 (0.35)
	14	357 (14.05)	270 (10.62)
	15	120 ±5 (4.72 ±0.19)	88 ±5 (3.46 ±0.19)
	h _{max}	321 (12.63)	248 (9.76)
	h2	185 ±2 (7.28 ±0.07)	140 ±2 (5.51 ±0.07)
	h3	60 ±2 (2.36 ±0.07)	50 ±2 (1.96 ±0.07)
	n1	138 (5.43)	101 (3.97)
	n2	264 (10.39)	200 (7.87)
	n3	max. 220,5 (8.68)	max. 187,5 (7.38)
	n4	65,5 ±2 (2.57 ±0.07)	68,5 ±2 (2.69 ±0.07)
	d3	M8	M8
	PE	M8	M6
Anzugsmoment		9,5 10,0 Nm	9,5 10,0 Nm 3,5 4,0 Nm

Montage von Power Module PM340 und Motordrossel

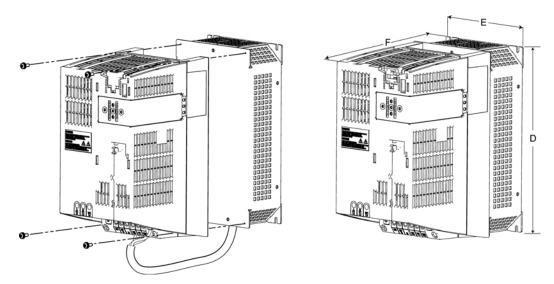


Bild 6-12 Montage von Power Module und Motordrossel, Baugröße FSB / FSC

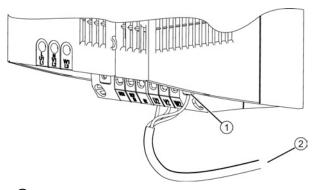
Tabelle 6- 11 Gesamtmaße Power Module PM340 und Motordrossel, Baugröße FSA / FSB / FSC in mm (inch)

Motordrossel		6SE6400-3TC00- 4AD3	6SE6400-3TC00- 4AD2	6SL3202-0AE21- 0CA0	6SL3202-0AJ23-2CA0
Baugröße		FSA	FSA	FSB	FSC
Gesamtmaße	D	200 (7.87)	200 (7.87)	270 (10.62)	334 (13.14)
von Power	E	75,5 (2.97)	75,5 (2.97)	153 (6.02)	189 (7.44)
Module und Motordrossel	F	259 (10.19)	259 (10.19)	235 (9.25)	245 (9.64)

6.1.1.5 Elektrischer Anschluss

Elektrischer Anschluss Power Module PM240-2

Hinweis


Zugelassene Leitungen

Verwenden Sie nur 75 °C-Kupferleitungen.

Tabelle 6- 12 Befestigung der Anschlussleitungen an der Motordrossel

Baugröße	Klemmenanschluss		PE-Anschluss	
	Max. anschließbarer Anzugsdrehmoment Europe Anzugsdrehmoment		Befestigung	Anzugsdrehmoment
FSA	4 mm ²	0,6 0,8 Nm	M4-Schraube	3 Nm
FSB	10 mm ²	1,5 1,8 Nm	M5-Schraube	5 Nm
FSC	16 mm ²	2,0 4,0 Nm	M5-Schraube	5 Nm

Elektrischer Anschluss Power Module PM340

- 1 PE-Anschluss
- ② Motordrossel

Bild 6-13 Elektrischer Anschluss

6.1.1.6 Technische Daten

Tabelle 6- 13 Motordrosseln für Power Modules PM240-2, Baugrößen FSA bis FSC

Bestellnummer 6SL3202-		0AE16-1CA0	0AE18-8CA0	0AE21-8CA0	0AE23-8CA0
Baugröße		FSA (2,2 kW)	FSA (4 kW)	FSB (7,5 kW)	FSC (18,5 kW)
Passend zu Power		Netzspannung 1 AC	200 V -10 % bis 240 V	+10 %:	
Modules ¹⁾		6SL3210- 1PB13-0xL0 1PB13-8xL0 1PB15-5xL0	6SL3210- 1PB17-4xL0	6SL3210- 1PB21-0xL0 1PB21-4xL0 1PB21-8xL0	6SL3210- 1PC22-2xL0 1PC22-8xL0 6SL3211-
		6SL3211- 1PB13-8xL0		6SL3211- 1PB21-0xL0 1PB21-8xL0	1PB22-2xL0
		Netzspannung 3 AC	380 V -10 % bis 480 V	+10 %:	
		6SL3210- 1PE11-8xL1 1PE12-3xL1 1PE13-2xL1 1PE14-3xL1 1PE16-1xL1	6SL3210- 1PE18-0xL1 6SL3211- 1PE18-0xL1	6SL3210- 1PE21-1xL0 1PE21-4xL0 1PE21-8xL0 6SL3211- 1PE21-8xL0	6SL3210- 1PE22-7xL0 1PE23-3xL0 6SL3211- 1PE23-3xL0
Induktivität	mΗ	2,5	1,3	0,54	0,26
Bemessungsstrom	Α	6,1	9,0	18,5	39,0
Verlustleistung	kW	0,09	0,08	0,08	0,11
Schutzart		IP20	IP20	IP20	IP20
Gewicht	kg	3,4	3,9	10,1	11,2

 $^{^{1)}}$ x = A: Power Module mit integriertem Netzfilter, x = U: Power Module ohne integriertes Netzfilter

Tabelle 6- 14 Motordrosseln für Power Modules PM340 3 AC 380 V bis 480 V, Baugröße FSA

			Motordrossel (für Pulsfrequenz 4 kHz)				
Bestellnummer			68	SE6400-3TC00-4/	AD2		
Baugröße		FSA	FSA	FSA	FSA	FSA	
Passend zu Power Module		6SL3210- 1SE11-3UA0	6SL3210- 1SE11-7UA0	6SL3210- 1SE12-2UA0	6SL3210- 1SE13-1UA0	6SL3210- 1SE14-1UA0	
Bemessungsstrom	Α			4,5			
Verlustleistung	kW		0,005				
Anschluss zum Power Module			Leitung 4 x 1,5 mm² Länge ca. 0,3 m				
Motoranschluss			Schraubklemm	nen für Leitungsqu	uerschnitt 6 mm²		
PE-Anschluss				Bolzen M5			
Max. zulässige Leitungslänge zwischen Motordrossel und Motor	m		100 (geschirmt) 150 (ungeschirmt)				
Schutzart			IP20 bzw. IPXXB				
Gewicht, ca.	kg	2					
Bemessungsstrom Indes Power Module	А	1,3	1,7	2,2	3,1	4,1	

Tabelle 6- 15 Motordrosseln für Power Modules PM340 3 AC 380 V bis 480 V, Baugröße FSB und FSC

			Motordrossel (für Pulsfrequenz 4 kHz)					
Bestellnummer		6S	L3202-0AE21-0	CA0	6SL3202-0AJ23-2CA0			
Baugröße		FSB	FSB	FSB	FSC	FSC	FSC	
Passend zu Power Module 6SL3210-		1SE16-0xxx	1SE17-7xxx	1SE21-0xxx	1SE21-8xxx	1SE22-5xxx	1SE23-2xxx	
Bemessungsstrom	Α		10			25		
Verlustleistung	kW		0,02			0,06		
Anschluss zum Power Module			Leitung 4 x 1,5 mm ² Länge ca. 0,4 m			Leitung 4 x 1,5 mm ² Länge ca. 0,35 m		
Motoranschluss		Schraubklemn 6 mm ²	Schraubklemmen für Leitungsquerschnitt 6 mm²			Schraubklemmen für Leitungsquerschnitt 2,5 mm² bis 10 mm²		
PE-Anschluss		Bolzen M5			Bolzen M5			
Max. zulässige	m			100 (ge	eschirmt)			
Leitungslänge zwischen Motordrossel und Motor			150 (ungeschirmt)					
Schutzart		IP20 bzw. IPXXB						
Gewicht, ca.	kg	4,5				9		
Bemessungsstrom Indes Power Module	A	5,9	7,7	10	18	25	32	

Tabelle 6- 16 Motordrosseln für Power Modules PM340 3 AC 380 V bis 480 V, Baugröße FSD und FSE

			Motordrossel (für Pulsfrequenz 4 kHz)				
Bestellnummer 6SE6400-		3TC05-4DD0	3TC03-8DD0	3TC05-4DD0	3TC08-0ED0	3TC07-5ED0	
Baugröße		FSD	FSD	FSD	FSE	FSE	
Passend zu Power Module 6SL3210- 6SL3215-		1SE23-8xxx 1SE23-8UAx	1SE24-5xxx	1SE26-0xxx 1SE26-0UAx	1SE27-5xxx 1SE27-5UAx	1SE31-0xxx 1SE31-0UAx	
Bemessungsstrom	Α	68	45	68	104	90	
Verlustleistung	kW	0,2	0,2	0,2	0,17	0,27	
Anschluss zum Power Module			Flachanschluss für Kabelschuh M6				
Motoranschluss			Flachar	nschluss für Kabels	chuh M6		
PE-Anschluss				Schraube M6			
Max. zulässige Leitungslänge zwischen Motordrossel und Motor	m	200 (geschirmt) 300 (ungeschirmt)					
Schutzart		IP00			_		
Gewicht, ca.	kg	11,5	19	11,5	12	27	
Bemessungsstrom I _n des Power Module	Α	38	45	60	75	90	

Tabelle 6- 17 Motordrosseln für Power Modules PM340 3 AC 380 V bis 480 V, Baugröße FSF

		Motordrossel (für Pulsfreque	Motordrossel (für Pulsfrequenz 4 kHz)		
Bestellnummer 6SE6400-		3TC14-5FD0	3TC15-4FD0	3TC14-5FD0	
Baugröße		FSF	FSF	FSF	
Passend zu Power Module 6SL3210- 6SL3215-		1SE31-1xxx 1SE31-1UAx	1SE31-5xxx	1SE31-8xxx 1SE31-8UAx	
Bemessungsstrom	Α	178	178	178	
Verlustleistung	kW	0,47	0,25	0,47	
Anschluss zum Power Module		Flachanschluss für Kabelschuh M8			
Motoranschluss		Fl	achanschluss für Kabelschuh	M8	
PE-Anschluss			Schraube M8		
Max. zulässige Leitungslänge zwischen Motordrossel und Motor	m	200 (geschirmt) 300 (ungeschirmt)			
Schutzart		IP00			
Gewicht, ca.	kg	57	24	57	
Bemessungsstrom In des Power Module	Α	110	145	178	

6.2 Chassis

6.2.1 Motordrosseln

6.2.1.1 Beschreibung

Motordrosseln reduzieren die Spannungsbelastung der Motorwicklungen, indem die durch Umrichterbetrieb hervorgerufenen Spannungssteilheiten an den Motorklemmen verringert werden. Gleichzeitig werden die kapazitiven Umladeströme reduziert, die den Ausgang des Motor Modules beim Einsatz langer Motorleitungen zusätzlich belasten.

Motordrosseln können in den Regelungsarten VEKTOR und SERVO betrieben werden.

6.2.1.2 Sicherheitshinweise für Motordrosseln

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

∮GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

 Setzen Sie für die Motordrosseln einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

∕Î\WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume können zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand führen. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

 Halten Sie unbedingt die Lüftungsfreiräume von 100 mm oberhalb und unterhalb der Komponente ein.

/VORSICHT

Verbrennungsgefahr durch hohe Oberflächentemperatur der Motordrossel

Die Motordrosseln können sehr heiß werden. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie die Motordrosseln so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung der Motordrosseln durch Verwendung nicht frei gegebener Komponenten

Beim Einsatz nicht frei gegebener Komponenten können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten. Es besteht die Gefahr einer thermischen Beschädigung der Motordrossel.

Verwenden Sie nur Motordrosseln, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

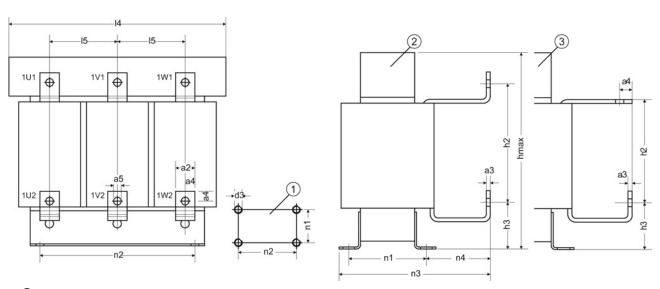
Beschädigung der Motordrosseln durch Überschreitung der maximalen Ausgangsfrequenz

Die maximal zulässige Ausgangsfrequenz beträgt beim Einsatz der Motordrosseln 150 Hz. Die Überschreitung der Ausgangsfrequenz kann zur Beschädigung der Motordrosseln führen.

 Betreiben Sie die Motordrosseln nicht über der maximal zulässigen Ausgangsfrequenz von 150 Hz.

ACHTUNG

Schäden durch Überschreitung der maximalen Pulsfrequenz


Die maximal zulässige Pulsfrequenz beträgt beim Einsatz der Motordrosseln 4 kHz. Die Überschreitung der Pulsfrequenz kann zur Beschädigung der Motordrosseln führen.

 Betreiben Sie die Motordrosseln am Power Module nicht über der maximal zulässigen Pulsfrequenz von 4 kHz.

Hinweis

Halten Sie die Anschlussleitungen zum Power Module möglichst kurz (max. 5 m).

- 1 Montagelochung
- ② Motordrossel Typ 1
- 3 Motordrossel Typ 2

Bild 6-14 Maßbild Motordrossel

6SL3000-	2BE32-1AA0	2BE32-6AA0	2BE33-2AA0	2BE33-8AA0	2BE35-0AA0
Anschluss-Typ	1	1	1	1	2
a2	25 (0.98)	25 (0.98)	25 (0.98)	25 (0.98)	30 (1.18)
a3	5 (0.19)	5 (0.19)	5 (0.19)	5 (0.19)	6 (0.23)
a4	12.5 (0.49)	12.5 (0.49)	12.5 (0.49)	12.5 (0.49)	15 (0.59)
а5	11 (0.43)	11 (0.43)	11 (0.43)	11 (0.43)	14 (0.55)
14	300 (11.81)	300 (11.81)	300 (11.81)	300 (11.81)	300 (11.81)
15	100 (3.93)	100 (3.93)	100 (3.93)	100 (3.93)	100 (3.93)
hmax	285 (11.22)	315 (12.40)	285 (11.22)	285 (11.22)	365 (14.37)
h2	194 (7.63)	227 (8.93)	194 (7.63)	194 (7.63)	245 (9.64)
h3	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)	60 (2.36)
n1 ¹⁾	163 (6.41)	183 (7.20)	163 (6.41)	183 (7.20)	183 (7.20)
n2 ¹⁾	224 (8.81)	224 (8.81)	224 (8.81)	224 (8.81)	224 (8.81)
n3	257 (10.11)	277 (10.90)	257 (10.11)	277 (10.90)	277 (10.90)
n4	79 (3.11)	79 (3.11)	79 (3.11)	79 (3.11)	79 (3.11)
d3	M8	M8	M8	M8	M8

¹⁾ Die Längen n1 und n2 entsprechen dem Bohrlochabstand.

6.2.1.4 Technische Daten

Tabelle 6- 18 Technische Daten Motordrosseln

Bestellnummer	6SL3000-	2BE32-1AA0	2BE32-6AA0	2BE33-2AA0	2BE33-8AA0	2BE35-0AA0
Passend zu Power Module	6SL3310-	1TE32-1AAx	1TE32-6AAx	1TE33-1AAx	1TE33-8AAx	1TE35-0AAx
Typleistung des Power Modules	kW	110	132	160	200	250
Bemessungsstrom	Α	210	260	310	380	490
Verlustleistung - bei 50 Hz - bei 150 Hz	kW kW	0,436 0,486	0,454 0,5	0,422 0,47	0,447 0,5	0,448 0,5
Anschlüsse - zum Motor Module (1U1, 1V1, 1W1) - zur Last (1U2, 1V2, 1W2) - PE		M10 M10 M8	M10 M10 M8	M10 M10 M8	M10 M10 M8	M12 M12 M8
Max. zulässige Leitungslänge zwischen Motordrossel und Motor - bei 1 Motordrossel - bei 2 Motordrosseln in Reihe	m m		\0	hirmt) / 450 (un hirmt) / 787 (un	,	
Schutzart		IP00	IP00	IP00	IP00	IP00
Abmessungen Breite Höhe Tiefe	mm mm mm	300 285 257	300 315 277	300 285 257	300 285 277	300 365 277
Gewicht	kg	66	66	66	73	100

6.2.2 Sinusfilter

6.2.2.1 Beschreibung

Das Sinusfilter am Ausgang des Power Module liefert nahezu sinusförmige Spannungen am Motor, sodass standardmäßige Motoren ohne geschirmte Kabel und ohne Leistungsreduzierung eingesetzt werden können. Für die Verkabelung können ungeschirmte Leitungen verwendet werden und bei langen Motorzuleitungen sind keine zusätzlichen Motordrosseln erforderlich.

Die Sinusfilter stehen bis zu einer Leistung von 200 kW zur Verfügung

Für die Sinusfilter ist die Pulsfrequenz der Power Modules auf 4 kHz einzustellen. Hierdurch reduziert sich der Ausgangsstrom des Power Module, siehe Kapitel Kennlinien (Seite 178).

Bei Einsatz eines Sinusfilters verringert sich die verfügbare Ausgangsspannung um 15 %.

6.2.2.2 Sicherheitshinweise für Sinusfilter Chassis

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/!\GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

• Setzen Sie für die Sinusfilter einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten/Systemen auftreten.

 Halten Sie unbedingt einen L\u00fcftungsfreiraum von 100 mm oberhalb und unterhalb der Komponente ein.

/\vorsicht

Verbrennungsgefahr durch hohe Oberflächentemperatur des Sinusfilters

Die Sinusfilter können Oberflächentemperaturen von über 80 °C aufweisen. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie das Sinusfilter so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung des Sinusfilters durch vertauschte Anschlüsse

Die Vertauschung der Anschlüsse von Eingang und Ausgang führt zu einer Beschädigung des Sinusfilters.

- Schließen Sie die ankommende Leitung vom Power Module an 1U1, 1V1, 1W1 an.
- Schließen Sie die abgehende Leitung zur Last an 1U2, 1V2, 1W2 an.

ACHTUNG

Beschädigung des Power Module durch Verwendung nicht frei gegebener Komponenten

Beim Einsatz nicht frei gegebener Komponenten können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

Verwenden Sie nur Sinusfilter, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

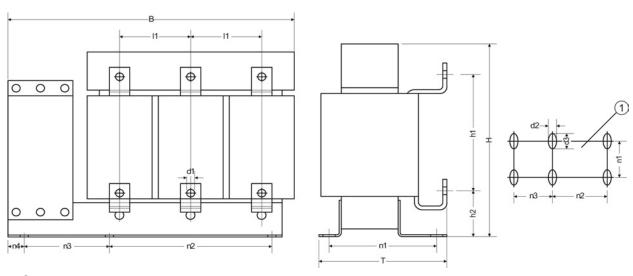
Beschädigung des Sinusfilters durch Überschreitung der maximalen Ausgangsfrequenz

Die maximal zulässige Ausgangsfrequenz beträgt beim Einsatz der Sinusfilter 150 Hz. Die Überschreitung der Ausgangsfrequenz kann zur Beschädigung des Sinusfilters führen.

 Aktivieren Sie am Power Module angeschlossene Sinusfilter unbedingt bei der Inbetriebnahme (siehe SINAMICS S120/S150 Listenhandbuch).

ACHTUNG

Beschädigung des Sinusfilters bei nicht angeschlossenem Motor


Sinusfilter, die ohne angeschlossenen Motor betrieben werden, können beschädigt oder zerstört werden.

 Betreiben Sie am Power Module angeschlossene Sinusfilter nie ohne einen angeschlossenen Motor.

Hinweis

Halten Sie die Anschlussleitungen zum Power Module möglichst kurz (max. 5 m).

① Montagelochung

Bild 6-15 Maßbild Sinusfilter

Tabelle 6- 19 Abmessungen Sinusfilter in mm (inch)

6SL3000-	2CE32-3AA0	2CE32-8AA0	2CE33-3AA0	2CE34-1AA0
В	620 (24.40)	620 (24.40)	620 (24.40)	620 (24.40)
Н	300 (11.81)	300 (11.81)	370 (14.56)	370 (14.56)
Т	320 (12.59)	320 (12.59)	360 (14.17)	360 (14.17)
I1	140 (5.51)	140 (5.51)	140 (5.51)	140 (5.51)
h1	180 (7.08)	180 (7.08)	220 (8.66)	220 (8.66)
h2	65 (3.34)	65 (3.34)	65 (3.34)	65 (3.34)
n1¹)	280 (11.02)	280 (11.02)	320 (12.59)	320 (12.59)
n2 ¹⁾	150 (5.90)	150 (5.90)	150 (5.90)	150 (5.90)
n3 ¹⁾	225 (8.85)	225 (8.85)	225 (8.85)	225 (8.85)
n4	105 (4.13)	105 (4.13)	105 (4.13)	105 (4.13)
d1	12 (0.47)	12 (0.47)	12 (0.47)	12 (0.47)
d2	11 (0.43)	11 (0.43)	11 (0.43)	11 (0.43)
d3	22 (0.86)	22 (0.86)	22 (0.86)	22 (0.86)

¹⁾ Die Längen n1, n2, n3 entsprechen dem Bohrlochabstand.

6.2.2.4 Technische Daten

Tabelle 6-20 Technische Daten Sinusfilter

Bestellnummer	6SL3000-	2CE32-3AA0	2CE32-3AA0	2CE32-8AA0	2CE33-3AA0	2CE34-1AA0
Passend zu Power Module	6SL3310-	1TE32-1AAx	1TE32-6AAx	1TE33-1AAx	1TE33-8AAx	1TE35-0AAx
Typleistung des Power Module bei 4 kHz Pulsfrequenz	kW	90	110	132	160	200
Bemessungsstrom	Α	225	225	276	333	408
Verlustleistung - bei 50 Hz - bei 150 Hz	kW kW	0,35 0,6	0,35 0,6	0,4 0,69	0,245 0,53	0,38 0,7
Anschlüsse - zum Power Module - zur Last - PE		Anschlusslaschen M10 Anschlusslaschen M10 Bohrung M10				
Max. zulässige Leitungslänge zwischen Sinusfilter und Motor	m	300 (geschirmt) 450 (ungeschirmt)				
Schutzart		IP00	IP00	IP00	IP00	IP00
Abmessungen Breite Höhe Tiefe	mm mm mm	620 300 320	620 300 320	620 300 320	620 370 360	620 370 360
Gewicht, ca.	kg	124	124	127	136	198

6.2.3 du/dt-Filter plus Voltage Peak Limiter

6.2.3.1 Beschreibung

Das du/dt-Filter plus Voltage Peak Limiter setzt sich aus zwei Komponenten zusammen: der du/dt-Drossel und dem Spannungsbegrenzungs-Netzwerk (Voltage Peak Limiter), welches die Spannungsspitzen abschneidet und die Energie zurück in den Zwischenkreis speist.

Die du/dt-Filter plus Voltage Peak Limiter sind für Motoren mit unbekannter bzw. nicht ausreichender Spannungsfestigkeit des Isoliersystems einzusetzen. Normmotoren der Reihe 1LA5, 1LA6 und 1LA8 benötigen sie erst bei Anschluss-Spannungen > 500 V +10 %.

Die du/dt-Filter plus Voltage Peak Limiter begrenzen die Spannungsanstiegsgeschwindigkeit auf Werte < 500 V/µs und die typischen Spannungsspitzen bei Netzbemessungsspannungen auf folgende Werte (bei Motorleitungslängen von < 150 m):

< 1000 V bei U_{Netz} < 575 V.

Bestandteile

Die Bestellnummern der einzelnen Komponenten (du/dt-Drossel und Spannungsbegrenzungs-Netzwerk) sind in nachfolgender Tabelle aufgelistet:

Tabelle 6- 21 du/dt-Filter plus Voltage Peak Limiter, Bestellnummern der einzelnen Komponenten

du/dt-Filter plus Voltage Peak Limiter	du/dt-Drossel	Spannungsbegrenzungs-Netzwerk
6SL3000-2DE32-6AA0	6SL3000-2DE32-6CA0	6SL3000-2DE32-6BA0
6SL3000-2DE35-0AA0	6SL3000-2DE35-0CA0	6SL3000-2DE35-0BA0

6.2.3.2 Sicherheitshinweise für du/dt-Filter plus Voltage Peak Limiter

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

 Setzen Sie für die du/dt-Filter plus Voltage Peak Limiter einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

/ WARNUNG

Lebensgefahr bei Unterbrechen des externen Schutzleiters durch hohe Ableitströme

Die du/dt-Filter plus Voltage Peak Limiter führen einen hohen Ableitstrom über den Schutzleiter. Das Berühren leitfähiger Teile kann bei Unterbrechung des Schutzleiters zum Tod oder schweren Verletzungen führen.

- Sorgen Sie dafür, dass der externe Schutzleiter zumindest eine der nachfolgenden Bedingungen erfüllt:
 - Er ist gegen mechanische Beschädigung geschützt verlegt.1)
 - Bei einem Einzelleiter weist er einen Querschnitt von mindestens 10 mm² Cu auf.
 - Als Ader eines Mehraderkabels weist er einen Querschnitt von mindestens 2,5 mm²
 Cu auf.
 - Er weist einen parallelen zweiten Schutzleiter mit gleichem Querschnitt auf.
 - Er entspricht den örtlichen Vorschriften für Ausrüstungen mit erhöhtem Ableitstrom.
 - ¹⁾ Innerhalb von Schaltschränken oder geschlossenen Maschinengehäusen verlegte Leitungen gelten als ausreichend geschützt gegen mechanische Beschädigungen.

/ WARNUNG

Brandgefahr und Geräteschäden durch Erdschluss / Kurzschluss

Der Anschluss zum Zwischenkreis des Power Module muss so verlegt werden, dass ein Erdschluss bzw. Kurzschluss ausgeschlossen werden kann. Ein Erdschluss kann einen Brand mit Rauchentwicklung auslösen.

- Wenden Sie lokale Installationsvorschriften an, die diesen Fehlerausschluss ermöglichen.
- Schützen Sie die Leitungen vor einer mechanischen Beschädigung.
- Ergreifen Sie zusätzlich eine der folgenden Maßnahmen:
 - Verwenden Sie Leitungen mit doppelter Isolation.
 - Halten Sie ausreichende Abstände ein, z. B. mithilfe von Abstandshaltern.
 - Verlegen Sie die Leitungen in getrennten Installationskanälen bzw. -rohren.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

• Halten Sie unbedingt einen Lüftungsfreiraum von 100 mm oberhalb und unterhalb der Komponente ein.

/VORSICHT

Verbrennungsgefahr durch hohe Oberflächentemperatur der du/dt-Drossel

Die du/dt-Drosseln können Oberflächentemperaturen von über 80 °C aufweisen. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie die du/dt-Drosseln so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung des Voltage Peak Limiter durch vertauschte Anschlüsse

Die Vertauschung der Anschüsse am Spannungsbegrenzungs-Netzwerk (Voltage Peak Limiter) führt zu einer Beschädigung des Voltage Peak Limiter.

- Schließen Sie die Leitung vom Zwischenkreis des Power Module an DCPS, DCNS an.
- Schließen Sie die Leitung zur du/dt-Drossel an 1U2, 1V2, 1W2 an.

ACHTUNG

Beschädigung des du/dt-Filters durch Verwendung nicht frei gegebener Komponenten

Beim Einsatz nicht frei gegebener Komponenten können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

Verwenden Sie nur du/dt-Filter, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

Beschädigung des du/dt-Filters durch Überschreitung der maximalen Ausgangsfrequenz

Die maximal zulässige Ausgangsfrequenz beträgt beim Einsatz der du/dt-Filter plus Voltage Peak Limiter 150 Hz. Die Überschreitung der Ausgangsfrequenz kann zur Beschädigung oder Zerstörung des du/dt-Filters führen.

 Aktivieren Sie am Power Module angeschlossene du/dt-Filter plus Voltage Peak Limiter unbedingt bei der Inbetriebnahme (siehe SINAMICS S120/S150 Listenhandbuch).

ACHTUNG

Beschädigung des du/dt-Filters durch Überschreitung der maximalen Pulsfrequenz

Die maximal zulässige Pulsfrequenz am Power Module beträgt beim Einsatz des du/dt-Filters 4 kHz. Die Überschreitung der Pulsfrequenz kann zur Beschädigung oder Zerstörung des du/dt-Filters führen.

 Betreiben Sie ein Power Module beim Einsatz eines du/dt-Filters nicht über der maximal zulässigen Pulsfrequenz von 4 kHz.

6.2 Chassis

ACHTUNG

Beschädigung des du/dt-Filters bei nicht angeschlossenem Motor

Falls der Antrieb ohne angeschlossenen Motor betrieben wird, kann das du/dt-Filter plus Voltage Peak Limiter beschädigt oder zerstört werden.

• Betreiben Sie Antriebe mit du/dt-Filter mit Voltage Peak Limiter nie ohne angeschlossenen Motor.

Hinweis

Halten Sie die Anschlussleitungen zum Power Module möglichst kurz (max. 5 m).

6.2.3.3 Schnittstellenbeschreibung

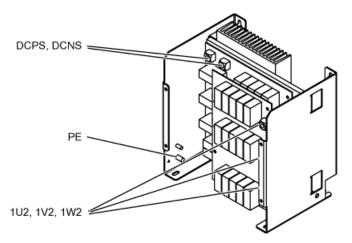


Bild 6-16 Schnittstellenübersicht Spannungsbegrenzungs-Netzwerk, Typ 1

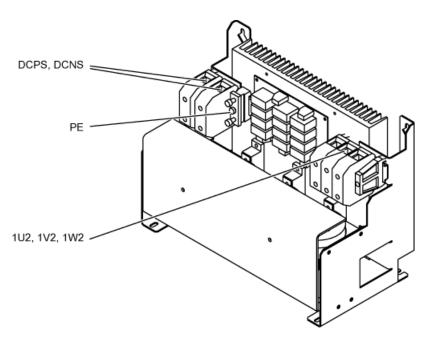


Bild 6-17 Schnittstellenübersicht Spannungsbegrenzungs-Netzwerk, Typ 2

6.2.3.4 Anschluss des du/dt-Filters plus Voltage Peak Limiter

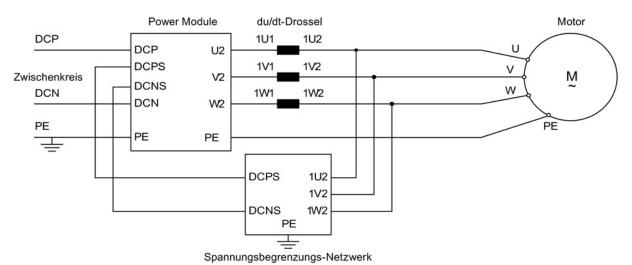


Bild 6-18 Anschluss des du/dt-Filter plus Voltage Peak Limiter

Leitungsquerschnitte

Tabelle 6-22 Leitungsquerschnitte für Anschlüsse zwischen du/dt-Filter und Power Module

du/dt-Filter plus Voltage Peak Limiter	Anschluss zum Zwischenkreis (DCPS / DCNS) [mm²]	Anschluss zwischen du/dt- Drossel und Spannungsbegrenzungs- Netzwerk (1U2, 1V2, 1W2) [mm²]
6SL3000-2DE32-6AA0	35	10
6SL3000-2DE35-0AA0	70	16

6.2.3.5 Maßbild du/dt-Drossel

① Montagelochung

Bild 6-19 Massbild du/dt-Drossel

Tabelle 6- 23 Abmessungen du/dt-Drossel, 3 AC 380 V - 480 V in mm (inch)

6SL3000-	2DE32-6CA0	2DE35-0CA0			
a2	25 (0.98)	30 (1.18)			
a3	5 (0.19)	6 (0.23)			
a4	14 (0.55)	17 (0.66)			
a5	10.5 x 14 (0.41 x 0.55)	14 x 18 (0.55 x 0.70)			
a6	7 (0.27)	9 (0.35)			
14	410 (16.14)	460 (18.11)			
15	135 (5.31)	152.5 (6.00)			
hmax	370 (14.56)	370 (14.56)			
h2	258 (10.15)	240 (9.44)			
h3	76 (2.99)	83 (3.26)			
n1 ¹⁾	141 (5.55)	182 (7.16)			
n2 ¹⁾	316 (12.44)	356 (14.01)			
n3	229 (9.01)	275 (10.82)			
n4	72 (2.83)	71 (2.79)			
d3	M10 [12 x 18] (0.47 x 0.70)	M12 [15 x 22] (0.59 x 0.86)			
¹⁾ Die Längen n1 und n2 entsprechen dem Bohrlochabstand.					

6.2.3.6 Maßbild Spannungsbegrenzungs-Netzwerk

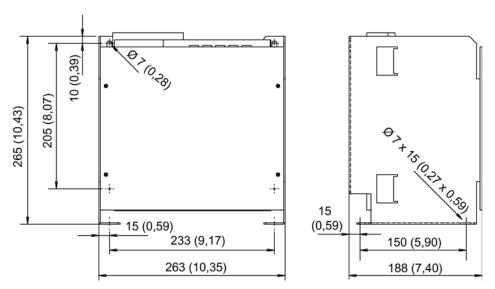


Bild 6-20 Maßbild Spannungsbegrenzungs-Netzwerk, Typ 1

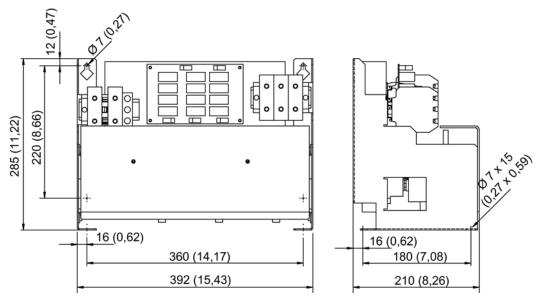


Bild 6-21 Maßbild Spannungsbegrenzungs-Netzwerk, Typ 2

Tabelle 6- 24 Zuordnung der Spannungsbegrenzungs-Netzwerke zu Maßbildern

Spannungsbegrenzungs-Netzwerk	Maßbild-Typ	
6SL3000-2DE32-6BA0	Typ 1	
6SL3000-2DE35-0BA0	Typ 2	

6.2.3.7 Technische Daten

Tabelle 6-25 Technische Daten du/dt-Filter plus Voltage Peak Limiter

Bestellnummer	6SL3000-	2DE32-6AA0	2DE35-0AA0
Passend zu Power Module (Typleistung)	6SL3310-	1TE32-1AAx (110 kW) 1TE32-6AAx (132 kW)	1TE33-1AAx (160 kW) 1TE33-8AAx (200 kW) 1TE35-0AAx (250 kW)
I _{thmax}	Α	260	490
Schutzart		IP00	IP00
du/dt-Drossel			
Verlustleistung - bei 50 Hz - bei 60 Hz - bei 150 Hz	kW kW kW	0,701 0,729 0,78	0,874 0,904 0,963
Anschlüsse - zum Power Module - Last - PE		M10 M10 M6	M12 M12 M6
Max. zulässige Leitungslänge zwischen du/dt- Drossel und Motor	m	300 (geschirmt) 450 (ungeschirmt)	
Abmessungen Breite Höhe Tiefe	mm mm mm	410 370 229	460 370 275
Gewicht, ca.	kg	66	122
Spannungsbegrenzungs-Netzwe	rk (Voltage Pe	ak Limiter)	
Verlustleistung - bei 50 Hz - bei 60 Hz - bei 150 Hz	kW kW kW	0,029 0,027 0,025	0,042 0,039 0,036
Anschlüsse - zur du/dt-Drossel - DC - PE		M8 M8 M8	Klemme 70 mm² Klemme 70 mm² Klemme 35 mm²
Abmessungen Breite Höhe Tiefe	mm mm mm	265 263 190	392 285 210
Gewicht, ca.	kg	6	16

6.2.4 du/dt-Filter compact plus Voltage Peak Limiter

6.2.4.1 Beschreibung

Das du/dt-Filter compact plus Voltage Peak Limiter enthält zwei Komponenten: die du/dt-Drossel und das Spannungsbegrenzungs-Netzwerk (Voltage Peak Limiter). Das Spannungsbegrenzungs-Netzwerk schneidet die Spannungsspitzen ab und speist die Energie in den Zwischenkreis zurück.

Die du/dt-Filter compact plus Voltage Peak Limiter sind für Motoren mit unbekannter bzw. nicht ausreichender Spannungsfestigkeit des Isoliersystems einzusetzen.

Die du/dt-Filter compact plus Voltage Peak Limiter begrenzen die Spannungsbelastungen der Motorleitungen auf die Werte gemäß Grenzwertkurve A nach IEC/TS 60034-25:2007.

Die Spannungsanstiegsgeschwindigkeit wird auf < 1600 V/µs begrenzt, die Spitzenspannungen werden auf < 1400 V begrenzt.

6.2.4.2 Sicherheitshinweise für du/dt-Filter compact plus Voltage Peak Limiter

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag bei fehlendem Berührschutz

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

• Setzen Sie für die du/dt-Filter compact plus Voltage Peak Limiter einen Berührschutz gemäß IPXXA oder entsprechend den lokalen Installationsvorschriften ein.

/!\WARNUNG

Lebensgefahr bei Unterbrechen des externen Schutzleiters durch hohe Ableitströme

Die du/dt-Filter plus Voltage Peak Limiter führen einen hohen Ableitstrom über den Schutzleiter. Das Berühren leitfähiger Teile kann bei Unterbrechung des Schutzleiters zum Tod oder schweren Verletzungen führen.

- Sorgen Sie dafür, dass der externe Schutzleiter zumindest eine der nachfolgenden Bedingungen erfüllt:
 - Er ist gegen mechanische Beschädigung geschützt verlegt.1)
 - Bei einem Einzelleiter weist er einen Querschnitt von mindestens 10 mm² Cu auf.
 - Als Ader eines Mehraderkabels weist er einen Querschnitt von mindestens 2,5 mm²
 Cu auf.
 - Er weist einen parallelen zweiten Schutzleiter mit gleichem Querschnitt auf.
 - Er entspricht den örtlichen Vorschriften für Ausrüstungen mit erhöhtem Ableitstrom.
 - ¹⁾ Innerhalb von Schaltschränken oder geschlossenen Maschinengehäusen verlegte Leitungen gelten als ausreichend geschützt gegen mechanische Beschädigungen.

/ WARNUNG

Brandgefahr und Geräteschäden durch Erdschluss / Kurzschluss

Der Anschluss zum Zwischenkreis des Power Modules muss so verlegt werden, dass ein Erdschluss bzw. Kurzschluss ausgeschlossen werden kann. Ein Erdschluss kann einen Brand mit Rauchentwicklung auslösen.

- Wenden Sie lokale Installationsvorschriften an, die diesen Fehlerausschluss ermöglichen.
- Schützen Sie die Leitungen vor einer mechanischen Beschädigung.
- Ergreifen Sie zusätzlich eine der folgenden Maßnahmen:
 - Verwenden Sie Leitungen mit doppelter Isolation.
 - Halten Sie ausreichende Abstände ein, z. B. mithilfe von Abstandshaltern.
 - Verlegen Sie die Leitungen in getrennten Installationskanälen bzw. -rohren.

/ WARNUNG

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

- Halten Sie unbedingt einen L\u00fcftungsfreiraum von 100 mm oberhalb und unterhalb der Komponente ein.
- Montieren Sie die du/dt-Filter compact plus Voltage Peak Limiter nur stehend, damit die Kühlkörper am Voltage Peak Limiter von unten nach oben mit Kühlluft durchströmt werden.

/ VORSICHT

Verbrennungsgefahr durch hohe Oberflächentemperatur des du/dt-Filter compact

Die du/dt-Filter compact können Oberflächentemperaturen von über 80 °C aufweisen. Durch Berühren der Oberfläche können Sie sich schwere Verbrennungen zuziehen.

 Montieren Sie die du/dt-Filter so, dass ein Berühren ausgeschlossen ist. Wo das nicht möglich ist, bringen Sie an gefährdeten Stellen einen entsprechenden Warnhinweis deutlich sichtbar und verständlich an.

ACHTUNG

Beschädigung des du/dt-Filters compact durch Verwendung nicht frei gegebener Komponenten

Beim Einsatz nicht frei gegebener Komponenten können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

 Verwenden Sie nur du/dt-Filter compact, die von SIEMENS für SINAMICS frei gegeben sind.

ACHTUNG

Gefahr der Beschädigung des du/dt-Filter compact durch Überschreitung der maximalen Ausgangsfrequenz

Die maximal zulässige Ausgangsfrequenz beträgt beim Einsatz der du/dt-Filter compact plus Voltage Peak Limiter 150 Hz. Die Überschreitung der Ausgangsfrequenz kann zur Beschädigung des du/dt-Filter compact führen.

 Aktivieren Sie am Power Module angeschlossene du/dt-Filter compact plus Voltage Peak Limiter unbedingt bei der Inbetriebnahme (siehe SINAMICS S120/S150 Listenhandbuch).

ACHTUNG

Beschädigung des du/dt-Filter compact durch überschreiten der maximalen Pulsfrequenz

Die maximal zulässige Pulsfrequenz am Power Module beträgt 4 kHz. Die Überschreitung der Pulsfrequenz kann zur Beschädigung des du/dt-Filter compact führen.

 Betreiben Sie ein Power Module beim Einsatz eines du/dt-Filter compact mit einer maximalen Pulsfrequenz von 4 kHz.

ACHTUNG

Beschädigung des du/dt-Filters mit einer Ausgangsfrequenz <10 Hz im Dauerbetrieb

Der Dauerbetrieb mit einer Ausgangsfrequenz kleiner 10 Hz kann zur thermischen Zerstörung des du/dt-Filters führen.

- Belasten Sie den du/dt-Filter f
 ür maximal 5 Minuten bei einer Ausgangsfrequenz <10
 Hz
- Wählen Sie anschließend für eine Dauer von 5 Minuten einen Betrieb mit einer Ausgangsfrequenz >10 Hz.

ACHTUNG

Beschädigung des du/dt-Filters bei nicht angeschlossenem Motor

Falls der Antrieb ohne angeschlossenen Motor betrieben wird, kann das du/dt-Filter plus Voltage Peak Limiter beschädigt oder zerstört werden.

 Betreiben Sie Antriebe mit du/dt-Filter mit Voltage Peak Limiter nie ohne angeschlossenen Motor.

ACHTUNG

Beschädigung der Anschlüsse am du/dt-Filter compact durch direkten mechanischen Anschluss der Motorleitungen

Ein direkter mechanischer Anschluss der Motorleitungen am du/dt-Filter compact führt zu einem Verbiegen der Anschlüsse.

 Stellen Sie durch anlagenseitige Maßnahmen sicher, dass sich die Anschlüsse durch die mechanische Belastung angeschlossener Leitungen nicht verbiegen können.

Hinweis

Beim Einsatz des du/dt-Filters compact plus Voltage Peak Limiter darf die Pulsfrequenz im Bereich zwischen der Nennpulsfrequenz und der jeweiligen maximalen Pulsfrequenz eingestellt werden.

Hinweis

Für das Stromderating bei erhöhter Pulsfrequenz ist das Derating des zugehörigen Power Modules ausschlaggebend.

Hinweis

Halten Sie die Motorleitungen zwischen Power Module und du/dt-Filter compact und die Leitungen zum Zwischenkreis möglichst kurz (max. 5 m).

6.2.4.3 Schnittstellenbeschreibung

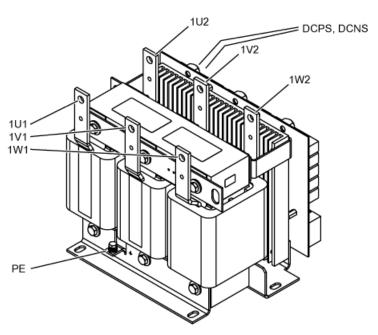


Bild 6-22 Schnittstellenübersicht du/dt-Filter compact plus Voltage Peak Limiter, Typ 1

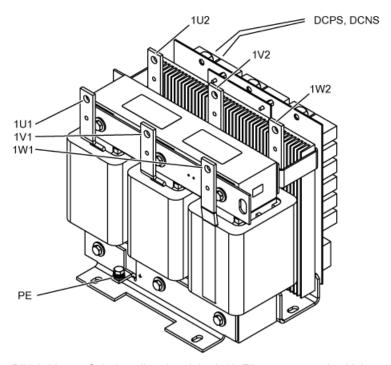


Bild 6-23 Schnittstellenübersicht du/dt-Filter compact plus Voltage Peak Limiter, Typ 2

6.2.4.4 Anschluss des du/dt-Filters compact plus Voltage Peak Limiter

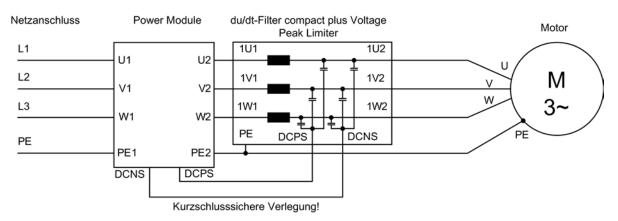


Bild 6-24 Anschluss des du/dt-Filters compact plus Voltage Peak Limiter

Leitungsquerschnitte

Tabelle 6- 26 Leitungsquerschnitte für Anschlüsse zwischen du/dt-Filter und Power Module

du/dt-Filter compact plus Voltage Peak Limiter	Querschnitt [mm²]	Anschluss am du/dt-Filter
6SL3000- 2DE32-6EA0	16	Schraube M8 / 12 Nm
6SL3000-2DE35-0EA0	25	Schraube M8 / 12 Nm

6.2.4.5 Maßbild du/dt-Filter compact plus Voltage Peak Limiter

du/dt-Filter compact plus Voltage Peak Limiter, Typ 1

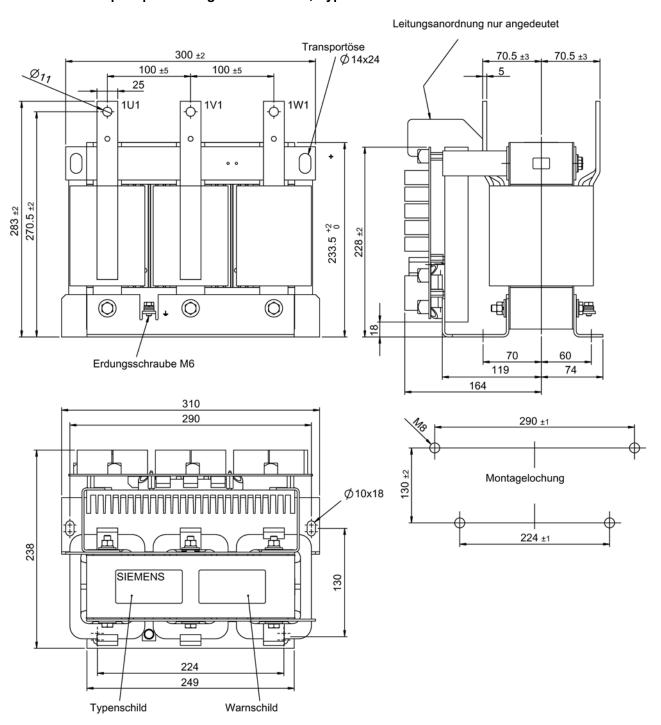


Bild 6-25 Maßbild du/dt-Filter compact plus Voltage Peak Limiter, Typ 1

du/dt-Filter compact plus Voltage Peak Limiter, Typ 2

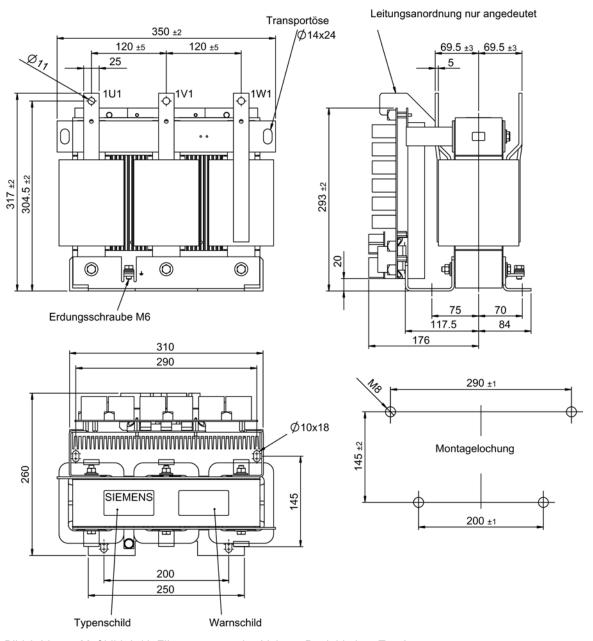


Bild 6-26 Maßbild du/dt-Filter compact plus Voltage Peak Limiter, Typ 2

Tabelle 6- 27 Zuordnung der du/dt-Filter compact plus Voltage Peak Limiter zu den Maßbildern

du/dt-Filter compact plus Voltage Peak Limiter	Maßbild-Typ
6SL3000-2DE32-6EA0	Typ 1
6SL3000-2DE35-0EA0	Typ 2

6.2.4.6 Technische Daten

Tabelle 6- 28 Technische Daten du/dt-Filter compact plus Voltage Peak Limiter

Bestellnummer	6SL3000-	2DE32-6EA0	2DE35-0EA0	
Passend zu Power Module (Typleistung)	6SL3310-	1TE32-1AAx (110 kW) 1TE32-6AAx (132 kW)	1TE33-1AAx (160 kW) 1TE33-8AAx (200 kW) 1TE35-0AAx (250 kW)	
I _{thmax}	Α	260	490	
Schutzart		IP00	IP00	
Verlustleistung - bei 50 Hz - bei 60 Hz - bei 150 Hz	kW kW kW	0,210 0,215 0,255	0,290 0,296 0,344	
Anschlüsse - 1U1/1V1/1W1 - DCPS/DCNS - 1U2/1V2/1W2 - PE		für Bolzen M10 für Schraube M8 für Bolzen M10 Schraube M6	für Bolzen M10 für Schraube M8 für Bolzen M10 Schraube M6	
Max. zulässige Leitungslänge zwischen du/dt-Filter und Motor	m	100 (geschirmt) 150 (ungeschirmt)		
Abmessungen Breite Höhe Tiefe	mm mm mm	310 283 238	350 317 260	
Gewicht, ca.	kg	41	61	

Control Units, Control Unit Adapter und Bedienkomponenten

7.1 Einleitung

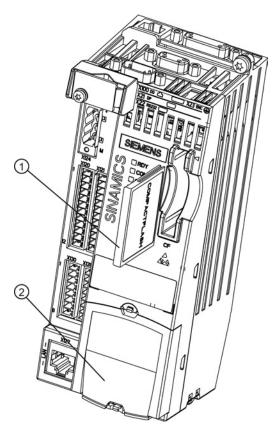
7.1.1 Control Units

Kurzbeschreibung

Die Control Units CU310-2 sind für den Betrieb an einem Power Module in den Bauformen Blocksize oder Chassis ausgelegt.

7.1 Einleitung

Merkmale


Bezeichnung	Merkmale	Bestellnummer
CU310-2 DP	 - PROFIBUS als externe Kommunikationsschnittstelle - LAN (Ethernet) - TTL / HTL / SSI – Geberauswertung - Analoger Sollwerteingang 	6SL3040-1LA00-0AA0
CU310-2 PN	 - 2x PROFINET als externe Kommunikationsschnittstelle - LAN (Ethernet) - TTL / HTL / SSI – Geberauswertung - Analoger Sollwerteingang 	6SL3040-1LA01-0AA0

Speicherkarte

Auf der Speicherkarte befinden sich Firmware und voreingestellte Parameter für den Betrieb der Control Unit.

Die Speicherkarte für die Control Unit muss separat bestellt werden. Die Bestellnummer lautet 6SL3054-0EE00-1BA0.

Bestellnummern von Speicherkarten mit Safety-Lizenz finden Sie im Katalog PM21.

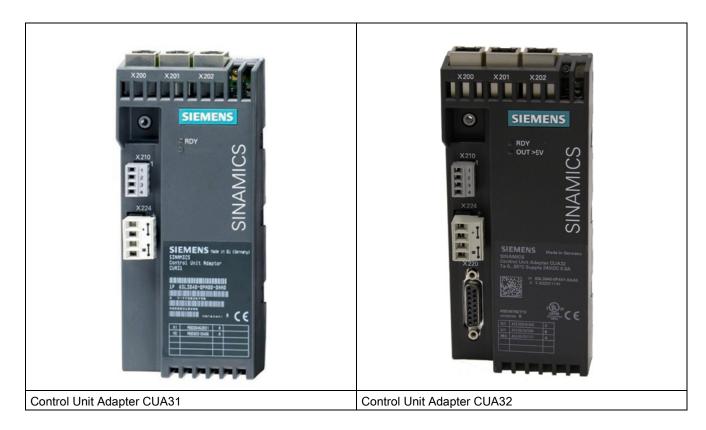

- Speicherkarte
- ② Blindabdeckung

Bild 7-1 CU310-2 DP: Steckplatz für die Speicherkarte

7.1.2 Control Unit Adapter

Kurzbeschreibung

Mit einem Control Unit Adapter kann ein Power Module als zusätzliche Achse an einen bestehenden DC/AC-Verband angebunden werden. Es ist immer eine übergeordnete Regelungsbaugruppe erforderlich.

Merkmale

Bezeichnung	Merkmale	Bestellnummer
CUA31	- Erweiterung um eine Achse	6SL3040-0PA00-0AA1
CUA32	- Erweiterung um eine Achse - TTL-/ HTL-/ SSI–Geberauswertung	6SL3040-0PA01-0AA0

7.2 Sicherheitshinweise für Control Units und Control Unit Adapter

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/!\warnung

Brandgefahr durch Überhitzung bei unzureichenden Lüftungsfreiräumen

Unzureichende Lüftungsfreiräume führen zu Überhitzung mit Personengefährdung durch Rauchentwicklung und Brand. Weiterhin können erhöhte Ausfälle und verkürzte Lebensdauer von Geräten / Systemen auftreten.

- Halten Sie unbedingt einen Lüftungsfreiraum von 50 mm oberhalb und unterhalb der Control Unit und des Control Unit Adapter ein.
- Stellen Sie sicher, dass die Lüftungsöffnungen nicht durch Anschlussleitungen abgedeckt sind.

/ WARNUNG

Lebensgefahr durch Softwaremanipulation bei der Verwendung von Wechselspeichermedien

Die Ablage von Dateien auf Wechselspeichermedien birgt ein erhöhtes Risiko gegenüber Infektionen, z. B. mit Viren oder Malware. Durch fehlerhafte Parametrierung können Fehlfunktionen an Maschinen auftreten, die zu Körperverletzungen oder Tod führen können.

 Schützen Sie die Dateien im Wechselspeichermedium vor Schad-Software durch entsprechende Schutzmaßnahmen, z. B. Virenscanner.

ACHTUNG

Schädigung der Speicherkarte durch elektrische Felder oder elektrostatische Entladung

Elektrische Felder oder elektrostatische Entladung können zur Beschädigung der Speicherkarte führen.

 Beachten Sie beim Ziehen und Stecken der Speicherkarte unbedingt die EGB-Vorschriften.

ACHTUNG

Gefahr der Zerstörung von Komponenten durch hohe Ableitströme

Die Control Unit oder andere PROFIBUS- bzw. PROFINET-Teilnehmer können zerstört werden, wenn über die PROFIBUS- bzw. PROFINET-Leitung erhebliche Ableitströme fließen.

 Verwenden Sie zwischen voneinander entfernten Teilen einer Anlage einen Funktionspotenzialausgleichsleiter mit einem Querschnitt von mindestens 25 mm².

ACHTUNG

Geräteausfall durch ungeschirmte oder falsch verlegte Leitungen zu Temperatursensoren

Ungeschirmte oder falsch verlegte Leitungen zu Temperatursensoren können zu Einkopplungen von der Leistungsseite in die Signalverarbeitungselektronik führen. Dies kann zu massiven Störungen aller Signale (Fehlermeldungen) bis hin zum Ausfall einzelner Bauteile (Zerstörung der Geräte) führen.

- Verwenden Sie als Leitungen zu Temperatursensoren ausschließlich geschirmte Leitungen.
- Wenn Leitungen zu Temperatursensoren gemeinsam mit der Motorleitung geführt werden, verwenden Sie paarweise verdrillte und separat geschirmte Leitungen.
- Verbinden Sie den Leitungsschirm beidseitig großflächig mit Massepotenzial.
- Empfehlung: Verwenden Sie geeignete Motion Connect-Leitungen.

ACHTUNG

Schäden durch Verwendung falscher DRIVE-CLiQ-Leitungen

Beim Einsatz falscher oder nicht frei gegebener DRIVE-CLiQ-Leitungen können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

 Verwenden Sie ausschließlich passende DRIVE-CLiQ-Leitungen, die von Siemens für den jeweiligen Anwendungsfall frei gegeben sind.

Hinweis

Funktionsstörungen durch verschmutzte DRIVE-CLiQ-Schnittstellen

Die Verwendung verschmutzter DRIVE-CLiQ-Schnittstellen kann Funktionsstörungen im System hervorrufen.

 Verschließen Sie unbenutzte DRIVE-CLiQ-Schnittstellen mit den mitgelieferten Blindabdeckungen. 7.2 Sicherheitshinweise für Control Units und Control Unit Adapter

Hinweis

Funktionspotenzialausgleich bei dezentralen DRIVE-CLiQ-Teilnehmern

Binden Sie alle Komponenten, die über DRIVE-CLiQ verbunden sind, in das Konzept zum Funktionspotenzialausgleich ein. Die Anbindung sollte vorzugsweise durch die Montage auf metallisch blanken Maschinen- und Anlagenteilen erfolgen, die alle potenzialmäßig untereinander verbunden sind.

Sie können alternativ den Potenzialausgleich auch durch einen Leiter (min. 6 mm²) vornehmen, der möglichst parallel zur DRIVE-CLiQ-Leitung verlegt werden sollte. Betroffen sind alle dezentralen DRIVE-CLiQ-Teilnehmer wie z. B. SMCx0.

7.3 Control Unit CU310-2 PN (PROFINET)

7.3.1 Beschreibung

Die Control Unit CU310-2 PN (PROFINET) ist eine Regelungsbaugruppe für Einzelantriebe, in der die Regelungs- und Steuerungsfunktionen des Antriebs realisiert werden. Sie steuert die Power Modules Blocksize über die PM-IF-Schnittstelle und wird direkt auf dem Power Module montiert. Die Power Modules Chassis werden von der Control Unit über die DRIVE-CLiQ-Schnittstelle angesteuert. Die Montage erfolgt neben dem Power Module im Schaltschrank.

Die CU310-2 PN ist Hot-Plug-fähig. Sie ist ab Firmware-Version 4.4 einsetzbar.

Die Tabelle zeigt eine Übersicht der Schnittstellen auf der CU310-2 PN.

Tabelle 7-1 Schnittstellenübersicht der CU310-2 PN

Art	Anzahl
Potenzialgetrennte Digitaleingänge	11
Potenzialgebundene Digitaleingänge / -ausgänge	8
Potenzialgetrennter Digitalausgang	1
Potenzialgebundener Analogeingang	1
DRIVE-CLiQ-Schnittstelle	1
PROFINET-Schnittstellen	2
Serielle Schnittstelle (RS232)	1
Geberschnittstelle (HTL/TTL/SSI)	1
LAN (Ethernet)	1
Temperatursensoreingang	1
EP-Klemme	1
Messbuchsen	3

7.3.2 Schnittstellenbeschreibung

7.3.2.1 Übersicht

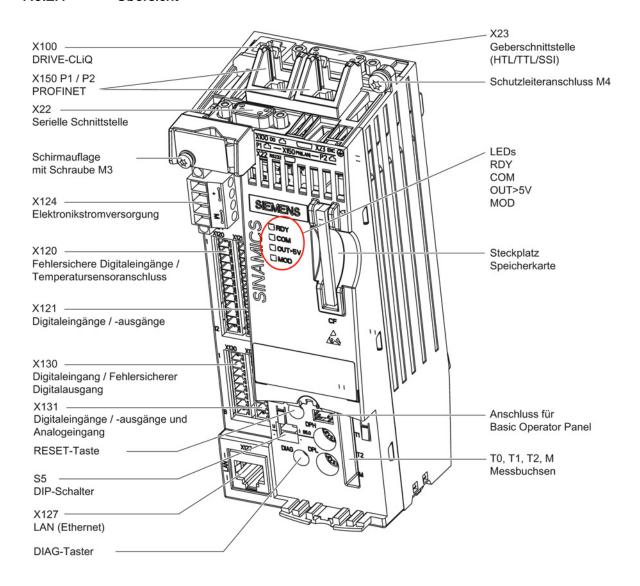


Bild 7-2 CU310-2 PN Schnittstellenübersicht

Hinweis

Der PROFIBUS-Adressschalter auf der CU310-2 PN hat keine Funktion.

Auf der Rückseite der CU310-2 PN befindet sich die Schnittstelle zum Power Module.

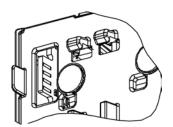


Bild 7-3 CU310-2 PN Schnittstelle zum Power Module (PM-IF)

7.3.2.2 X22 serielle Schnittstelle (RS232)

Tabelle 7-2 X22 Serielle Schnittstelle (RS232)

	Pin	Signalname	Technische Angaben
	1	Reserviert, nicht belegen	
	2	XRXD_RS232	Empfangsdaten
	3	XTXD_RS232	Sendedaten
	4	Reserviert, nicht belegen	
	5	M	Masse
	6	Reserviert, nicht belegen	
:•	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	9	Reserviert, nicht belegen	
Steckertyp	9-poliger SUB-D-Stecker		

Merkmale

Die maximale Datenrate beträgt:

- 120 kBaud bei einer Lastkapazität von 1,0 nF
- 20 kBaud bei einer Lastkapazität von 2,5 nF

7.3.2.3 X23 HTL-/TTL-/SSI-Geberschnittstelle

Tabelle 7-3 X23 HTL-/TTL-/SSI-Geberschnittstelle

	Pin	Signalname	Technische Angaben
	1	+Temp	KTY- bzw. PTC-Eingang
	2	SSI_CLK	SSI-Clock positiv
	3	SSI_XCLK	SSI-Clock negativ
15 0	4	P-Encoder 5 V / 24 V	Geberversorgung
	5	P-Encoder 5 V / 24 V	
	6	P_Sense	Sense-Eingang Geberversorgung
	7	M	Masse Geberversorgung
	8	M (-Temp)	Masse für KTY bzw. PTC
	9	M_Sense	Masse Sense-Eingang
	10	RP	R-Spur positiv
	11	RN	R-Spur negativ
	12	BN	B-Spur negativ
	13	BP	B-Spur positiv
	14	AN_SSI_XDAT	A-Spur negativ / SSI-Daten negativ
	15	AP_SSI_DAT	A-Spur positiv / SSI-Daten positiv
Steckertyp	eckertyp 15-polige SUB-D-Buchse		
Messstrom über Temperatursensoranschluss: 2 mA			

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

• Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Hinweis

Es gibt zwei Möglichkeiten den Temperatursensor anzuschließen:

- 1. Über X120, Klemme 1 und 2
- 2. Über X23, Pin 1 und 8

Anschließbare Geber

Hinweis

Einsatz bipolarer und unipolarer Geber

Setzen Sie bipolare Geber ein.

Bei Verwendung von unipolaren Gebern können die nicht verwendeten negativen Spursignale wahlweise angeschlossen oder mit Masse verbunden werden. Dabei ergeben sich jeweils unterschiedliche Schaltschwellen.

Tabelle 7-4 Spezifikation anschließbarer Messsysteme

Parameter	Bezeichnung	Schwelle	Min.	Тур	Max.	Einheit
Zulässige Signalpegel im Modus bipolar¹); (TTL, SSI, HTL bipolar an X23)²)³)	U _{diff}		2,0		Vcc	٧
Zulässige Signalfrequenz	fs		-		500	kHz
Erforderlicher Flankenabstand	t _{min}		100		-	ns
Zulässiger Nullimpuls (mit T _s = 1/f _s)	Länge		1⁄₄ ⋅ T _s		3⁄4 ⋅ T _s	
	Lage der Impulsmitte		50	135	220	Grad
Schaltschwelle im Modus unipolar1)	U(Schalt)	Hoch ⁴⁾	8,4	10,6	13,1	V
und Signale AN_SSI_XDAT, BN, RN an X23 mit M_Encoder verbunden		Niedrig ⁴⁾	3,5	4,8	6,3	V
Schaltschwellen im Modus unipolar	U(Schalt)	Hoch ⁴⁾	9	11,3	13,8	٧
(siehe SINAMICS S120/S150 Listenhandbuch) und Signale AN_SSI_XDAT, BN, RN an X23 nicht angeschlossen		Niedrig ⁴⁾	5,9	7,9	10,2	V

¹⁾ Siehe SINAMICS S120/S150 Listenhandbuch für die Einstellung des Modus

²⁾ Weitere Signalpegel gemäß RS422-Spezifikation

³⁾ Der absolute Pegel der Einzelsignale bewegt sich zwischen 0 V und Vcc des Messsystems

⁴⁾ Siehe SINAMICS S120/S150 Listenhandbuch für die Einstellung der Schwelle

Geberleitungen

Gebertyp	Maximale Geberleitungslänge in m
TTL ¹⁾	100
HTL unipolar ²⁾	100
HTL bipolar	300
SSI ³⁾	Bis 100 (abhängig von der Baudrate)

- 1) 100 m bei Remote Sense
- ²⁾ Aufgrund der robusteren Übertragungstechnik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.
- ³⁾ Leitungslänge siehe Diagramm "Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern"

Hinweis

Konfektionierte Leitung für 5-V-TTL-Geber

Verwenden Sie beim Einsatz eines 5-V-TTL-Gebers (6FX-Geber) die Anschlussleitung 6FX8002-2CR00-xxx.

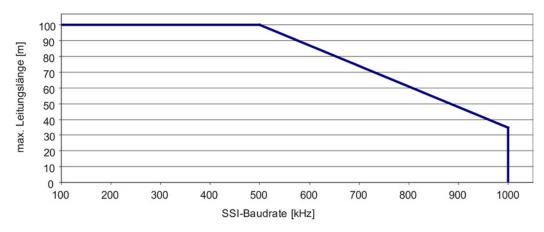


Bild 7-4 Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern

7.3.2.4 X100 DRIVE-CLiQ-Schnittstelle

Tabelle 7-5 X100 DRIVE-CLiQ-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	TXP	Sendedaten +
8 B	2	TXN	Sendedaten -
	3	RXP	Empfangsdaten +
	4	Reserviert, nicht belegen	-
	5	Reserviert, nicht belegen	-
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	-
	8	Reserviert, nicht belegen	-
	Α	+ (24 V)	Spannungsversorgung
	В	M (0 V)	Elektronikmasse
Steckertyp	DRIVE-CLiQ-Buchse		

Die Blindabdeckung für die DRIVE-CLiQ-Schnittstelle ist im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

7.3.2.5 X120 Digitaleingänge (fehlersicher)/EP-Klemme/Temperatursensor

Tabelle 7-6 X120 Fehlersichere Digitaleingänge/Temperatursensoreingang

	Klemme	Bezeichnung ¹⁾		Technische Angaben
	1	+Temp ²⁾		Temperatursensoren: KTY84–1C130 / PTC
	2	-Temp ²⁾		Messstrom über Temperatursensoranschluss: 2 mA
	3	DI 16		Spannung: - 3 30 V
	4	DI17+ / EP +24 V3 (Enable Pulses)	F-DI 0	Stromaufnahme typisch: 6 mA bei DC 24 V Eingangsverzögerung (typ): ²⁾
	5	DI17- / EP M3 (Enable Pulses)		bei "0" → "1": 50 μs bei "1" → "0": 150 μs
	6	DI 18		Pegel (einschl. Welligkeit): High-Pegel: 15 30 V
	7	DI 19+	F-DI 1	Low-Pegel: -3 5 V
	8	DI 19-		
	9	DI 20		Potenzialtrennung:
1101	10	DI 21+	F-DI 2	M1: Bezugspotenzial für DO16, DI16, DI18 und DI20 DI17-/DI19-/DI21-: Bezugspotenzial für DI17/DI19/
12	11	DI 21-		DI21
	12	M1		
Art: Federdruckkle	mme 1 (Seite /	M1)		

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

Fehlersichere Digitaleingänge

Ein F-DI besteht aus einem Digitaleingang und einem zweiten Digitaleingang, bei dem zusätzlich die Kathode des Optokopplers herausgeführt ist.

Temperatursensoreingang

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

• Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Weitere Informationen über den Temperatursensor finden Sie im SINAMICS S120 Inbetriebnahmehandbuch, Kapitel "Temperatursensoren bei SINAMICS-Komponenten".

Die maximale Leitungslänge zum Anschluss der Temperatursensoren beträgt 300 m. Die Leitungen sind geschirmt auszuführen. Für Leitungslängen >100 m sind Leitungen mit einem Querschnitt ≥1 mm² zu verwenden.

¹⁾ DI: Digitaleingang; DO: Digitalausgang; F-DI: Fehlersicherer Digitaleingang

Ansteuerung von Power Modules Chassis: +Temp/-Temp deaktiviert, Temperatureingang über Klemme X41 der Power Modules

³⁾ Reine Hardware-Verzögerung

7.3 Control Unit CU310-2 PN (PROFINET)

EP-Klemme

Die Pulssperrfunktion (EP) ist nur gegeben, wenn Integrated Basic Functions frei gegeben sind.

7.3.2.6 X121 Digitaleingänge/-ausgänge

Tabelle 7-7 X121 Digitaleingänge und bidirektionale Digitaleingänge/-ausgänge

	Klemme	Bezeichnung ¹⁾	Technische Angaben
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0	Klemme	Bezeichnung¹) DI 0 DI 1 DI 2 DI 3	Spannung: DC -3 30 V Stromaufnahme typisch: 6 mA bei 24 V Potenzialtrennung: über Optokoppler Pegel (einschl. Welligkeit) High-Pegel: 15 30 V Low-Pegel: -3 5 V (bei ≤ 2 mA) Eingangsverzögerung (typ.): bei "0" → "1": 50 μs bei "1" → "0": 150 μs
	5	M2	Verpolsicher Bezugspotenzial für Digitaleingänge DI 0 bis DI 3
	6	M	Bezugsmasse der Elektronik
	7 8 9 10 11 12	DI/DO 8 DI/DO 9 M DI/DO 10 DI/DO 11 M	Als Eingang: Spannung: DC -3 30 V Stromaufnahme typisch: 5 mA bei 24 V Pegel (einschl. Welligkeit) High-Pegel: 15 30 V Low-Pegel: -3 5 V (bei ≤ 2 mA) DI/DO 8, 9, 10 und 11 sind schnelle Eingänge²) Eingangsverzögerung (typ.): bei "0" → "1": 5 μs bei "1" → "0": 50 μs Als Ausgang: Spannung: DC 24 V Max. Laststrom pro Ausgang: 500 mA Ausgangsverzögerung (typ. / max.)³): bei "0" → "1": 150 μs / 400 μs bei "1" → "0": 75 μs / 100 μs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung Schaltfrequenz: bei ohmscher Last: max. 100 Hz
Art: Federdruckk	lemme 1 (Se	ite 441)	bei induktiver Last: max. 0,5 Hz bei Lampenlast: max. 10 Hz Maximale Lampenlast: 5 W

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

¹⁾ DI: Digitaleingang; DI/DO: bidirektionaler Digitaleingang/-ausgang

²⁾ Die schnellen Eingänge können als Messtastereingänge bzw. als Eingänge für den Nullmarkenersatz genutzt werden

³⁾ Angabe für: V_{cc} = 24 V; Last 48 Ω ; High ("1") = 90 % V_{out} ; Low ("0") = 10 % V_{out}

Hinweis

Ein offener Eingang wird als "Low" interpretiert.

Um die Digitaleingänge (DI0 ... DI3) zu nutzen, muss die Klemme M2 angeschlossen sein. Dies wird durch eine der folgenden Maßnahmen erreicht:

- Das Mitführen der Bezugsmasse der Digitaleingänge
- Eine Brücke zur Klemme M (Die Potenzialtrennung für diese Digitaleingänge wird damit aufgehoben.)

Hinweis

Um die Digitalausgänge zu nutzen, muss eine 24-V-Spannungsversorgung an die Klemme X124 angeschlossen werden.

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, werden die Digitalausgänge während dieser Zeit inaktiv geschaltet.

7.3.2.7 X124 Elektronikstromversorgung

Tabelle 7-8 X124 Elektronikstromversorgung

	Klemme	Bezeichnung	Technische Angaben		
	+	Elektronikstromversorgung	Spannung: DC 24 V (20,4 28,8 V)		
	+	Elektronikstromversorgung	Stromaufnahme: max. 1,0 A (ohne DRIVE-CLiQ und		
	М	Elektronikmasse	Digitalausgänge)		
+	M	Elektronikmasse	Max. Strom über die Brücke im Stecker: 20 A (15 A gemäß UL/CSA)		
Art: Schraubklem	•	•			
Max. anschließba	arer Querschn	itt: 2,5 mm²			

Die Schraubklemme ist mit einem Schlitzschraubendreher festzuschrauben.

Die maximal anschließbare Leitungslänge beträgt 10 m.

Wenn die 24-V-Versorgung nicht angeschlossen ist, können die digitalen Ausgänge der folgenden Schnittstellen nicht genutzt werden:

- X121 (DO8 bis DO11)
- X131 (DO12 bis DO 15)

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

Die Stromaufnahme erhöht sich um den Wert für die DRIVE-CLiQ-Teilnehmer und die Digitalausgänge.

7.3.2.8 X127 LAN (Ethernet)

Tabelle 7-9 X127 LAN (Ethernet)

	Pin	Signalname	Technische Angaben	
	1	TXP	Ethernet-Sendedaten +	
	2	TXN	Ethernet-Sendedaten -	
	3	RXP	Ethernet-Empfangsdaten +	
	4	Reserviert, nicht belegen	-	
▎▕▜▃█▋▏	5	Reserviert, nicht belegen	-	
	6	RXN	Ethernet-Empfangsdaten -	
	7	Reserviert, nicht belegen	-	
	8	Reserviert, nicht belegen	-	
Steckertyp	RJ45-Buchse	•		

Hinweis

Die Ethernet-Schnittstelle unterstützt Auto-MDI(X). Deshalb können sowohl gekreuzte als auch ungekreuzte Leitungen für den Anschluss von Geräten verwendet werden.

7.3.2.9 X130 Digitaleingang/(Fehlersicherer) Digitalausgang

Tabelle 7- 10 X130 Digitaleingang/Fehlersicherer Digitalausgang

	Klemme	me Bezeichnung 1)		Technische Angaben		
	1	DI 22+		Spannung: DC -3 30 V		
	2	DI 22-		Stromaufnahme typisch: 6 mA bei 24 V Potenzialtrennung: über Optokoppler		
				Pegel (einschl. Welligkeit) High-Pegel: 15 30 V Low-Pegel: -3 5 V (bei ≤ 2 mA)		
5 D 0 6 D 0 7 D				Eingangsverzögerung (typ.): bei "0" → "1": 50 μs bei "1" → "0": 150 μs Verpolsicher		
	3	M2		Bezugspotenzial für digitale Eingänge DI 0 bis DI 3		
	4	М		Bezugsmasse der Elektronik		
	5	M1		Bezugspotenzial für DI 16, DI 18, DI 20 und DO 16		
	6	24 V1		Spannungsversorgung für DO 16		
	7	DO 16+	F-DO 0 ²⁾	Spannung: DC 24 V		
	8	DO 16-		Max. Laststrom pro Ausgang.: 500 mA Ausgangsverzögerung (typ. / max.): bei "0" → "1": 150 μs / 400 μs bei "1" → "0": 75 μs / 100 μs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung		

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

Fehlersicherer Digitalausgang

Der F-DO besteht aus einem High-Side-Switch und einem Low-Side-Switch.

Bei Anwendungen ohne Safety Funktion kann der High-Side-Switch als zusätzlicher digitaler Ausgang verwendet werden. Der Low-Side-Switch steht nicht zur Verfügung.

Hinweis

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, wird der Digitalausgang während dieser Zeit inaktiv geschaltet.

¹⁾ DI: Digitaleingang / DO: Digitalausgang

²⁾ F-DO: Fehlersicherer Digitalausgang

7.3.2.10 X131 Digitaleingänge/-ausgänge und Analogeingang

Tabelle 7- 11 X131 Bidirektionale Digitaleingänge/-ausgänge und Analogeingang

2	DI/DO 12 DI/DO 13	Als Eingang: Spannung: DC -3 30 V
	M	Stromaufnahme typisch: 5 mA bei 24 V
	DI/DO 14	Pegel (einschl. Welligkeit) High-Pegel: 15 30 V
5	DI/DO 15	Low-Pegel: -3 5 V (bei ≤ 2 mA)
		DI/DO 12, 13, 14 und 15 sind schnelle Eingänge ²⁾ Eingangsverzögerung (typ.): bei "0" \rightarrow "1": 5 μ s bei "1" \rightarrow "0": 50 μ s
		Als Ausgang: Spannung: DC 24 V Max. Laststrom pro Ausgang.: 500 mA Ausgangsverzögerung (typ. / max.)³): bei "0" → "1": 150 µs / 400 µs bei "1" → "0": 75 µs / 100 µs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung
		Schaltfrequenz: bei ohmscher Last: max. 100 Hz bei induktiver Last: max. 0,5 Hz bei Lampenlast: max. 10 Hz Maximale Lampenlast: 5 W
6	M	Elektronikmasse
7	AI 0+	Der Analogeingang ist mithilfe des DIP-Schalters S5 zwischen
8	AI 0-	Strom- bzw. Spannungseingang umschaltbar. Gleichtaktbereich: ±12 V
	Als Spannungseingang: -10 10 V; R_i > 100 k Ω Auflösung: 12 Bit + Vorzeichen (bezogen auf max. auflösbaren Bereich -11 11 V)	
		Als Stromeingang: -20 20 mA; Ri = 250 Ω Auflösung: 11 Bit + Vorzeichen (bezogen auf -22 22 mA), Max. auflösbarer Bereich: -44 44 mA
	2 3 4 5	2 DI/DO 13 3 M 4 DI/DO 14 5 DI/DO 15

¹⁾ DI/DO: bidirektionaler Digitaleingang/-ausgang; AI: Analogeingang

Die maximal anschließbare Leitungslänge beträgt 30 m.

²⁾ Die schnellen Eingänge können als Messtastereingänge bzw. als Eingänge für den Nullmarkenersatz genutzt werden.

³⁾ Angabe für: V_{cc} = 24 V; Last 48 Ω ; High ("1") = 90 % V_{out} ; Low ("0") = 10 % V_{out}

7.3 Control Unit CU310-2 PN (PROFINET)

Hinweis

Zulässige Spannungswerte am Analogeingang

Um falsche Ergebnisse bei der Analog-Digital-Wandlung zu vermeiden, darf der Gleichtaktbereich nicht verletzt werden. Das bedeutet, dass die analogen Differenz-Spannungssignale gegen das Bezugspotenzial eine maximale Offsetspannung von ±15 V aufweisen dürfen.

Hinweis

Um die Digitalausgänge zu nutzen, muss eine 24-V-Versorgung an die Klemme X124 angeschlossen werden.

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, werden die Digitalausgänge während dieser Zeit inaktiv geschaltet.

7.3.2.11 X150 P1/P2 PROFINET

Tabelle 7- 12 X150 P1 und X150 P2 PROFINET

	Pin Signalname		Technische Angaben		
	1	RXP	Empfangsdaten +		
	2	RXN	Empfangsdaten -		
	3	TXP	Sendedaten +		
8	4	Reserviert, nicht belegen	-		
	5	Reserviert, nicht belegen	-		
	6	TXN	Sendedaten -		
	7	Reserviert, nicht belegen	-		
	8	Reserviert, nicht belegen	-		
Steckertyp:	RJ45-Buchse				
Datenrate:	100 Mbit oder 10 Mbit				

Hinweis

Die PROFINET-Schnittstellen unterstützen Auto-MDI(X). Deshalb können sowohl gekreuzte als auch ungekreuzte Leitungen für den Anschluss von Geräten verwendet werden.

Zu Diagnosezwecken sind beide PROFINET-Schnittstellen jeweils mit einer grünen und einer gelben LED ausgestattet. Die Tabelle zeigt die Statusinformation, die damit angezeigt werden.

Tabelle 7- 13 LED-Zustände an der X150 P1 / P2 PROFINET-Schnittstelle

LED	Farbe	Zustand	Beschreibung		
Link Port	-	Aus	Kein oder fehlerhafter Link		
	Grün	Dauerlicht	10 oder 100 MBit Link vorhanden		
Activity Port	-	Aus	Keine Aktivität		
	Gelb	Blinklicht	Senden oder Empfangen von Daten an Port x		

7.3 Control Unit CU310-2 PN (PROFINET)

7.3.2.12 Messbuchsen

Tabelle 7-14 Messbuchsen T0, T1, T2

	Buchse	Funktion	Technische Angaben				
T0 🗐 🔘 🔿 T1	T0	Messbuchse 0	Spannung: 0 V				
	T1	Messbuchse 1	Auflösung: 8 Bit				
	T2	Messbuchse 2	Laststrom: max. 3 mA Dauerkurzschlussfest				
T2 🗐 🔘 M	М	Masse	Bezugspotenzial ist Klemme M				
Die Messbuchsen sind nur für Büschelstecker mit einem Durchmesser von 2 mm geeignet.							

Hinweis

Die Messbuchsen unterstützen die Inbetriebnahme und Diagnose. Ein betriebsmäßiger Anschluss ist nicht zulässig.

7.3.2.13 S5 DIP-Schalter

Der DIP-Schalter S5 dient der Umschaltung des Analogeingangs zwischen Spannungseingang oder Stromeingang. Er befindet sich unter der Blindabdeckung (siehe CU310-2 PN Schnittstellenübersicht (Seite 266)).

Tabelle 7- 15 DIP-Schalter S5 - Umschaltung Spannung/Strom

	Schalter	Funktion
	S5.0	Umschaltung Spannung (U)/Strom (I)
U	S5.1	Nicht belegt

7.3.2.14 DIAG-Taster

Der DIAG-Taster ist für Servicefunktionen reserviert.

7.3.2.15 RESET-Taste

Durch Drücken der RESET-Taste startet die CU310-2 PN nach Ablauf eines voreingestellten Zeitintervalls neu. Gleichzeitig wird eine Datensicherung ausgelöst. Dadurch bleiben alle Einstellungen erhalten.

7.3.2.16 Speicherkarte

Stecken der Speicherkarte

Verwenden Sie für den Betrieb der CU310-2 PN nur Speicherkarten der Fa. Siemens.

Stecken Sie die Speicherkarte so in die CU310-2 PN, dass der Pfeil auf dem Etikett der Karte (links neben dem Siemens-Schriftzug) zu dem Pfeil weist, der sich auf dem Gerät befindet.

Bild 7-5 CU310-2 PN Speicherkarte stecken

Umgang mit der Speicherkarte bei defekter CU310-2 PN

Wenn Sie eine defekte CU310-2 PN an Siemens zurücksenden, entfernen Sie die Speicherkarte und bewahren sie sicher auf.

Zur Inbetriebnahme des Tauschgeräts stehen Ihnen damit sofort wieder alle gespeicherten Daten (Firmware, Lizenzen, Parameter) zur Verfügung.

7.3.3 Anschlussbeispiele

CU310-2 PN ohne Safety-Funktion

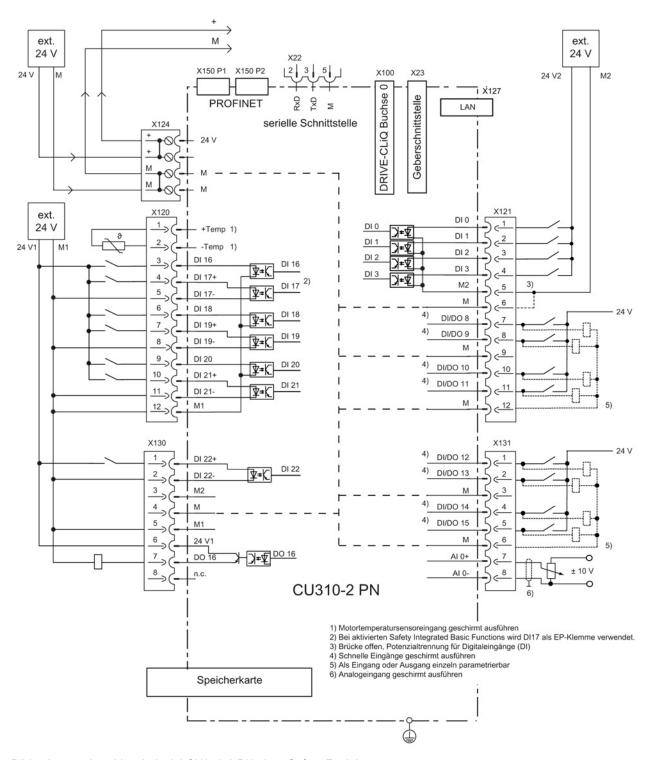


Bild 7-6 Anschlussbeispiel CU310-2 PN ohne Safety-Funktion

CU310-2 PN mit Safety-Funktion

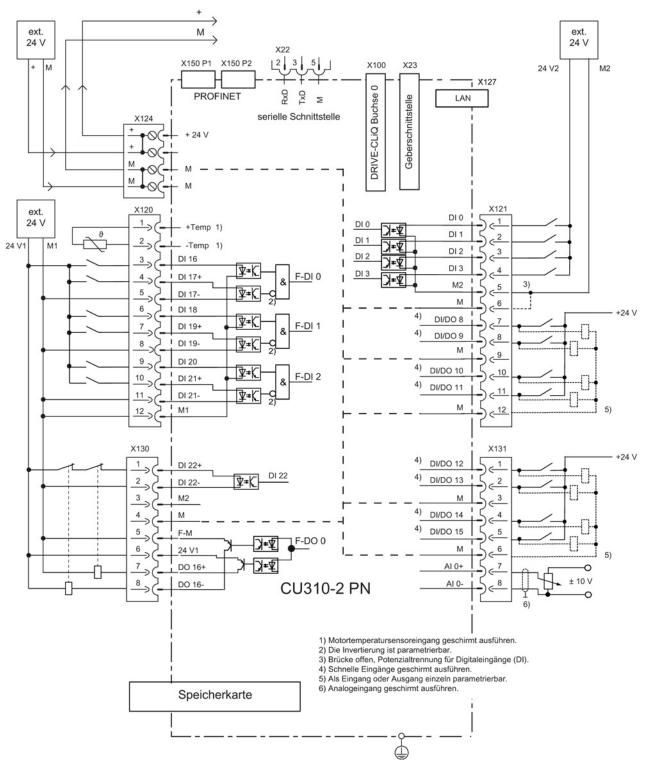


Bild 7-7 Anschlussbeispiel CU310-2 PN mit Safety-Funktion

7.3.4 Bedeutung der LEDs

7.3.4.1 Funktion der LEDs

Auf der Vorderseite des Gehäuses der CU310-2 PN befinden sich vier LEDs (siehe CU310-2 PN Schnittstellenübersicht (Seite 266)).

Tabelle 7- 16 LEDs

RDY	Ready
COM	Status der Feldbuskommunikation
OUT>5V	Geberstromversorgung > 5 V (TTL/HTL)
MOD	Betriebsmodus (reserviert)

Während des Hochlaufs der Control Unit sind die einzelnen LEDs (je nach Phase, die das System gerade durchläuft) aus- oder eingeschaltet. Im eingeschalteten Modus zeigt die Farbe der LEDs den Status der entsprechenden Hochlauf-Phase an (siehe Verhalten der LEDs während des Hochlaufs (Seite 287)).

Im Falle eines Fehlers wird der Hochlauf in der entsprechenden Phase beendet. Die eingeschalteten LEDs behalten die zu diesem Zeitpunkt angezeigte Farbe, sodass der Fehler anhand der Kombination von farbig leuchtenden und ausgeschalteten LEDs ermittelt werden kann.

Wenn die CU310-2 PN fehlerfrei hochgelaufen ist, erlöschen alle LEDs für kurze Zeit. Das System ist betriebsbereit, wenn die LED "RDY" permanent grün leuchtet.

Während des Betriebs werden alle LEDs über die geladene Software angesteuert (siehe Verhalten der LEDs im Betriebszustand (Seite 288)).

7.3.4.2 Verhalten der LEDs während des Hochlaufs

Tabelle 7- 17 Ladesoftware

	LE	:D	Zustand	Bemerkung	
RDY	СОМ	OUT>5V	MOD		
Orange	Orange	Orange	Orange	POWER ON	Alle LEDs leuchten für ca. 1 s
Rot	Rot	Aus	Aus	Hardware- Reset	Nach Betätigung des RESET- Tasters leuchten die LEDs ca. 1 s
Rot	Rot	Aus	Aus	BIOS loaded	-
Rot Blinklicht 2 Hz	Rot	Aus	Aus	BIOS error	Beim Laden des BIOS ist ein Fehler aufgetreten
Rot Blinklicht 2 Hz	Rot Blinklicht 2 Hz	Aus	Aus	File error	Speicherkarte nicht vorhanden oder fehlerhaft
					Software auf Speicherkarte nicht vorhanden oder fehlerhaft

Tabelle 7- 18 Firmware

	LE	D	Zustand	Bemerkung	
RDY	СОМ	OUT>5V	MOD		
Rot	Orange	Aus	Aus	Firmware loading	COM-LED blinkt ohne festen Blinktakt
Rot	Aus	Aus	Aus	Firmware loaded	-
Aus	Rot	Aus	Aus	Firmware- Check (no CRC error)	-
Rot Blinklicht 0,5 Hz	Rot Blinklicht 0,5 Hz	Aus	Aus	Firmware- Check (CRC error)	CRC ist fehlerhaft
Orange	Aus	Aus	Aus	Firmware Initialisation	-

7.3.4.3 Verhalten der LEDs im Betriebszustand

Tabelle 7- 19 Beschreibung der LEDs während des Betriebs der CU310-2 PN

LED	Farbe	Zustand	Beschreibung / Ursache	Abhilfe
RDY (READY)	-	Aus	Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.	Überprüfen Sie die Stromversorgung
	Grün	Dauerlicht	Das Gerät ist betriebsbereit. Zyklische DRIVE-CLiQ-Kommunikation findet statt.	-
		Blinklicht 0,5 Hz	Inbetriebnahme / Reset	-
		Blinklicht 2 Hz	Schreiben auf die Speicherkarte.	-
	Rot	Blinklicht 2 Hz	Allgemeine Fehler	Überprüfen Sie Parametrierung/ Konfiguration
	Rot / Grün	Blinklicht 0,5 Hz	Die Control Unit ist betriebsbereit, aber Software-Lizenzen fehlen.	Installieren Sie die fehlenden Lizenzen.
	Orange	Blinklicht 0,5 Hz	Das Firmware-Update der angeschlossenen DRIVE-CLiQ-Komponenten läuft.	-
		Blinklicht 2 Hz	Das Firmware-Update der DRIVE-CLiQ- Komponenten ist abgeschlossen. Auf POWER ON der entsprechenden Komponente wird gewartet.	Schalten Sie die Komponente ein.
	Grün / Orange oder	Blinklicht 2 Hz	Die Erkennung der Komponente über LED ist aktiviert (siehe SINAMICS S120/S150 Listenhandbuch).	-
	Rot /		Hinweis:	
	Orange		Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren ab.	

LED	Farbe	Zustand	Beschreibung / Ursache	Abhilfe
СОМ	-	Aus	Die zyklische Kommunikation hat (noch) nicht stattgefunden.	-
			Hinweis:	
			Der PROFIdrive ist kommunikationsbereit, wenn die Control Unit betriebsbereit ist (siehe LED: RDY).	
		Dauerlicht	Die zyklische Kommunikation findet statt.	-
	Grün	Blinklicht 0,5 Hz	Die zyklische Kommunikation findet noch nicht vollständig statt.	-
			Mögliche Ursachen:	
			Der Controller überträgt keine Sollwerte.	
			 Bei taktsynchronem Betrieb wird kein oder ein fehlerhaftes GC (Global Control) vom Controller übertragen 	
	Rot	Blinklicht 0,5 Hz	Der PROFIBUS-Master sendet eine fehlerhafte Parametrierung oder die Konfigurationsdatei ist fehlerhaft.	Passen Sie die Konfiguration zwischen Master / Controller und Control Unit an.
		Blinklicht 2 Hz	Die zyklische Buskommunikation wurde unterbrochen oder konnte nicht aufgebaut werden.	Beheben Sie die Störung der Buskommunikation.
MOD	-	Aus	-	-
OUT > 5 V	-	Aus	-	-
	Orange	Dauerlicht	Die Spannung der Elektronikstromversorgung für das Messsystem ist 24 V.1)	

Stellen Sie sicher, dass der angeschlossene Geber für eine Spannung von 24 V ausgelegt ist. Wenn ein 5-V-Geber an 24 V angeschlossen ist, kann die Geberelektronik zerstört werden.

7.3.5 Maßbild

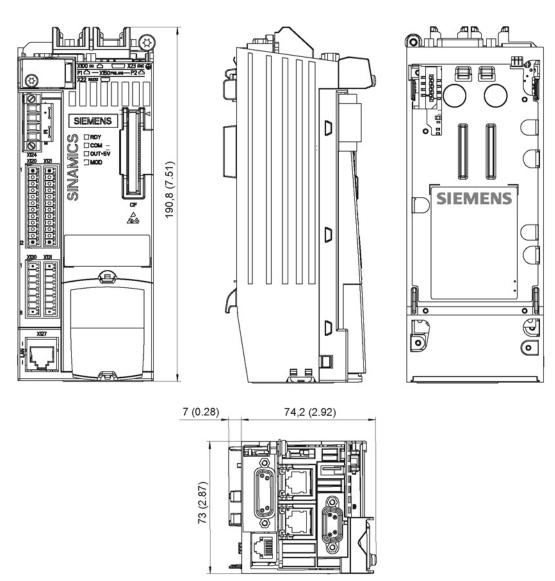


Bild 7-8 Maßbild Control Unit CU310-2 PN, alle Angaben in mm (inch)

7.3.6 Technische Daten

Tabelle 7- 20 Technische Daten CU310-2 PN

6SL3040-1LA01-0AA0	Einheit	Wert	
Elektronikstromversorgung			
Spannung Strom (ohne DRIVE-CLiQ und Digitalausgänge) Verlustleistung	V _{DC} A _{DC} W	DC 24 (20,4 28,8) 0,8 < 20	
Maximale DRIVE-CLiQ-Leitungslänge	m	100	
PE-/Masse-Anschluss	Am Gehäuse mit Schraube M4/3 Nm		
Reaktionszeit	Die Reaktionszeit bei den Digitaleingängen/-ausgängen ist abhä von der Auswertung. ¹⁾		
Gewicht	kg	0,95	

¹⁾ Informationen finden Sie im SINAMICS S120/S150 Listenhandbuch, Kapitel "Funktionspläne".

7.4.1 Beschreibung

Die Control Unit CU310-2 DP (PROFIBUS) ist eine Regelungsbaugruppe für Einzelantriebe, in der die Regelungs- und Steuerungsfunktionen des Antriebs realisiert werden. Sie steuert die Power Modules Blocksize über die PM-IF-Schnittstelle. Die Power Modules Chassis werden von der Control Unit über die DRIVE-CLiQ-Schnittstelle angesteuert.

Die CU310-2 DP ist Hot-Plug-fähig. Sie ist ab Firmware-Version 4.4 einsetzbar.

Die Tabelle zeigt eine Übersicht der Schnittstellen auf der CU310-2 DP.

Tabelle 7- 21 Schnittstellenübersicht der CU310-2 DP

Art	Anzahl
Potenzialgetrennte Digitaleingänge	11
Potentialgebundene Digitaleingänge / -ausgänge	8
Potenzialgetrennter Digitalausgang	1
Potenzialgebundener Analogeingang	1
DRIVE-CLiQ-Schnittstelle	1
PROFIBUS-Schnittstelle	1
Serielle Schnittstelle (RS232)	1
Geberschnittstelle (HTL/TTL/SSI)	1
LAN (Ethernet)	1
Temperatursensoreingang	1
EP-Klemme	1
Messbuchsen	3

7.4.2 Schnittstellenbeschreibung

7.4.2.1 Übersicht

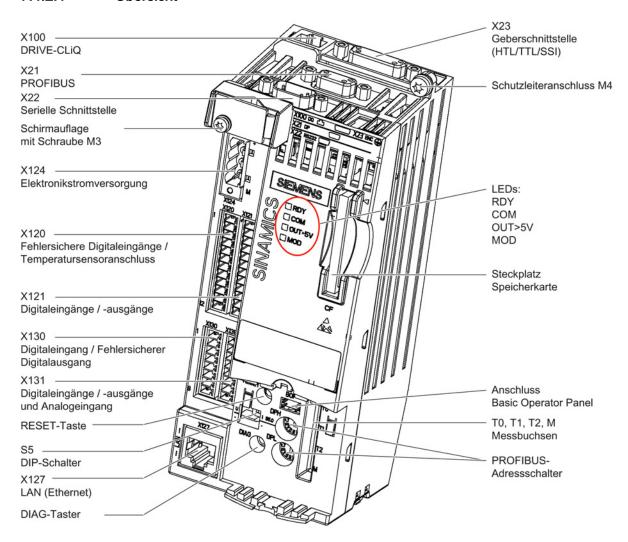


Bild 7-9 CU310-2 DP Schnittstellenübersicht

Auf der Rückseite der CU310-2 DP befindet sich die Schnittstelle zum Power Module.

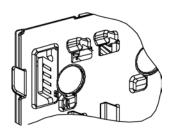


Bild 7-10 CU310-2 DP Schnittstelle zum Power Module (PM-IF)

7.4.2.2 X21 PROFIBUS

Die PROFIBUS-Schnittstelle X21 kann taktsynchron betrieben werden.

Tabelle 7-22 X21 PROFIBUS-Schnittstelle

	Pin	Signalname	Bedeutung	Bereich
	1	-	Nicht belegt	
	2 M24_SERV Versorgung Teleservice Mas		Versorgung Teleservice Masse	0 V
	3	RxD/TxD-P	Empfangs-/Sende-Daten-P (B)	RS485
	4	CNTR-P	Steuersignal	TTL
	5	DGND	PROFIBUS-Datenbezugspotenzial	
	6	VP	Versorgungsspannung Plus	5 V ± 10 %
	7	P24_SERV	Versorgung Teleservice, + (24 V)	24 V (20,4 28,8 V)
	8	RxD/TxD-N	Empfangs-/Sende-Daten-N (A)	RS485
	9	-	Nicht belegt	
Steckertyp	9-polige S	UB-D-Buchse		

Hinweis

Zur Ferndiagnose kann an die PROFIBUS-Schnittstelle X21 ein Teleservice-Adapter angeschlossen werden.

Die Stromversorgung für den Teleservice (Klemmen 2 und 7) ist mit 150 mA belastbar.

PROFIBUS-Stecker

Beim ersten und letzten Teilnehmer in einer Linie müssen die Abschlusswiderstände eingeschaltet werden, da sonst die Datenübertragung nicht ordnungsgemäß funktioniert.

Die Busabschlusswiderstände werden im Stecker aktiviert.

Der Leitungsschirm muss großflächig und beidseitig aufgelegt werden.

7.4.2.3 PROFIBUS-Adressschalter

Die PROFIBUS-Adresse der CU310-2 DP wird hexadezimal über zwei Drehcodierschalter eingestellt.

Einstellbar sind Werte zwischen 0_{dez} (00_{hex}) und 127_{dez} (7F_{hex}).

Am oberen Drehcodierschalter (H) wird der Hexadezimalwert für 16¹ und am unteren Drehcodierschalter (L) der Hexadezimalwert für 16⁰ gewählt.

Tabelle 7- 23 PROFIBUS-Adress-Schalter

Drehcodierschalter	Wertigkeit	Beispiele				
		21 _{dez}	35 _{dez}	126 _{dez}		
		15 _{hex}	23 _{hex}	7E _{hex}		
DP H	16 ¹ = 16	1	2	7		
DP L	160 = 1	5	3	E		

PROFIBUS-Adresse einstellen

Die Werkseinstellung der Drehcodierschalter ist O_{dez} (00_{hex}).

Die PROFIBUS-Adresse wird wie folgt eingestellt:

- 1. Über einen Parameter (siehe SINAMICS S120/S150 Listenhandbuch)
 - Um die Busadresse für einen PROFIBUS-Teilnehmer mit dem STARTER einzustellen, stellen Sie zuerst die Drehcodierschalter auf 0_{dez} (00_{hex}) bzw. 127_{dez} (7F_{hex}).
 - Anschließend stellen Sie mit dem Parameter die Adresse auf einen Wert von 1 bis 126.
- 2. Über PROFIBUS-Adress-Schalter
 - Die PROFIBUS-Adresse wird manuell mit den beiden Drehcodierschaltern auf einen Wert zwischen 1 und 126 eingestellt. In diesem Fall wird über den Parameter die Adresse nur ausgelesen.

Hinweis

Die Drehcodierschalter zur Einstellung der PROFIBUS-Adresse befinden sich unter der Blindabdeckung (siehe CU310-2 DP Schnittstellenübersicht (Seite 293)).

7.4.2.4 X22 serielle Schnittstelle (RS232)

Tabelle 7-24 X22 Serielle Schnittstelle (RS232)

	Pin	Signalname	Technische Angaben
	1	Reserviert, nicht belegen	
	2	XRXD_RS232	Empfangsdaten
	3	XTXD_RS232	Sendedaten
9	4	Reserviert, nicht belegen	
	5	M	Masse
	6	Reserviert, nicht belegen	
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	9	Reserviert, nicht belegen	
Steckertyp	9-poliger SUB-	L -D-Stecker	

Merkmale

Die maximale Datenrate beträgt:

- 120 kBaud bei einer Lastkapazität von 1,0 nF
- 20 kBaud bei einer Lastkapazität von 2,5 nF

7.4.2.5 X23 HTL-/TTL-/SSI-Geberschnittstelle

Tabelle 7- 25 X23 HTL-/TTL-/SSI-Geberschnittstelle

	Pin	Signalname	Technische Angaben
	1	+Temp	KTY- bzw. PTC-Eingang
	2	SSI_CLK	SSI-Clock positiv
	3	SSI_XCLK	SSI-Clock negativ
15 0	4	P-Encoder 5 V / 24 V	Geberversorgung
	5	P-Encoder 5 V / 24 V	
	6	P_Sense	Sense-Eingang Geberversorgung
	7	M	Masse Geberversorgung
000	8	M (-Temp)	Masse für KTY bzw. PTC
	9	M_Sense	Masse Sense-Eingang
	10	RP	R-Spur positiv
	11	RN	R-Spur negativ
	12	BN	B-Spur negativ
	13	BP	B-Spur positiv
	14	AN_SSI_XDAT	A-Spur negativ / SSI-Daten negativ
	15	AP_SSI_DAT	A-Spur positiv / SSI-Daten positiv
Steckertyp	15-polige SUB	-D-Buchse	
Messstrom über Tem	peratursensoran	schluss: 2 mA	

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

• Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Hinweis

Es gibt zwei Möglichkeiten den Temperatursensor anzuschließen:

- 1. Über X120, Klemme 1 und 2
- 2. Über X23, Pin 1 und 8

Anschließbare Geber

Hinweis

Einsatz bipolarer und unipolarer Geber

Setzen Sie bipolare Geber ein.

Bei Verwendung von unipolaren Gebern können die nicht verwendeten negativen Spursignale wahlweise angeschlossen oder mit Masse verbunden werden. Dabei ergeben sich jeweils unterschiedliche Schaltschwellen.

Tabelle 7-26 Spezifikation anschließbarer Messsysteme

Parameter	Bezeichnung	Schwelle	Min.	Тур	Max.	Einheit
Zulässige Signalpegel im Modus bipolar¹); (TTL, SSI, HTL bipolar an X23)²)³)	U _{diff}		2,0		Vcc	V
Zulässige Signalfrequenz	f _S		-		500	kHz
Erforderlicher Flankenabstand	t _{min}		100		-	ns
Zulässiger Nullimpuls (mit T _s = 1/f _s)	Länge		1⁄₄ ⋅ T _s		3⁄4 ⋅ T _s	
	Lage der Impulsmitte		50	135	220	Grad
Schaltschwelle im Modus unipolar1)	U(Schalt)	Hoch ⁴⁾	8,4	10,6	13,1	V
und Signale AN_SSI_XDAT, BN, RN an X23 mit M_Encoder verbunden		Niedrig ⁴⁾	3,5	4,8	6,3	V
Schaltschwellen im Modus unipolar	U(Schalt)	Hoch ⁴⁾	9	11,3	13,8	V
(siehe SINAMICS S120/S150 Listenhandbuch) und Signale AN_SSI_XDAT, BN, RN an X23 nicht angeschlossen		Niedrig ⁴⁾	5,9	7,9	10,2	V

¹⁾ Siehe SINAMICS S120/S150 Listenhandbuch für die Einstellung des Modus

²⁾ Weitere Signalpegel gemäß RS422-Spezifikation

³⁾ Der absolute Pegel der Einzelsignale bewegt sich zwischen 0 V und Vcc des Messsystems

⁴⁾ Siehe SINAMICS S120/S150 Listenhandbuch für die Einstellung der Schwelle

Geberleitungen

Gebertyp	Maximale Geberleitungslänge in m	
TTL ¹⁾	100	
HTL unipolar ²⁾	100	
HTL bipolar	300	
SSI ³⁾	Bis 100 (abhängig von der Baudrate)	

^{1) 100} m bei Remote Sense

- Aufgrund der robusteren Übertragungstechnik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.
- ³⁾ Leitungslänge siehe Diagramm "Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern"

Hinweis

Konfektionierte Leitung für 5-V-TTL-Geber

Verwenden Sie beim Einsatz eines 5-V-TTL-Gebers (6FX-Geber) die Anschlussleitung 6FX8002-2CR00-xxx.

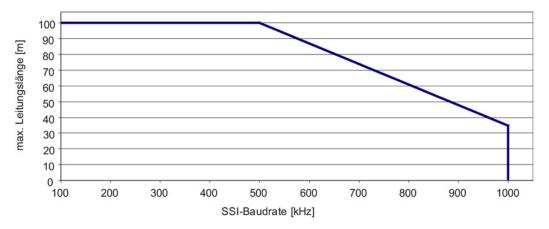


Bild 7-11 Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern

7.4.2.6 X100 DRIVE-CLiQ-Schnittstelle

Tabelle 7-27 X100 DRIVE-CLiQ-Schnittstelle

	Pin	Signalname	Technische Angaben	
	1	TXP	Sendedaten +	
。 □ □ □ B	2	TXN	Sendedaten -	
	3	RXP	Empfangsdaten +	
	4	Reserviert, nicht belegen	-	
	5	Reserviert, nicht belegen	-	
	6	RXN	Empfangsdaten -	
	7	Reserviert, nicht belegen	-	
	8	Reserviert, nicht belegen	-	
	Α	+ (24 V)	Spannungsversorgung	
	В	M (0 V)	Elektronikmasse	
Steckertyp	DRIVE-CLiQ-Buchse			

Die Blindabdeckung für die DRIVE-CLiQ-Schnittstelle ist im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

7.4.2.7 X120 Digitaleingänge (fehlersicher)/EP-Klemme/Temperatursensor

Tabelle 7- 28 X120 Fehlersichere Digitaleingänge/Temperatursensoreingang

	Klemme	Bezeichnung ¹⁾		Technische Angaben
	1	1 +Temp ²⁾ 2 -Temp ²⁾		Temperatursensoren: KTY84–1C130 / PTC
	2			Messstrom über Temperatursensoranschluss: 2 mA
	3	DI 16		Spannung: - 3 30 V
3	4	DI17+ / EP +24 V3 (Enable Pulses)	F-DI 0	Stromaufnahme typisch: 6 mA bei DC 24 V Eingangsverzögerung (typ): ²⁾ bei "0" → "1": 50 µs bei "1" → "0": 150 µs Pegel (einschl. Welligkeit): High-Pegel: 15 30 V
	5	DI17- / EP M3 (Enable Pulses)		
	6	DI 18	F-DI 1	
	7	DI 19+		Low-Pegel: -3 5 V
	8	DI 19-		
	9	DI 20		Potenzialtrennung:
	10	DI 21+	F-DI 2	M1: Bezugspotenzial für DO16, DI16, DI18 und DI20
12	11	DI 21-		DI17-/DI19-/DI21-: Bezugspotenzial für DI17/DI19/ DI21
	12	M1		
Art: Federdruckkle	mme 1 (Seite 4	l41)		

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

Fehlersichere Digitaleingänge

Ein F-DI besteht aus einem Digitaleingang und einem zweiten Digitaleingang, bei dem zusätzlich die Kathode des Optokopplers herausgeführt ist.

Temperatursensoreingang

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

• Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Weitere Informationen über den Temperatursensor finden Sie im SINAMICS S120 Inbetriebnahmehandbuch, Kapitel "Temperatursensoren bei SINAMICS-Komponenten".

Die maximale Leitungslänge zum Anschluss der Temperatursensoren beträgt 300 m. Die Leitungen sind geschirmt auszuführen. Für Leitungslängen >100 m sind Leitungen mit einem Querschnitt ≥1 mm² zu verwenden.

¹⁾ DI: Digitaleingang; DO: Digitalausgang; F-DI: Fehlersicherer Digitaleingang

²⁾ Ansteuerung von Power Modules Chassis: +Temp/-Temp deaktiviert, Temperatureingang über Klemme X41 der Power Modules

³⁾ Reine Hardware-Verzögerung

EP-Klemme

Die Pulssperrfunktion (EP) ist nur gegeben, wenn Integrated Basic Functions frei gegeben sind.

7.4.2.8 X121 Digitaleingänge/-ausgänge

Tabelle 7-29 X121 Digitaleingänge und bidirektionale Digitaleingänge/-ausgänge

	Klemme	Bezeichnung ¹⁾	Technische Angaben
	1	DI 0	Spannung: DC -3 30 V
	2	DI 1	Stromaufnahme typisch: 6 mA bei 24 V Potenzialtrennung: über Optokoppler
	3	DI 2	Pegel (einschl. Welligkeit)
3 0 4 0	4	DI 3	High-Pegel: 15 30 V Low-Pegel: -3 5 V (bei ≤ 2 mA)
5 D 0 C 6 D 0 C 7 D 0 C 8 D 0 C 9 D			Eingangsverzögerung (typ.): bei "0" → "1": 50 μs bei "1" → "0": 150 μs Verpolsicher
	5	M2	Bezugspotenzial für Digitaleingänge DI 0 bis DI 3
	6	М	Bezugsmasse der Elektronik
	7	DI/DO 8	Als Eingang:
12	8	DI/DO 9	Spannung: DC -3 30 V
	9	М	Stromaufnahme typisch: 5 mA bei 24 V
	10	DI/DO 10	Pegel (einschl. Welligkeit) High-Pegel: 15 30 V
	11	DI/DO 11	Low-Pegel: -3 5 V (bei ≤ 2 mA)
	12	М	DI/DO 8, 9, 10 und 11 sind schnelle Eingänge²) Eingangsverzögerung (typ.): bei "0" → "1": 5 μs bei "1" → "0": 50 μs
			Als Ausgang: Spannung: DC 24 V Max. Laststrom pro Ausgang: 500 mA Ausgangsverzögerung (typ. / max.)³): bei "0" → "1": 150 µs / 400 µs bei "1" → "0": 75 µs / 100 µs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung Schaltfrequenz: bei ohmscher Last: max. 100 Hz bei induktiver Last: max. 0,5 Hz bei Lampenlast: max. 10 Hz Maximale Lampenlast: 5 W

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

¹⁾ DI: Digitaleingang; DI/DO: bidirektionaler Digitaleingang/-ausgang

²⁾ Die schnellen Eingänge können als Messtastereingänge bzw. als Eingänge für den Nullmarkenersatz genutzt werden

³⁾ Angabe für: V_{cc} = 24 V; Last 48 Ω ; High ("1") = 90 % V_{out} ; Low ("0") = 10 % V_{out}

Hinweis

Ein offener Eingang wird als "Low" interpretiert.

Um die Digitaleingänge (DI0 ... DI3) zu nutzen, muss die Klemme M2 angeschlossen sein. Dies wird durch eine der folgenden Maßnahmen erreicht:

- Das Mitführen der Bezugsmasse der Digitaleingänge
- Eine Brücke zur Klemme M (Die Potenzialtrennung für diese Digitaleingänge wird damit aufgehoben.)

Hinweis

Um die Digitalausgänge zu nutzen, muss eine 24-V-Spannungsversorgung an die Klemme X124 angeschlossen werden.

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, werden die Digitalausgänge während dieser Zeit inaktiv geschaltet.

7.4.2.9 X124 Elektronikstromversorgung

Tabelle 7-30 X124 Elektronikstromversorgung

	Klemme	Bezeichnung	Technische Angaben		
	+	Elektronikstromversorgung	Spannung: DC 24 V (20,4 28,8 V)		
	+	Elektronikstromversorgung	Stromaufnahme: max. 1,0 A (ohne DRIVE-CLiQ und		
	M	Elektronikmasse	Digitalausgänge)		
+ 1	M	Elektronikmasse	Max. Strom über die Brücke im Stecker: 20 A (15 A gemäß UL/CSA)		
Art: Schraubklem Max. anschließb	•	•			

Die Schraubklemme ist mit einem Schlitzschraubendreher festzuschrauben.

Die maximal anschließbare Leitungslänge beträgt 10 m.

Wenn die 24-V-Versorgung nicht angeschlossen ist, können die digitalen Ausgänge der folgenden Schnittstellen nicht genutzt werden:

- X121 (DO8 bis DO11)
- X131 (DO12 bis DO 15)

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

Die Stromaufnahme erhöht sich um den Wert für die DRIVE-CLiQ-Teilnehmer und die Digitalausgänge.

7.4.2.10 X127 LAN (Ethernet)

Tabelle 7-31 X127 LAN (Ethernet)

	Pin	Signalname	Technische Angaben
	1	TXP	Ethernet-Sendedaten +
	2	TXN	Ethernet-Sendedaten -
	3	RXP	Ethernet-Empfangsdaten +
	4	Reserviert, nicht belegen	-
▎▕▜▃█▋▏	5	Reserviert, nicht belegen	-
	6	RXN	Ethernet-Empfangsdaten -
	7	Reserviert, nicht belegen	-
	8	Reserviert, nicht belegen	-
Steckertyp	RJ45-Buchse	·	

Hinweis

Die Ethernet-Schnittstelle unterstützt Auto-MDI(X). Deshalb können sowohl gekreuzte als auch ungekreuzte Leitungen für den Anschluss von Geräten verwendet werden.

7.4.2.11 X130 Digitaleingang/(Fehlersicherer) Digitalausgang

Tabelle 7- 32 X130 Digitaleingang/Fehlersicherer Digitalausgang

Klemme Bezeichnung 1)		iung ¹⁾	Technische Angaben	
1 2	DI 22+		Spannung: DC -3 30 V Stromaufnahme typisch: 6 mA bei 24 V	
			Potenzialtrennung: über Optokoppler Pegel (einschl. Welligkeit) High-Pegel: 15 30 V Low-Pegel: -3 5 V (bei ≤ 2 mA) Eingangsverzögerung (typ.): bei "0" → "1": 50 µs bei "1" → "0": 150 µs	
			Verpolsicher	
3	M2		Bezugspotenzial für digitale Eingänge DI 0 bis DI 3	
4	М		Bezugsmasse der Elektronik	
5	M1		Bezugspotenzial für DI 16, DI 18, DI 20 und DO 16	
6	24 V1		Spannungsversorgung für DO 16	
7	DO 16+	F-DO 0 ²⁾	Spannung: DC 24 V	
8	DO 16-		Max. Laststrom pro Ausgang.: 500 mA Ausgangsverzögerung (typ. / max.): bei "0" → "1": 150 μs / 400 μs bei "1" → "0": 75 μs / 100 μs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung	

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

Fehlersicherer Digitalausgang

Der F-DO besteht aus einem High-Side-Switch und einem Low-Side-Switch.

Bei Anwendungen ohne Safety Funktion kann der High-Side-Switch als zusätzlicher digitaler Ausgang verwendet werden. Der Low-Side-Switch steht nicht zur Verfügung.

Hinweis

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, wird der Digitalausgang während dieser Zeit inaktiv geschaltet.

¹⁾ DI: Digitaleingang / DO: Digitalausgang

²⁾ F-DO: Fehlersicherer Digitalausgang

7.4.2.12 X131 Digitaleingänge/-ausgänge und Analogeingang

Tabelle 7- 33 X131 Bidirektionale Digitaleingänge/-ausgänge und Analogeingang

	Klemme	Bezeichnung ¹⁾	Technische Daten
	1	DI/DO 12	Als Eingang:
	2	DI/DO 13	Spannung: DC -3 30 V
	3	М	Stromaufnahme typisch: 5 mA bei 24 V
	4	DI/DO 14	Pegel (einschl. Welligkeit) High-Pegel: 15 30 V
	5	DI/DO 15	Low-Pegel: -3 5 V (bei ≤ 2 mA)
0 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			DI/DO 12, 13, 14 und 15 sind schnelle Eingänge ²⁾ Eingangsverzögerung (typ.): bei "0" \rightarrow "1": 5 μ s bei "1" \rightarrow "0": 50 μ s
			Als Ausgang: Spannung: DC 24 V Max. Laststrom pro Ausgang.: 500 mA Ausgangsverzögerung (typ. / max.)³): bei "0" → "1": 150 µs / 400 µs bei "1" → "0": 75 µs / 100 µs Kurzschluss-, erdschluss-, überlastfest Automatisches Wiedereinschalten nach Überlastabschaltung
			Schaltfrequenz: bei ohmscher Last: max. 100 Hz bei induktiver Last: max. 0,5 Hz bei Lampenlast: max. 10 Hz Maximale Lampenlast: 5 W
	6	М	Elektronikmasse
	7	AI 0+	Der Analogeingang ist mithilfe des DIP-Schalters S5 zwischen
	8	AI 0-	Strom- bzw. Spannungseingang umschaltbar.
			Gleichtaktbereich: ±12 V
			Als Spannungseingang: -10 10 V; R_i > 100 k Ω Auflösung: 12 Bit + Vorzeichen (bezogen auf max. auflösbaren Bereich -11 11 V)
			Als Stromeingang: -20 20 mA; Ri = 250 Ω Auflösung: 11 Bit + Vorzeichen (bezogen auf -22 22 mA), Max. auflösbarer Bereich: -44 44 mA

Art: Federdruckklemme 1 (Seite 441)

Max. anschließbarer Querschnitt: 1,5 mm²

Die maximal anschließbare Leitungslänge beträgt 30 m.

¹⁾ DI/DO: bidirektionaler Digitaleingang/-ausgang; AI: Analogeingang

²⁾ Die schnellen Eingänge können als Messtastereingänge bzw. als Eingänge für den Nullmarkenersatz genutzt werden.

³⁾ Angabe für: V_{cc} = 24 V; Last 48 Ω ; High ("1") = 90 % V_{out} ; Low ("0") = 10 % V_{out}

Hinweis

Zulässige Spannungswerte am Analogeingang

Um falsche Ergebnisse bei der Analog-Digital-Wandlung zu vermeiden, darf der Gleichtaktbereich nicht verletzt werden. Das bedeutet, dass die analogen Differenz-Spannungssignale gegen das Bezugspotenzial eine maximale Offsetspannung von ±15 V aufweisen dürfen.

Hinweis

Um die Digitalausgänge zu nutzen, muss eine 24-V-Versorgung an die Klemme X124 angeschlossen werden.

Wenn kurzzeitige Spannungsunterbrechungen an der 24-V-Versorgung auftreten, werden die Digitalausgänge während dieser Zeit inaktiv geschaltet.

7.4.2.13 Messbuchsen

Tabelle 7-34 Messbuchsen T0, T1, T2

	Buchse	Funktion	Technische Angaben			
	ТО	Messbuchse 0	Spannung: 0 V			
T0 4 6 11	T1	Messbuchse 1	Auflösung: 8 Bit			
	T2	Messbuchse 2	Laststrom: max. 3 mA Dauerkurzschlussfest			
T2 🗐 🔘 M	М	Masse	Bezugspotenzial ist Klemme M			
Die Messbuchsen sind nur für Büschelstecker mit einem Durchmesser von 2 mm geeignet.						

Hinweis

Die Messbuchsen unterstützen die Inbetriebnahme und Diagnose. Ein betriebsmäßiger Anschluss ist nicht zulässig.

7.4.2.14 S5 DIP-Schalter

Der DIP-Schalter S5 dient der Umschaltung des Analogeingangs zwischen Spannungseingang oder Stromeingang. Er befindet sich unter der Blindabdeckung (siehe CU310-2 PN Schnittstellenübersicht (Seite 266)).

Tabelle 7- 35 DIP-Schalter S5 - Umschaltung Spannung/Strom

	Schalter	Funktion
	S5.0	Umschaltung Spannung (U)/Strom (I)
U	S5.1	Nicht belegt

7.4.2.15 DIAG-Taster

Der DIAG-Taster ist für Servicefunktionen reserviert.

7.4.2.16 RESET-Taste

Durch Drücken der RESET-Taste startet die CU310-2 DP nach Ablauf eines voreingestellten Zeitintervalls neu. Gleichzeitig wird eine Datensicherung ausgelöst. Dadurch bleiben alle Einstellungen erhalten.

7.4.2.17 Speicherkarte

Stecken der Speicherkarte

Verwenden Sie für den Betrieb der CU310-2 DP nur Speicherkarten der Fa. Siemens.

Stecken Sie die Speicherkarte so in die CU310-2 DP, dass der Pfeil auf dem Etikett der Karte (links neben dem Siemens-Schriftzug) zu dem Pfeil weist, der sich auf dem Gerät befindet.

Bild 7-12 CU310-2 DP Speicherkarte stecken

Umgang mit der Speicherkarte bei defekter CU310-2 DP

Wenn Sie eine defekte CU310-2 DP an Siemens zurücksenden, entfernen Sie die Speicherkarte und bewahren sie sicher auf.

Zur Inbetriebnahme des Tauschgeräts stehen Ihnen damit sofort wieder alle gespeicherten Daten (Firmware, Lizenzen, Parameter) zur Verfügung.

7.4.3 Anschlussbeispiele

CU310-2 DP ohne Safety-Funktion

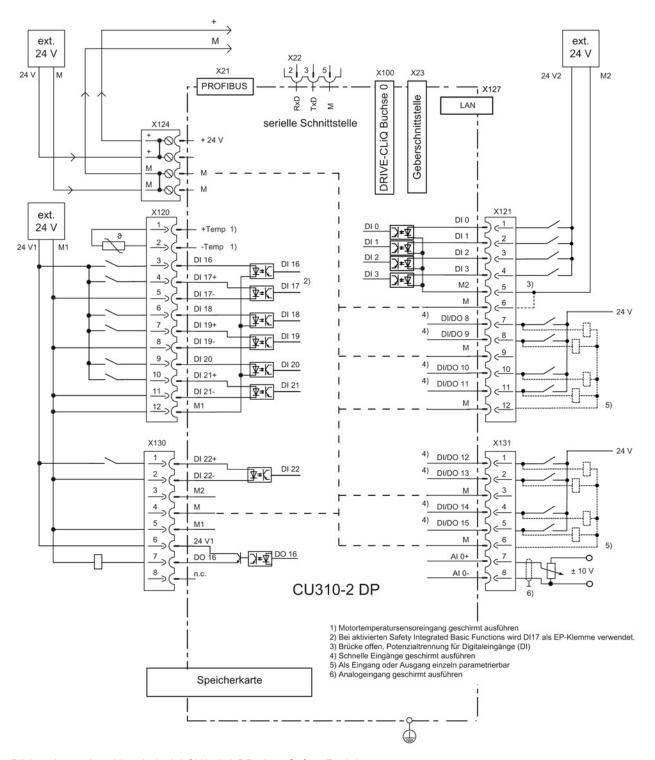


Bild 7-13 Anschlussbeispiel CU310-2 DP ohne Safety-Funktion

CU310-2 DP mit Safety-Funktion

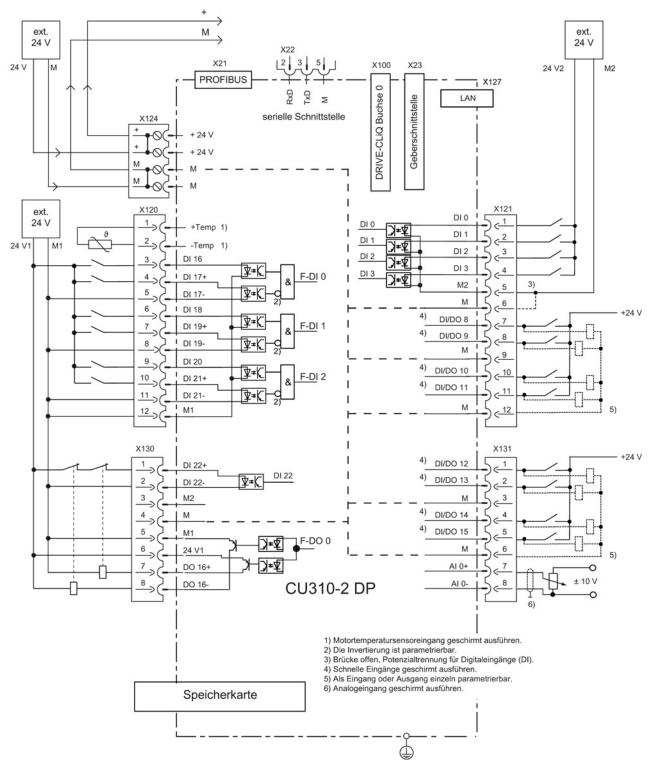


Bild 7-14 Anschlussbeispiel CU310-2 DP mit Safety-Funktion

7.4.4 Bedeutung der LEDs

7.4.4.1 Funktion der LEDs

Auf der Vorderseite des Gehäuses der CU310-2 DP befinden sich vier LEDs (siehe CU310-2 DP Schnittstellenübersicht (Seite 293)).

Tabelle 7-36 LEDs

RDY	Ready
COM	Status der Feldbuskommunikation
OUT>5V	Geberstromversorgung > 5 V (TTL/HTL)
MOD	Betriebsmodus (reserviert)

Während des Hochlaufs der Control Unit sind die einzelnen LEDs (je nach Phase, die das System gerade durchläuft) aus- oder eingeschaltet. Im eingeschalteten Modus zeigt die Farbe der LEDs den Status der entsprechenden Hochlauf-Phase an (siehe LED-Anzeige während des Hochlaufs (Seite 315)).

Im Falle eines Fehlers wird der Hochlauf in der entsprechenden Phase beendet. Die eingeschalteten LEDs behalten die zu diesem Zeitpunkt angezeigte Farbe, sodass der Fehler anhand der Kombination von farbig leuchtenden und ausgeschalteten LEDs ermittelt werden kann.

Wenn die CU310-2 DP fehlerfrei hochgelaufen ist, erlöschen alle LEDs für kurze Zeit. Das System ist betriebsbereit, wenn die LED "RDY" permanent grün leuchtet.

Während des Betriebs werden alle LEDs über die geladene Software angesteuert (siehe Verhalten der LEDs im Betriebszustand (Seite 316)).

7.4.4.2 Verhalten der LEDs während des Hochlaufs

Tabelle 7-37 Ladesoftware

	LE	:D	Zustand	Bemerkung	
RDY	СОМ	OUT > 5V	MOD		
Orange	Orange	Orange	Orange	POWER ON	Alle LEDs leuchten für ca. 1 s
Rot	Rot	Aus	Aus	Hardware- Reset	Nach Betätigung des RESET- Tasters leuchten die LEDs ca. 1 s
Rot	Rot	Aus	Aus	BIOS loaded	-
Rot Blinklicht 2 Hz	Rot	Aus	Aus	BIOS error	Beim Laden des BIOS ist ein Fehler aufgetreten
Rot Blinklicht 2 Hz	Rot Blinklicht 2 Hz	Aus	Aus	File error	Speicherkarte nicht vorhanden oder fehlerhaft
					Software auf Speicherkarte nicht vorhanden oder fehlerhaft

Tabelle 7- 38 Firmware

	LE	D	Zustand	Bemerkung	
RDY	СОМ	OUT > 5V	MOD		
Rot	Orange	Aus	Aus	Firmware loading	COM-LED blinkt ohne festen Blinktakt
Rot	Aus	Aus	Aus	Firmware loaded	-
Aus	Rot	Aus	Aus	Firmware- Check (no CRC error)	-
Rot Blinklicht 0,5 Hz	Rot Blinklicht 0,5 Hz	Aus	Aus	Firmware- Check (CRC error)	CRC ist fehlerhaft
Orange	Aus	Aus	Aus	Firmware Initialisation	-

7.4.4.3 Verhalten der LEDs im Betriebszustand

Tabelle 7-39 Beschreibung der LEDs während des Betriebs der CU310-2 DP

LED	Farbe	Zustand	Beschreibung/Ursache	Abhilfe
RDY (READY)	-	Aus	Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.	Überprüfen Sie die Stromversorgung
	Grün	Dauerlicht	Das Gerät ist betriebsbereit. Zyklische DRIVE-CLiQ-Kommunikation findet statt.	-
		Blinklicht 0,5 Hz	Inbetriebnahme/Reset	-
		Blinklicht 2 Hz	Schreiben auf die Speicherkarte.	-
	Rot	Blinklicht 2 Hz	Allgemeine Fehler	Überprüfen Sie Parametrierung/ Konfiguration
	Rot / Grün	Blinklicht 0,5 Hz	Die Control Unit ist betriebsbereit, aber Software- Lizenzen fehlen.	Installieren Sie die fehlenden Lizenzen.
	Orange	Blinklicht 0,5 Hz	Das Firmware-Update der angeschlossenen DRIVE-CLiQ-Komponenten läuft.	-
		Blinklicht 2 Hz	Das Firmware-Update der DRIVE-CLiQ- Komponenten ist abgeschlossen. Auf POWER ON der entsprechenden Komponente wird gewartet.	Schalten Sie die Komponente ein.
	Grün / Orange oder Rot / Orange	Blinklicht 2 Hz	Die Erkennung der Komponente über LED ist aktiviert (siehe SINAMICS S120/S150 Listenhandbuch). Hinweis: Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren ab.	-
СОМ	-	Aus	Die zyklische Kommunikation hat (noch) nicht stattgefunden. Hinweis: Der PROFIdrive ist kommunikationsbereit, wenn die Control Unit betriebsbereit ist (siehe LED: RDY).	-
		Dauerlicht	Die zyklische Kommunikation findet statt.	-
	Grün	Blinklicht 0,5 Hz	Die zyklische Kommunikation findet noch nicht vollständig statt. Mögliche Ursachen: - Der Controller überträgt keine Sollwerte Bei taktsynchronem Betrieb wird kein oder ein fehlerhaftes GC (Global Control) vom Controller übertragen	-
	Rot	Blinklicht 0,5 Hz	Der PROFIBUS-Master sendet eine fehlerhafte Parametrierung oder die Konfigurationsdatei ist fehlerhaft.	Passen Sie die Konfiguration zwischen Master/Controller und Control Unit an.
		Blinklicht 2 Hz	Die zyklische Buskommunikation wurde unterbrochen oder konnte nicht aufgebaut werden.	Beheben Sie die Störung der Buskommunikation.

LED	Farbe	Zustand	Beschreibung/Ursache	Abhilfe
MOD	-	Aus	-	-
OUT > 5 V	-	Aus	-	-
	Orange	Dauerlicht	Die Spannung der Elektronikstromversorgung für das Messsystem ist 24 V.1)	

Stellen Sie sicher, dass der angeschlossene Geber für eine Spannung von 24 V ausgelegt ist. Wenn ein 5-V-Geber an 24 V angeschlossen ist, kann die Geberelektronik zerstört werden.

7.4.5 Maßbild

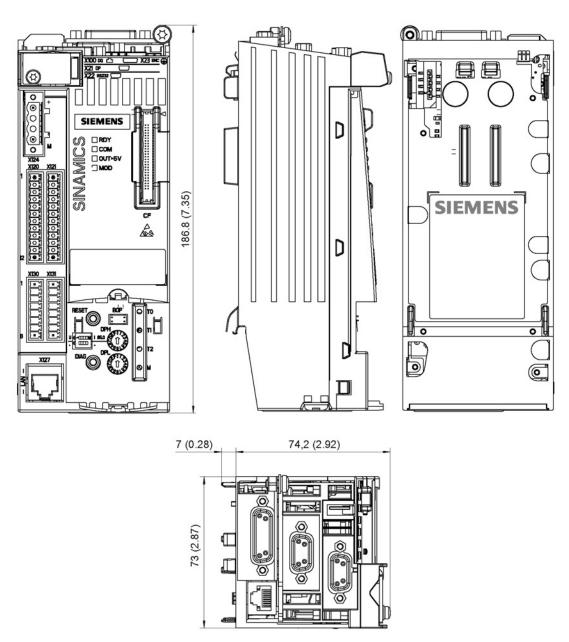


Bild 7-15 Maßbild Control Unit CU310-2 DP, alle Angaben in mm und (inch)

7.4.6 Technische Daten

Tabelle 7- 40 Technische Daten CU310-2 DP

6SL3040-1LA00-0AA0	Einheit	Wert	
Elektronikstromversorgung			
Spannung Strom (ohne DRIVE-CLiQ und Digitalausgänge) Verlustleistung	V _{DC} A _{DC} W	DC 24 (20,4 28,8) 0,8 < 20	
Maximale DRIVE-CLiQ-Leitungslänge	m	100	
PE-/Masse-Anschluss	Am Gehäuse mit Schraube M4/3 Nm		
Reaktionszeit	Die Reaktionszeit bei den Digitale von der Auswertung. ¹⁾	eingängen/-ausgängen ist abhängig	
Gewicht	kg	0,95	

¹⁾ Informationen finden Sie im SINAMICS S120/S150 Listenhandbuch, Kapitel "Funktionspläne".

7.5 Control Unit Adapter CUA31

7.5.1 Beschreibung

Der Control Unit Adapter CUA31 wird zur Anbindung eines Power Module Blocksize an einen bestehenden DC/AC-Verband mit einer übergeordneten Regelungsbaugruppe, z. B. einer CU320-2, verwendet. Da die Regelung extern erfolgt, ist zum Betrieb immer eine SINAMICS-, SIMOTION- oder SINUMERIK-Regelung für mehrere Achsen erforderlich.

Folgende Schnittstellen befinden sich auf dem Control Unit Adapter CUA31:

Tabelle 7-41 Schnittstellenübersicht des CUA31

Art	Anzahl
DRIVE-CLiQ-Schnittstelle	3
EP-Klemme/Temperatursensor	1
Power Module Interface (PM-IF)	1
24-V-Elektronikstromversorgung	1

7.5.2 Schnittstellenbeschreibung

7.5.2.1 Übersicht

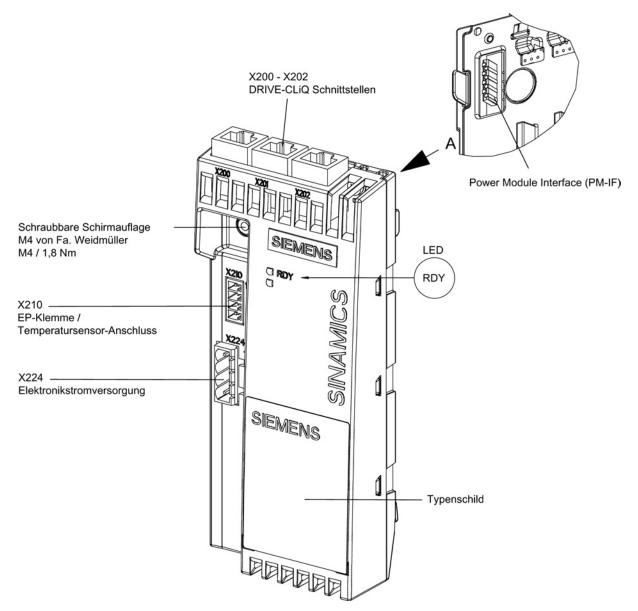


Bild 7-16 Schnittstellenübersicht CUA31

7.5.2.2 X200-X202 DRIVE-CLiQ-Schnittstellen

Tabelle 7- 42 X200-X202 DRIVE-CLiQ-Schnittstellen

	Pin	Signalname	Technische Angaben	
8 B A	1	TXP	Sendedaten +	
	2	TXN	Sendedaten -	
	3	RXP	Empfangsdaten +	
	4	Reserviert, nicht belegen		
	5	Reserviert, nicht belegen		
	6	RXN	Empfangsdaten -	
	7	Reserviert, nicht belegen		
	8	Reserviert, nicht belegen		
	Α	+ (24 V)	Spannungsversorgung	
	В	M (0 V)	Elektronikmasse	
Steckertyp	DRIVE-CLiQ-Buchse			

Die Blindabdeckungen für die DRIVE-CLiQ-Schnittstellen sind im Lieferumfang enthalten.

Blindabdeckung von Fa. Yamaichi, Bestellnummer: Y-ConAS-13

7.5.2.3 X210 EP-Klemme/Temperatursensor

Tabelle 7-43 X210 EP-Klemme/Temperatursensoreingang

	Klemme	Funktion	Technische Angaben	
1 2 3 4	1	+ Temp ¹⁾	Temperatursensor KTY84–1C130/PTC	
	2	- Temp ¹⁾		
	3	EP +24 V (Enable Pulses)	Anschluss-Spannung: DC 24 V (20,4 28,8 V)	
	4	EP M1 (Enable Pulses)	Stromaufnahme: 10 mA	
		, , , , , , , , , , , , , , , , , , ,	Potenzialgetrennter Eingang	
			Signallaufzeiten:	
			L → H: 100 μs	
			H → L: 1000 μs	
Art: Schraubklemme 1 (Seite 441)				
Max. anschließbarer Querschnitt 1,5 mm ²				

Weitere Informationen finden Sie im SINAMICS S120 Inbetriebnahmehandbuch, Kapitel "Temperatursensoren bei SINAMICS-Komponenten"

Temperatursensoreingang

Der Temperatursensor wird für Motoren benötigt, bei denen der Temperaturwert nicht durch DRIVE-CLiQ übertragen wird.

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Die maximale Leitungslänge zum Anschluss der Temperatursensoren beträgt 300 m. Die Leitungen sind geschirmt auszuführen. Für Leitungslängen >100 m sind Leitungen mit einem Querschnitt ≥1 mm² zu verwenden.

Funktion "Sicherer Halt"

Wenn die Funktion "Sicherer Halt" angewählt ist, muss zum Betrieb an die Klemmen 3 und 4 eine DC-24-V-Spannung angelegt werden. Bei Wegnahme wird eine Impulslöschung aktiviert.

/!\warnung

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

7.5.2.4 X224 Elektronikstromversorgung

Tabelle 7-44 X224 Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben	
+	+	Elektronikstromversorgung	Spannung: DC 24 V (20,4 28,8 V)	
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,8 A (ohne DRIVE-CLiQ)	
	M	Elektronikmasse	Max. Strom über die Brücke im Stecker: 20 A (15 A	
	M	Elektronikmasse	gemäß UL/CSA)	
Art: Schraubklemme 2 (Seite 441)				
Max. anschließbarer Querschnitt: 2,5 mm ²				

Die maximal anschließbare Leitungslänge beträgt 10 m.

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

Die Stromaufnahme erhöht sich um den Wert für den DRIVE-CLiQ-Teilnehmer.

7.5.3 Anschlussbeispiel

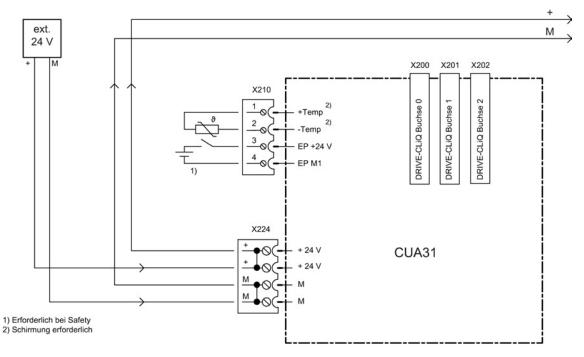


Bild 7-17 Anschlussbeispiel CUA31

7.5.4 Bedeutung der LED

Tabelle 7-45 Bedeutung der LED am Control Unit Adapter 31

LED	Farbe	Zustand	Beschreibung
RDY	Rot	Dauerlicht	Es liegt mindestens eine Störung von dieser Komponente an.
(READY)	Grün	Dauerlicht	Die Komponente ist betriebsbereit und zyklische DRIVE-CLiQ- Kommunikation findet statt.

Ursache und Behebung der Störungen

Informationen über die Ursache und Behebung von Störungen finden Sie im SINAMICS S120 Inbetriebnahmehandbuch.

7.5.5 Maßbild

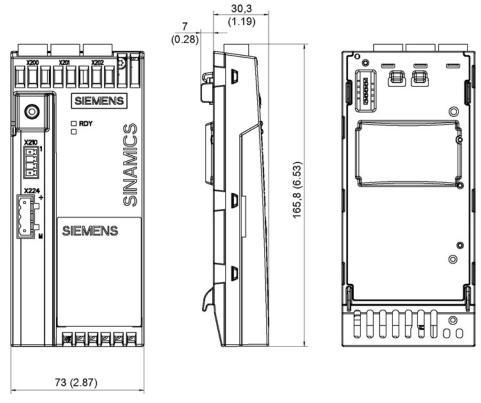


Bild 7-18 Maßbild Control Unit Adapter CUA31, alle Angaben in mm und (inch)

7.5 Control Unit Adapter CUA31

7.5.6 Technische Daten

Tabelle 7-46 Technische Daten CUA31

6SL3040-0PA00-0AA0 / 6SL3040-0PA00-0AA1	Einheit	Wert
Elektronikstromversorgung		
Spannung Strom (ohne DRIVE-CLiQ) Verlustleistung	V _{DC} A _{DC} W	DC 24 (20,4 28,8) 0,1 2,4
Maximale DRIVE-CLiQ-Leitungslänge CUA31 mit Bestellnummer 6SL3040-0PA00-0AA0 CUA31 ab Bestellnummer 6SL3040-0PA00-0AA1	m m	50 100
Gewicht	kg	0,31

7.6 Control Unit Adapter CUA32

7.6.1 Beschreibung

Der Control Unit Adapter CUA32 wird zur Anbindung eines Power Module Blocksize an einen bestehenden DC/AC-Verband mit einer übergeordneten Regelungsbaugruppe, z. B. einer CU320-2, verwendet. Da die Regelung extern erfolgt, ist zum Betrieb immer eine SINAMICS-, SIMOTION- oder SINUMERIK-Regelung für mehrere Achsen erforderlich.

Der CUA32 bietet eine zusätzliche Geberschnittstelle (HTL/TTL/SSI).

Folgende Schnittstellen befinden sich auf dem Control Unit Adapter CUA32:

Tabelle 7-47 Schnittstellenübersicht des CUA32

Art	Anzahl
DRIVE-CLiQ-Schnittstelle	3
EP-Klemme/Temperatursensor	1
Power Module Interface (PM-IF)	1
24-V-Elektronikstromversorgung	1
Geberschnittstelle (HTL/TTL/SSI¹))	1

¹⁾ An der CUA32 können ausschließlich SSI-Geber ohne Inkrementalspuren betrieben werden.

7.6.2 Schnittstellenbeschreibung

7.6.2.1 Übersicht

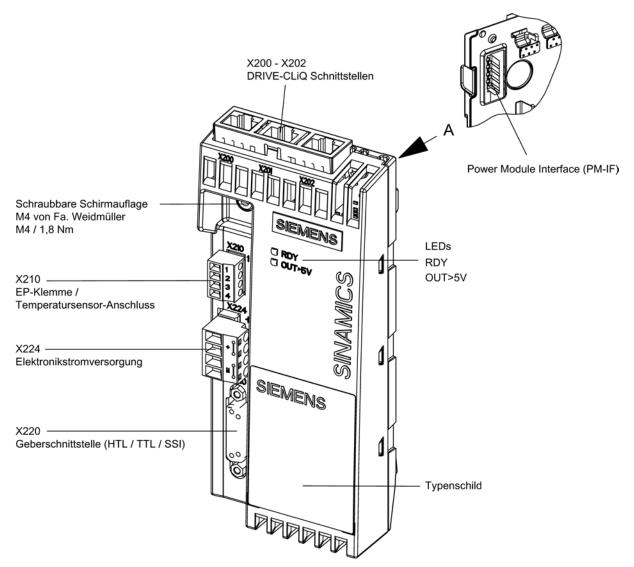


Bild 7-19 Schnittstellenübersicht CUA32

7.6.2.2 X200-X202 DRIVE-CLiQ-Schnittstellen

Tabelle 7- 48 X200-X202 DRIVE-CLiQ-Schnittstellen

	Pin	Signalname	Technische Angaben
	1	TXP	Sendedaten +
. 🗀 В	2	TXN	Sendedaten -
	3	RXP	Empfangsdaten +
	4	Reserviert, nicht belegen	
	5	Reserviert, nicht belegen	
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	Α	+ (24 V)	Spannungsversorgung
	В	M (0 V)	Elektronikmasse
Steckertyp	DRIVE-CLiQ-Buchse		

Die Blindabdeckungen für DRIVE-CLiQ-Schnittstellen sind im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

7.6.2.3 X210 EP-Klemme/Temperatursensor

Tabelle 7-49 X210 EP-Klemme/Temperatursensoreingang

	Klemme	Funktion	Technische Angaben		
	1	+ Temp ¹⁾	Temperatursensor KTY84–1C130/PTC		
	2	- Temp ¹⁾			
2	3	EP +24 V (Enable Pulses)	Anschluss-Spannung: DC 24 V (20,4 28,8 V)		
3	4	EP M1 (Enable Pulses)	Stromaufnahme: 10 mA		
4		,	Potenzialgetrennter Eingang		
			Signallaufzeiten:		
			L → H: 100 μs		
			H → L: 1000 μs		
Art: Schraubkle	Art: Schraubklemme 1 (Seite 441)				
Max. anschlief	3barer Quersch	nnitt 1,5 mm²			

Weitere Informationen finden Sie im SINAMICS S120 Inbetriebnahmehandbuch, Kapitel "Temperatursensoren bei SINAMICS-Komponenten"

Temperatursensoreingang

Der Temperatursensor wird für Motoren benötigt, bei denen der Temperaturwert nicht durch DRIVE-CLiQ übertragen wird.

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

Die maximale Leitungslänge zum Anschluss der Temperatursensoren beträgt 300 m. Die Leitungen sind geschirmt auszuführen. Für Leitungslängen >100 m sind Leitungen mit einem Querschnitt ≥1 mm² zu verwenden.

Funktion "Sicherer Halt"

Wenn die Funktion "Sicherer Halt" angewählt ist, muss zum Betrieb an die Klemmen 3 und 4 eine DC-24-V-Spannung angelegt werden. Bei Wegnahme wird eine Impulslöschung aktiviert.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

7.6.2.4 X220 HTL-/TTL-/SSI-Geberschnittstelle

Tabelle 7- 50 X220 HTL-/TTL-/SSI-Geberschnittstelle

	Pin	Signalname	Technische Angaben	
	1	+Temp	KTY- bzw. PTC-Eingang	
	2	SSI_CLK	SSI-Clock positiv	
	3	SSI_XCLK	SSI-Clock negativ	
15 0	4	P-Encoder 5 V / 24 V	Geberversorgung	
	5	P-Encoder 5 V / 24 V	Geberversorgung	
	6	P-Sense	Sense-Eingang Geberversorgung	
	7	M-Encoder (M)	Masse Geberversorgung	
	8	-Temp	Masse für KTY bzw. PTC	
	9	M-Sense	Masse Sense-Eingang	
	10	RP	R-Spur positiv	
	11	RN	R-Spur negativ	
	12	BN	B-Spur negativ	
	13	BP	B-Spur positiv	
	14	AN_SSI_XDAT	A-Spur negativ / SSI-Daten negativ	
	15	AP_SSI_DAT	A-Spur positiv / SSI-Daten positiv	
Steckertyp	15-poliger Sub-D-	r Sub-D-Stecker		

ACHTUNG

Überhitzungsgefahr des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen.

• Achten Sie darauf, den KTY-Temperatursensor unbedingt polrichtig anzuschließen.

7.6 Control Unit Adapter CUA32

Tabelle 7-51 Spezifikation anschließbarer Messsysteme

Parameter	Bezeichnung	Schwelle	Min.	Тур	Max.	Einheit
Signalpegel high (TTL bipolar an X220)	Undiff		2		5	V
Signalpegel low (TTL bipolar an X220)	ULdiff		-5		-2	V
Signalpegel high	U _H	Hoch	17		Vcc	V
(HTL unipolar)		Niedrig	10		Vcc	V
Signalpegel low	UL	Hoch	0		7	V
(HTL unipolar)		Niedrig	0		2	V
Signalpegel high (HTL bipolar)	UHdiff		3		Vcc	V
Signalpegel low (HTL bipolar)	U _{Ldiff}		-Vcc		-3	V
Signalpegel high (SSI bipolar an X220)	Undiff		2		5	V
Signalpegel low (SSI bipolar an X220)	U _{Ldiff}		-5		-2	V
Signalfrequenz	fs		-		500	kHz
Flankenabstand	t _{min}		100		-	ns
Nullimpuls (mit T _s = 1/f _s)	Länge		1/4 · Ts		3⁄4 ⋅ T _s	
	Lage der Impulsmitte		50	135	220	Grad

Hinweis

Der Einsatz von bipolaren Gebern wird empfohlen.

Bei Verwendung von unipolaren Gebern ist der 15-polige Sub-D-Stecker zu öffnen und es sind die nicht benutzten inversen Signale (AN Pin14, BN Pin12 und RN Pin11) mit Masse (Pin7) zu verbinden.

7.6.2.5 X224 Elektronikstromversorgung

Tabelle 7- 52 X224 Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben		
	+	Elektronikstromversorgung	Spannung: DC 24 V (20,4 28,8 V)		
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,8 A (ohne DRIVE-CLiQ und		
	M	Elektronikmasse	Geber) Max. Strom über die Brücke im Stecker: 20 A (15 A gemäß UL/CSA)		
∐ ≥	М	Elektronikmasse			
Art: Schraubklemme 2 (Seite 441) Max_anschließbarer Querschnitt: 2.5 mm²					

Die maximal anschließbare Leitungslänge beträgt 10 m.

wax. anschilesbarer Querschilitt. 2,5 mm-

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

Die Stromaufnahme erhöht sich um den Wert für den DRIVE-CLiQ-Teilnehmer und für den Geber.

7.6.3 Anschlussbeispiel

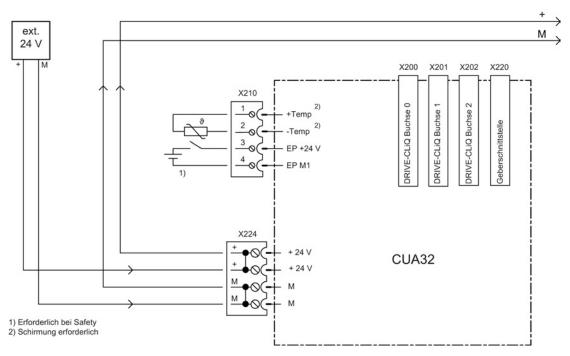


Bild 7-20 Anschlussbeispiel CUA32

7.6.4 Bedeutung der LEDs

Tabelle 7-53 Bedeutung der LEDs am Control Unit Adapter CUA32

LED	Farbe	Zustand	Beschreibung
RDY	Rot	Dauerlicht	Es liegt mindestens eine Störung von dieser Komponente an.
(READY)	Grün	Dauerlicht	Die Komponente ist betriebsbereit und zyklische DRIVE-CLiQ-Kommunikation findet statt.
	-	Aus	Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs. Spannungsversorgung: ≤5 V.
OUT > 5V		Dauerlicht	Elektronikstromversorgung für Messsystem ist vorhanden. Spannungsversorgung: >5 V.
	Orange		Achtung
			Es muss sichergestellt sein, dass der angeschlossene Geber mit 24-V Spannungsversorgung betrieben werden darf. Der Betrieb eines für 5-V-Anschluss vorgesehenen Gebers an 24 V kann zur Zerstörung der Geberelektronik führen.

Ursache und Behebung der Störungen

Informationen über die Ursache und Behebung von Störungen finden Sie im SINAMICS S120 Inbetriebnahmehandbuch.

7.6.5 Maßbild

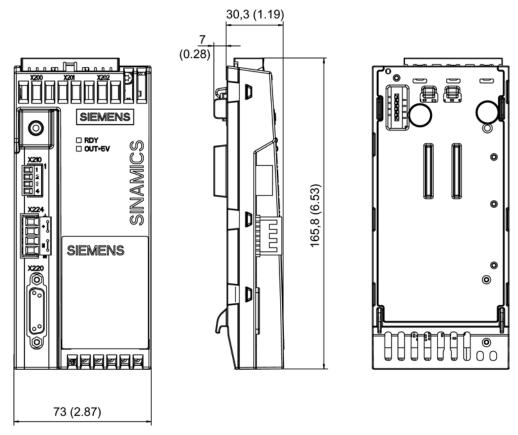


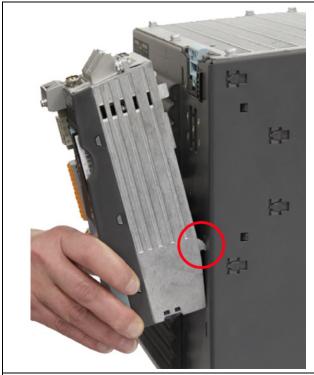
Bild 7-21 Maßbild Control Unit Adapter CUA32, alle Angaben in mm und (inch)

7.6.6 Technische Daten

Tabelle 7-54 Technische Daten CUA32

6SL3040-0PA01-0AA0	Einheit	Wert
Elektronikstromversorgung		
Spannung Strom (ohne DRIVE-CLiQ und Geber) Maximale Stromaufnahme des Gebers Verlustleistung	V _{DC} A _{DC} mA W	DC 24 (20,4 28,8) 0,11 400 2,6
Maximale DRIVE-CLiQ-Leitungslänge	m	100
Gewicht	kg	0,32

7.7 Montage der Control Units und Control Unit Adapter


Power Module Blocksize

Control Unit (CU310-2 PN / DP) und Control Unit Adapter (CUA31 / CUA32) sind an Power Modules Blocksize jeder Baugröße montierbar. Die Kommunikation zwischen den Geräten findet über die PM-IF-Schnittstelle statt.

Montage

- 1. Setzen Sie die Control Unit / den Control Unit Adapter auf das PM auf.
- 2. Drücken Sie die Control Unit / den Control Unit Adapter nach hinten bis sie / er in die blaue Verriegelungslasche einrastet.

Die Abbildungen zeigen die Montage von Control Unit / Control Unit Adapter am PM340 (Baugröße FSD) am Beispiel der CU310-2 PN.

Aufsetzen der CU310-2 PN auf das PM340

PM340 mit montierter CU310-2 PN

Demontage

- 1. Drücken Sie die blaue Verriegelungslasche nach unten (siehe Pfeil).
- 2. Nehmen Sie die Control Unit/den Control Unit Adapter nach vorn ab.

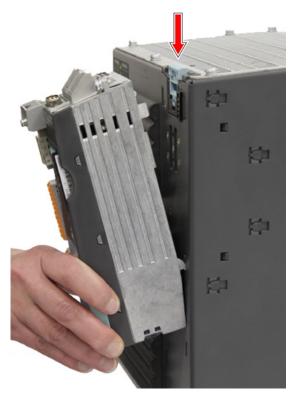


Bild 7-22 Demontage der CU310-2 PN vom PM340

Power Module Chassis

- Verbinden Sie die DRIVE-CLiQ-Schnittstellen von Power Module Chassis und Control Unit / Control Unit Adapter.
 Die DRIVE-CLiQ-Schnittstelle des Power Module Chassis befindet sich hinter dem Halteblech.
- 2. Montieren Sie die Control Unit / den Control Unit Adapter auf dem Halteblech.

7.8.1 Beschreibung

Das Basic Operator Panel BOP20 ist ein einfaches Bedienfeld mit sechs Tasten und einer Anzeigeeinheit mit Hintergrundbeleuchtung. Das BOP20 kann auf die SINAMICS Control Units CU310-2 DP und CU310-2 PN gesteckt und betrieben werden.

Mit dem BOP20 sind folgende Funktionen möglich:

- Eingabe von Parametern und Aktivierung von Funktionen
- Anzeige von Betriebszuständen, Parametern, Warnungen und Störungen

7.8.2 Schnittstellenbeschreibung

Bild 7-23 Basic Operator Panel BOP20

Übersicht der Anzeigen und Tasten

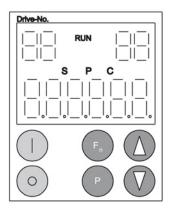


Bild 7-24 Übersicht der Anzeigen und Tasten

Tabelle 7-55 Anzeigen

Anzeige	Bedeutung
Oben links 2–stellig	Hier wird das aktive Antriebsobjekt des BOP angezeigt. Die Anzeigen und Tastenbetätigungen beziehen sich immer auf dieses Antriebsobjekt.
RUN	Leuchtet, wenn der angezeigte Antrieb im Zustand RUN (Betrieb) ist.
Oben rechts	In diesem Feld wird Folgendes angezeigt:
2-stellig	 Mehr als 6 Ziffern: noch vorhandene aber nicht sichtbare Zeichen (z. B. "r2" → 2 Zeichen rechts nicht sichtbar, "L1" → 1 Zeichen links nicht sichtbar)
	Störungen: Auswahl/Anzeige der anderen Antriebe mit Störungen
	Kennzeichnung von BICO-Eingängen (bi, ci)
	Kennzeichnung von BICO-Ausgängen (bo, co)
	Quellobjekt einer BICO-Verschaltung zu einem anderen Antriebsobjekt als dem Aktiven.
S	Leuchtet, wenn mindestens ein Parameter geändert und der Wert noch nicht in den nicht flüchtigen Speicher übernommen wurde.
Р	Leuchtet, wenn bei einem Parameter der Wert erst nach dem Drücken der Taste P wirksam wird.
С	Leuchtet, wenn mindestens ein Parameter geändert und die Berechnung zur konsistenten Datenhaltung noch nicht angestoßen wurde.
Unten 6-stellig	Anzeige von z. B. Parametern, Indizes, Störungen und Warnungen.

Tastatur des BOP20

Tabelle 7-56 Belegung der Tastatur des BOP20

Taste	Name	Bedeutung	
	EIN	Einschalten der Antriebe, für die der Befehl "EIN/AUS1", "AUS2" oder "AUS3" vom BOP kommen soll.	
0	AUS	Ausschalten der Antriebe, für welche die Befehle "EIN/AUS1", "AUS2" oder "AUS3" vom BOP kommen sollen.	
		Hinweis:	
		Die Wirksamkeit dieser Tasten kann über BICOParametrierung festgelegt werden (z. B. ist es möglich, über diese Tasten alle vorhandenen Achsen gleichzeitig zu steuern).	
		Das BOP-Steuerwort entspricht in seinem Aufbau dem PROFIBUS-Steuerwort.	
	Funktionen	Die Bedeutung dieser Tasten ist von der aktuellen Anzeige abhängig.	
FN		Hinweis:	
		Die Wirksamkeit dieser Taste zur Quittierung bei Störungen kann über BICO-Parametrierung festgelegt werden.	
Р	Parameter	Die Bedeutung dieser Tasten ist von der aktuellen Anzeige abhängig.	
Δ	Höher	Die Tasten sind abhängig von der aktuellen Anzeige und dienen zum Erhöhen oder Erniedrigen von Werten.	
7	Tiefer		

7.8.3 Montage

ACHTUNG

Beschädigung beim Einsetzen des BOP

Die Schnittstelle für das BOP20 an der CU310-2 kann beim Einsetzen des BOP20 beschädigt werden.

• Achten Sie darauf, das BOP20 gerade in die CU310-2 einzusetzen bzw. herauszuziehen und weder nach oben noch nach unten zu verkanten.

Montage

Die Abbildungen zeigen die Montage des Basic Operator Panel BOP20 an eine CU310-2.

 Entfernen Sie die Blindabdeckung, indem Sie die Rastnocken gleichzeitig zusammendrücken und die Abdeckung gerade nach vorn herausziehen. Drücken Sie die Rastnocken am BOP20 gleichzeitig zusammen und schieben Sie das BOP20 gerade in das Gehäuse der CU310-2, bis es hörbar einrastet.

CU310-2 mit montiertem BOP20.

Hinweis

Das BOP20 darf auch während des Betriebs auf die Control Unit gesteckt oder gezogen werden.

Demontage

- 1. Drücken Sie die Rastnocken am BOP20 gleichzeitig zusammen.
- 2. Halten Sie die Rastnocken gedrückt und ziehen Sie das BOP20 gerade nach vorn heraus.
- 3. Setzen Sie die Blindabdeckung ein.

Anzeige- und Bedienelemente des BOP20

Informationen zu den Anzeige- und Bedienelementen des BOP20 finden Sie im SINAMICS S120 Inbetriebnahmehandbuch.

Ergänzende Systemkomponenten und Gebersystemanbindung

8

8.1 Sensor Modules

8.1.1 Sicherheitshinweise für Sensor Modules Cabinet-Mounted

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag beim Trennen und Verbinden von Geberleitungen im Betrieb

Beim Trennen von Steckverbindungen im Betrieb können Lichtbögen zu schweren Verletzungen oder Tod führen.

 Trennen oder verbinden Sie die Geberleitungen zu Siemens-Motoren, die nicht ausdrücklich zum Trennen oder Verbinden im Betrieb frei gegeben sind, nur im spannungsfreien Zustand. Erfragen Sie beim Einsatz direkter Messsysteme (Fremdgeber) beim Hersteller, ob ein Trennen oder Verbinden unter Spannung zulässig ist.

ACHTUNG

Beschädigung beim Anschluss einer unzulässigen Anzahl an Gebersystemen

Falls mehr als die maximal zulässige Anzahl von Gebersystemen an ein Sensor Module angeschlossen wird, führt dies zu Schäden.

• Schließen Sie pro Sensor Module nur ein Gebersystem an.

ACHTUNG

Schäden durch Verwendung falscher DRIVE-CLiQ-Leitungen

Beim Einsatz falscher oder nicht frei gegebener DRIVE-CLiQ-Leitungen können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

 Verwenden Sie ausschließlich passende DRIVE-CLiQ-Leitungen, die von Siemens für den jeweiligen Anwendungsfall frei gegeben sind.

8.1 Sensor Modules

Hinweis

Verminderte Störfestigkeit durch Ausgleichsströme über die Elektronikmasse

Stellen Sie sicher, dass keine galvanische Verbindung zwischen dem Gebersystemgehäuse und den Signalleitungen sowie der Gebersystemelektronik besteht. Bei Nichtbeachtung kann das System möglicherweise die erforderliche Störfestigkeit nicht erreichen (Gefahr von Ausgleichsströmen über die Elektronikmasse).

Hinweis

Funktionspotenzialausgleich bei dezentralen DRIVE-CLiQ-Teilnehmern

Binden Sie alle Komponenten, die über DRIVE-CLiQ verbunden sind, in das Konzept zum Funktionspotenzialausgleich ein. Die Anbindung sollte vorzugsweise durch die Montage auf metallisch blanken Maschinen- und Anlagenteilen erfolgen, die alle potenzialmäßig untereinander verbunden sind.

Sie können alternativ den Potenzialausgleich auch durch einen Leiter (min. 6 mm²) vornehmen, der möglichst parallel zur DRIVE-CLiQ-Leitung verlegt werden sollte. Betroffen sind alle dezentralen DRIVE-CLiQ-Teilnehmer, z. B. SMCx.

Hinweis

Funktionsstörungen durch verschmutzte DRIVE-CLiQ-Schnittstellen

Die Verwendung verschmutzter DRIVE-CLiQ-Schnittstellen kann Funktionsstörungen im System hervorrufen.

 Verschließen Sie unbenutzte DRIVE-CLiQ-Schnittstellen mit den mitgelieferten Blindabdeckungen.

8.1.2 Sensor Module Cabinet-Mounted SMC10

8.1.2.1 Beschreibung

Das Sensor Module Cabinet-Mounted SMC10 wertet Gebersignale aus und sendet die Drehzahl, den Lageistwert, die Rotorlage und gegebenenfalls die Motortemperatur über DRIVE-CLiQ an die Control Unit.

Das SMC10 wird eingesetzt, um Gebersignale von Resolvern auszuwerten.

8.1.2.2 Schnittstellenbeschreibung

Übersicht

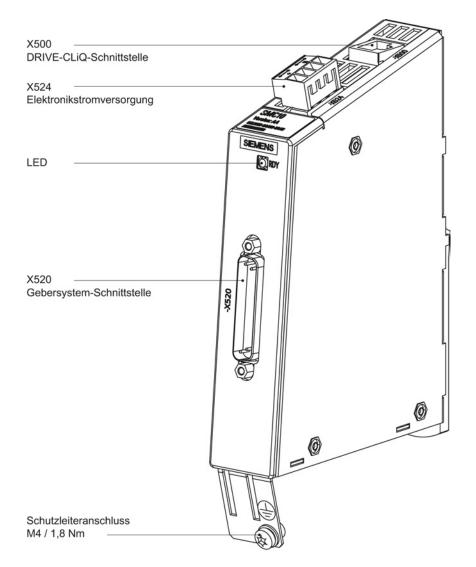


Bild 8-1 Schnittstellenübersicht SMC10

X500 DRIVE-CLiQ-Schnittstelle

Tabelle 8-1 X500: DRIVE-CLiQ-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	TXP	Sendedaten +
□ B	2	TXN	Sendedaten -
	3	RXP	Empfangsdaten +
	4	Reserviert, nicht belegen	
L'ELE A	5	Reserviert, nicht belegen	
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	Α	Reserviert, nicht belegen	
	В	M (0 V)	Elektronikmasse
Steckertyp	DRIVE-CLiQ-	Buchse	

Die Blindabdeckung für die DRIVE-CLiQ-Schnittstelle ist im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

X520 Gebersystem-Schnittstelle

Tabelle 8-2 X520: Gebersystem-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	Reserviert, nicht belegen	
	2	Reserviert, nicht belegen	
	3	S2	Resolversignal A (sin+)
• 25	4	S4	Inverses Resolversignal A (sin-)
::	5	Masse	Masse (für inneren Schirm)
	6	S1	Resolversignal B (cos+)
::	7	S3	Inverses Resolversignal B (cos-)
::	8	Masse	Masse (für inneren Schirm)
::	9	R1	Resolvererregung positiv
::	10	Reserviert, nicht belegen	
:•	11	R2	Resolvererregung negativ
	12	Reserviert, nicht belegen	
	13	+ Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY+) Temperatursensor KTY84-1C130/PTC
	14	Reserviert, nicht belegen	
	15	Reserviert, nicht belegen	
	16	Reserviert, nicht belegen	
	17	Reserviert, nicht belegen	
	18	Reserviert, nicht belegen	
	19	Reserviert, nicht belegen	
	20	Reserviert, nicht belegen	
	21	Reserviert, nicht belegen	
	22	Reserviert, nicht belegen	
	23	Reserviert, nicht belegen	
	24	Masse	Masse (für inneren Schirm)
	25	- Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY-) Temperatursensor KTY84-1C130/PTC
Steckertyp:	25-poliger	r SUB-D-Stecker	
Messstrom übe	r Temperatur	rsensoranschluss: 2 mA	

- 1) Genauigkeit der Temperaturmessung:
 - KTY: ±7 °C (inklusive Auswertung)
 - PTC: ±5 °C (inklusive Auswertung)

ACHTUNG

Beschädigung des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen. Die Überhitzung kann zu einem Schaden am Motor führen.

• Schließen Sie einen KTY-Temperatursensor polrichtig an.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

X524 Elektronikstromversorgung

Tabelle 8-3 X524: Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben
	+	Elektronikstromversorgung	Spannung: 24 V (20,4 28,8 V)
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,35 A
 +	М	Elektronikmasse	Max. Strom über die Brücke im Stecker:
 	М	Elektronikmasse	20 A (15 A gemäß UL/CSA)
A 1 O 1 11		444)	

Art: Schraubklemme 2 (Seite 441)

Max. anschließbarer Querschnitt: 2,5 mm²

Die maximal anschließbare Leitungslänge beträgt 10 m.

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

8.1.2.3 Bedeutung der LED

Tabelle 8-4 Bedeutung der LED am Sensor Module Cabinet-Mounted SMC10

LED	Farbe	Zustand	Beschreibung, Ursache	Abhilfe
RDY READY	-	Aus	Die Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.	_
	Grün	Dauerlicht	Die Komponente ist betriebsbereit. Zyklische DRIVE-CLiQ-Kommunikation findet statt.	_
	Orange	Dauerlicht	Die DRIVE-CLiQ-Kommunikation wird aufgebaut.	_
	Rot	Dauerlicht	Mindestens eine Störung dieser Komponente liegt an. Hinweis: Die LED wird unabhängig vom Umprojektieren der entsprechenden Meldungen angesteuert.	Beseitigen und quittieren Sie die Störung.
	Grün/Rot	Blinklicht 0,5 Hz	Der Firmware-Download wird durchgeführt.	-
		Blinklicht 2 Hz	Der Firmware-Download ist abgeschlossen. Auf POWER ON wird gewartet.	Führen Sie POWER ON durch.
	Grün/ Orange oder Rot/ Orange	Blinklicht	Erkennung der Komponente über LED ist aktiviert¹). Hinweis: Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren ab.	_

Für den Parameter zum Aktivieren der Erkennung der Komponente über LED siehe SINAMICS S120/S150 Listenhandbuch

Ursache und Behebung von Störungen

Weitere Informationen über die Ursache und Behebung von Störungen sind in folgenden Dokumenten dargestellt:

SINAMICS S120 Inbetriebnahmehandbuch (IH1)

SINAMICS S120/S150 Listenhandbuch (LH1)

8.1 Sensor Modules

8.1.2.4 Maßbild

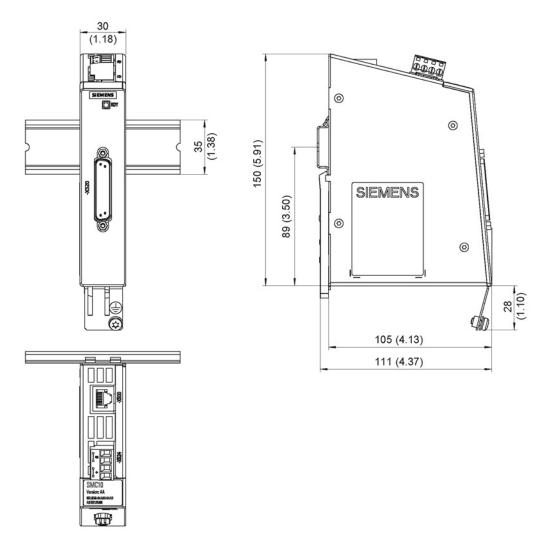
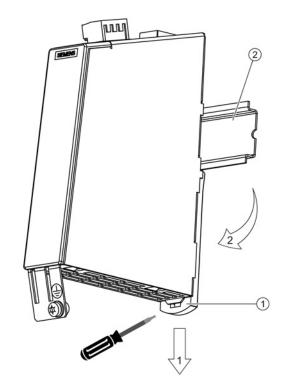


Bild 8-2 Maßbild Sensor Module Cabinet SMC10, alle Angaben in mm und (inch)


8.1.2.5 Montage

Montage

- 1. Neigen Sie die Komponente leicht nach hinten und setzen Sie sie mit den Haken auf die Hutschiene auf.
- 2. Schwenken Sie die Komponente auf die Hutschiene, bis der Montageschieber auf der Rückseite hörbar einrastet.
- 3. Schieben Sie die Komponente auf der Hutschiene nach links oder rechts an die endgültige Position.

Demontage

- 1. Schieben Sie den Montageschieber zuerst an der Lasche nach unten, um die Verriegelung mit der Hutschiene zu lösen.
- 2. Schwenken Sie die Komponente nach vorne und entfernen Sie sie anschließend nach oben von der Hutschiene.

- Montageschieber
- 2 Hutschiene

Bild 8-3 Demontage von einer Hutschiene

8.1 Sensor Modules

8.1.2.6 Technische Daten

Tabelle 8-5 Technische Daten

6SL3055-0AA00-5AAx	Einheit	Wert
Elektronikstromversorgung Spannung	V _{DC}	24 (20,4 28,8)
Strom (ohne Gebersystem) Strom (mit Gebersystem) Verlustleistung	A _{DC} W	≤ 0,20 ≤ 0,35 ≤ 10
Spezifikation Übersetzungsverhältnis des Resolvers (ü) Erregerspannung am SMC10 bei ü=0,5 Amplitudenüberwachungsschwelle (Sekundärspuren) des SMC10	V _{eff}	0,5 4,1 1
Erregerspannung (nicht parametrierbar)	V _{eff}	4,1
Erregerfrequenz (wird auf den Stromreglertakt synchronisiert)	kHz	5 bis 16
PE-/Masse-Anschluss	Am Gehäuse	mit Schraube M4 / 1,8 Nm
Max. Geberleitungslänge	m	130
Gewicht	kg	0,45
Schutzart		IP20 bzw. IPXXB

Tabelle 8-6 Max. auswertbare Frequenz (Drehzahl)

Resolver		Max. Drehzahl Resolver/Motor		
Polzahl	Polpaarzahl	8 kHz / 125 µsec	2 kHz / 500 µsec	
2 pol.	1	120000 min ⁻¹	60000 min ⁻¹	30000 min ⁻¹
4 pol.	2	60000 min ⁻¹	30000 min ⁻¹	15000 min ⁻¹
6 pol.	3	40000 min ⁻¹	20000 min ⁻¹	10000 min ⁻¹
8 pol.	4	30000 min ⁻¹	15000 min ⁻¹	7500 min ⁻¹

Aus dem Verhältnis des ohmschen Widerstandes R und der Induktivität L (der Primärwicklung des Resolvers) ergibt sich, ob ein Resolver mit dem SMC10 ausgewertet werden kann. Siehe Bild unten:

Minimale Impedanzen

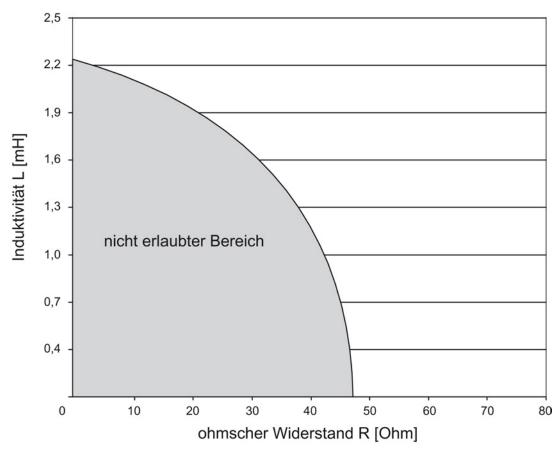


Bild 8-4 Anschließbare Impedanzen bei Erregerfrequenz f = 5000 Hz

8.1.3 Sensor Module Cabinet-Mounted SMC20

8.1.3.1 Beschreibung

Das Sensor Module Cabinet-Mounted SMC20 wertet Gebersignale aus und sendet die Drehzahl, den Lageistwert, die Rotorlage, gegebenenfalls die Motortemperatur und den Referenzpunkt über DRIVE-CLiQ an die Control Unit.

Das SMC20 wird eingesetzt, um Gebersignale von Inkrementalgebern mit SIN/COS (1 Vpp) oder Absolutwertgebern mit EnDat 2.1, EnDat 2.2 Bestellbezeichnung 02 oder SSI auszuwerten.

8.1.3.2 Schnittstellenbeschreibung

Übersicht

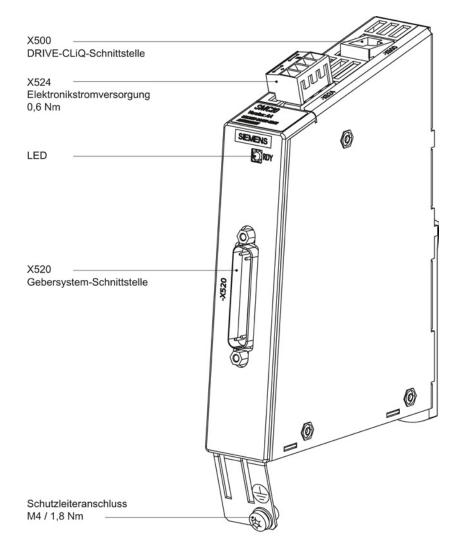


Bild 8-5 Schnittstellenbeschreibung SMC20

X500 DRIVE-CLiQ-Schnittstelle

Tabelle 8-7 X500: DRIVE-CLiQ-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	TXP	Sendedaten +
□ B	2	TXN	Sendedaten -
	3	RXP	Empfangsdaten +
	4	Reserviert, nicht belegen	
ˈĒĒĀ A	5	Reserviert, nicht belegen	
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	Α	Reserviert, nicht belegen	
	В	M (0 V)	Elektronikmasse
Steckertyp	DRIVE-CLiQ-	Buchse	

Die Blindabdeckung für die DRIVE-CLiQ-Schnittstelle ist im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

8.1 Sensor Modules

X520 Gebersystem-Schnittstelle

Tabelle 8-8 X520: Gebersystem-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	P-Encoder	Geberversorgung
	2	M-Encoder	Masse Geberversorgung
	3	A	Inkrementalsignal A
• 25	4	A*	Inverses Inkrementalsignal A
: :	5	Masse	Masse (für inneren Schirm)
: :	6	В	Inkrementalsignal B
::	7	B*	Inverses Inkrementalsignal B
::	8	Masse	Masse (für inneren Schirm)
	9	Reserviert, nicht belegen	
: :	10	Clock	Takt EnDat-Schnittstelle, SSI-Clock
:•	11	Reserviert, nicht belegen	
	12	Clock*	Inverser Takt EnDat-Schnittstelle, Inverser SSI-Clock
	13	+Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY+) Temperatursensor KTY84-1C130/PTC
	14	P-Sense	Sense-Eingang Geberversorgung
	15	Data	Daten EnDat-Schnittstelle, SSI-Daten
	16	M-Sense	Masse Sense-Eingang Geberversorgung
	17	R	Referenzsignal R
	18	R*	Inverses Referenzsignal R
	19	С	Absolutspursignal C
	20	C*	Inverses Absolutspursignal C
	21	D	Absolutspursignal D
	22	D*	Inverses Absolutspursignal D
	23	Data*	Inverse Daten EnDat-Schnittstelle, Inverse SSI-Daten
	24	Masse	Masse (für inneren Schirm)
	25	-Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY-) Temperatursensor KTY84-1C130/PTC
Steckertyp:	25-poliger	r SUB-D-Stecker	
Messstrom übe	r Temperatur	rsensoranschluss: 2 mA	

¹⁾ Genauigkeit der Temperaturmessung:

⁻ KTY: ±7 °C (inklusive Auswertung)

⁻ PTC: ±5 °C (inklusive Auswertung)

ACHTUNG

Beschädigung des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen. Die Überhitzung kann zu einem Schaden am Motor führen.

• Schließen Sie einen KTY-Temperatursensor polrichtig an.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

X524 Elektronikstromversorgung

Tabelle 8-9 X524 Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben
+	+	Elektronikstromversorgung	Spannung: 24 V (20,4 28,8 V)
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,35 A
	М	Elektronikmasse	Maximaler Strom über die Brücke im Stecker: 20 A
	М	Elektronikmasse	(15 A gemäß UL/CSA)

Art: Schraubklemme 2 (Seite 441)

Max. anschließbarer Querschnitt: 2,5 mm²

Die maximal anschließbare Leitungslänge beträgt 10 m.

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

8.1 Sensor Modules

8.1.3.3 Bedeutung der LED

Tabelle 8- 10 Bedeutung der LED am Sensor Module Cabinet-Mounted SMC20

LED	Farbe	Zustand	Beschreibung, Ursache	Abhilfe
RDY READY	-	Aus	Die Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.	_
	Grün	Dauerlicht	Die Komponente ist betriebsbereit. Zyklische DRIVE-CLiQ-Kommunikation findet statt.	_
	Orange	Dauerlicht	Die DRIVE-CLiQ-Kommunikation wird aufgebaut.	_
	Rot	Dauerlicht	Mindestens eine Störung dieser Komponente liegt an. Hinweis: Die LED wird unabhängig vom Umprojektieren der entsprechenden Meldungen angesteuert.	Beseitigen und quittieren Sie die Störung.
	Grün/Rot	Blinklicht 0,5 Hz	Der Firmware-Download wird durchgeführt.	_
		Blinklicht 2 Hz	Der Firmware-Download ist abgeschlossen. Auf POWER ON wird gewartet.	Führen Sie POWER ON durch.
	Grün/ Orange oder Rot/ Orange	Blinklicht	Die Erkennung der Komponente über LED ist aktiviert ¹⁾ . Hinweis: Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren ab.	_

¹⁾ Für den Parameter zum Aktivieren der Erkennung der Komponente über LED siehe SINAMICS S120/S150 Listenhandbuch

Ursache und Behebung von Störungen

Weitere Informationen über die Ursache und Behebung von Störungen sind in folgenden Dokumenten dargestellt:

SINAMICS S120 Inbetriebnahmehandbuch (IH1)

SINAMICS S120/S150 Listenhandbuch (LH1)

8.1.3.4 Maßbild

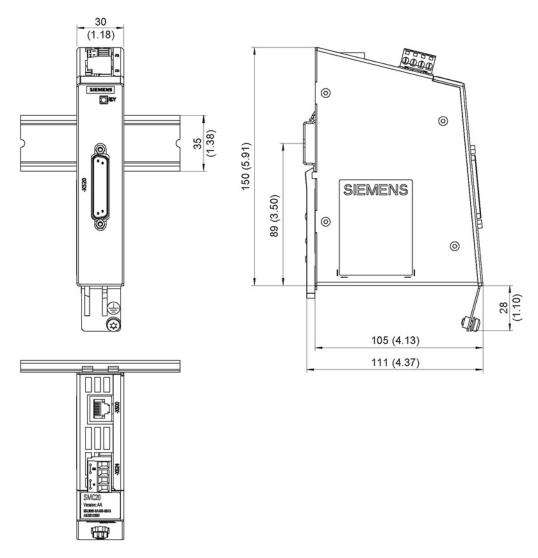
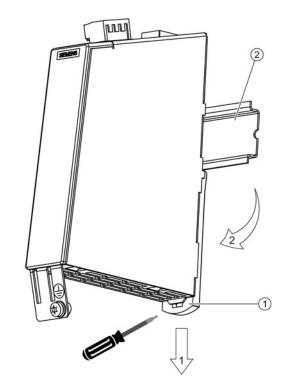


Bild 8-6 Maßbild Sensor Module Cabinet SMC20, alle Angaben in mm und (inch)

8.1 Sensor Modules


8.1.3.5 Montage

Montage

- 1. Neigen Sie die Komponente leicht nach hinten und setzen Sie sie mit den Haken auf die Hutschiene auf.
- 2. Schwenken Sie die Komponente auf die Hutschiene, bis der Montageschieber auf der Rückseite hörbar einrastet.
- 3. Schieben Sie die Komponente auf der Hutschiene nach links oder rechts an die endgültige Position.

Demontage

- 1. Schieben Sie den Montageschieber zuerst an der Lasche nach unten, um die Verriegelung mit der Hutschiene zu lösen.
- 2. Schwenken Sie die Komponente nach vorne und entfernen Sie sie anschließend nach oben von der Hutschiene.

- ① Montageschieber
- 2 Hutschiene

Bild 8-7 Demontage von einer Hutschiene

8.1.3.6 Technische Daten

Tabelle 8- 11 Technische Daten

6SL3055-0AA00-5BAx	Einheit	Wert
Elektronikstromversorgung		
Spannung	V _{DC}	24 (20,4 28,8)
Strom (ohne Gebersystem)	ADC	≤ 0,20
Strom (mit Gebersystem)	A _{DC}	≤ 0,35
Verlustleistung	W	≤ 10
Gebersystemversorgung		
Spannung	V_{DC}	5 (mit Remote Sense) ¹⁾
Strom	A _{DC}	0,35
Auswertbare Geberfrequenz (f _{Geber})	kHz	≤ 500
SSI-Baudrate ²⁾	kBd	100 - 1000 ³⁾
Max. Geberleitungslänge	m	100
PE-/Masse-Anschluss		Am Gehäuse mit Schraube M4 / 1,8 Nm
Gewicht	kg	0,45
Schutzart		IP20 bzw. IPXXB

Ein Regler vergleicht die über die Remote/Sense Leitungen erfasste Gebersystem-Versorgungsspannung mit der Sollversorgungsspannung des Gebersystems und verstellt die Versorgungsspannung für das Gebersystem am Ausgang des Sensormoduls solange, bis sich direkt am Gebersystem die gewünschte Versorgungsspannung einstellt (nur bei 5-V-Gebersystem-Versorgung).

- 2) Nur SSI-Geber mit 5-V-Versorgung möglich.
- 3) Siehe Diagramm "Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern"

Hinweis

Stromreglertakt

Verwenden Sie für einen Stromreglertakt von 31,25 µs ein SMC20 mit der Bestellnummer 6SL3055-0AA00-5BA3.

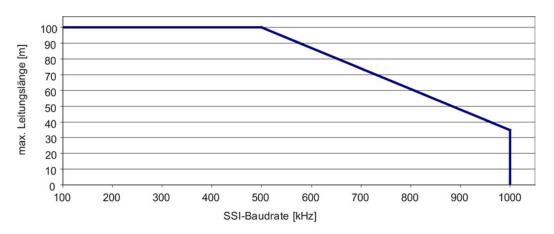


Bild 8-8 Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern

8.1.4 Sensor Module Cabinet-Mounted SMC30

8.1.4.1 Beschreibung

Das Sensor Module Cabinet-Mounted SMC30 wertet Gebersignale aus und sendet die Drehzahl, den Lageistwert und gegebenenfalls die Motortemperatur und den Referenzpunkt über DRIVE-CLiQ an die Control Unit.

Das SMC30 wird eingesetzt, um Gebersignale von Gebern mit TTL, HTL oder SSI Schnittstelle auszuwerten.

Eine Kombination von TTL/HTL Signal und SSI-Absolutwertsignal ist an den Klemmen X521/X531 möglich, soweit beide Signale von der gleichen Messgröße abgeleitet sind.

8.1.4.2 Schnittstellenbeschreibung

Übersicht

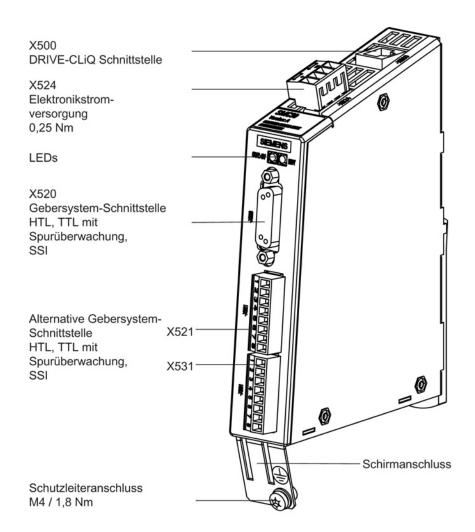


Bild 8-9 Schnittstellenbeschreibung SMC30

X500 DRIVE-CLiQ-Schnittstelle

Tabelle 8- 12 X500: DRIVE-CLiQ-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	TXP	Sendedaten +
□ B	2	TXN	Sendedaten -
	3	RXP	Empfangsdaten +
	4	Reserviert, nicht belegen	
ˈĒĒĀ A	5	Reserviert, nicht belegen	
	6	RXN	Empfangsdaten -
	7	Reserviert, nicht belegen	
	8	Reserviert, nicht belegen	
	Α	Reserviert, nicht belegen	
	В	M (0 V)	Elektronikmasse
Steckertyp	DRIVE-CLiQ-	Buchse	

Die Blindabdeckung für die DRIVE-CLiQ-Schnittstelle ist im Lieferumfang enthalten.

Blindabdeckungen (50 Stck.) Bestellnummer: 6SL3066-4CA00-0AA0

X520 Gebersystem-Schnittstelle

Tabelle 8- 13 X520: Gebersystem-Schnittstelle

	Pin	Signalname	Technische Angaben
	1	+Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY+) Temperatursensor KTY84-1C130/PTC
	2	Clock	SSI-Clock
15 0	3	Clock*	Inverser SSI-Clock
	4	P-Encoder 5 V / 24 V	Geberversorgung
	5	P-Encoder 5 V / 24 V	
	6	P-Sense	Sense-Eingang Geberversorgung
	7	M-Encoder (M)	Masse Geberversorgung
00	8	- Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY-) Temperatursensor KTY84-1C130/PTC
	9	M-Sense	Masse Sense-Eingang
	10	R	Referenzsignal R
	11	R*	Inverses Referenzsignal R
	12	B*	Inverses Inkrementalsignal B
	13	В	Inkrementalsignal B
	14	A* / data*	Inverses Inkrementalsignal A / Inverse SSI-Daten
	15	A / data	Inkrementalsignal A / SSI-Daten
Steckertyp:	15-polige	SUB-D-Buchse	
Messstrom übe	r Temperatui	rsensoranschluss: 2 mA	

- 1) Genauigkeit der Temperaturmessung:
 - KTY: ±7 °C (inklusive Auswertung)
 - PTC: ±5 °C (inklusive Auswertung)

ACHTUNG

Zerstörung des Gebers durch falsche Versorgungsspannung

Die Geberversorgungsspannung ist auf 5 V oder 24 V parametrierbar. Bei einer Fehlparametrierung kann der Geber zerstört werden.

• Wählen Sie die passende Versorgungsspannung.

ACHTUNG

Beschädigung des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen. Die Überhitzung kann zu einem Schaden am Motor führen.

Schließen Sie einen KTY-Temperatursensor polrichtig an.

Angaben zur Parametrierung des KTY-Temperatursensors finden Sie im SINAMICS S120 Funktionshandbuch (FH1) im Kapitel "Überwachungs- und Schutzfunktionen/Thermische Motorüberwachung".

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

X521/X531 Alternative Gebersystem-Schnittstelle

Tabelle 8- 14 X521/X531: Alternative Gebersystem-Schnittstelle

Pin	Bezeichnung	Technische Angaben
1	А	Inkrementalsignal A
2	A*	Inverses Inkrementalsignal A
3	В	Inkrementalsignal B
4	B*	Inverses Inkrementalsignal B
5	R	Referenzsignal R
6	R*	Inverses Referenzsignal R
7	CTRL	Kontrollsignal
8	M	Masse
1	P_Encoder 5 V / 24 V	Geberversorgung
2	M_Encoder	Masse Geberversorgung
3	-Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY-) Temperatursensor KTY84-1C130/PTC
4	+Temp ¹⁾	Motortemperaturerfassung KTY84-1C130 (KTY+) Temperatursensor KTY84-1C130/PTC
5	Clock	SSI-Clock
6	Clock*	Inverser SSI-Clock
7	Data	SSI-Daten
8	Data*	Inverse SSI-Daten
	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7	1

Max. anschließbarer Querschnitt: 1,5 mm²

Messstrom über Temperatursensoranschluss: 2 mA

Beim Betrieb von unipolaren HTL-Gebern sind am Klemmenblock A*, B*, R* mit M_Encoder (X531) zu brücken²⁾.

- 1) Genauigkeit der Temperaturmessung:
 - KTY: ±7 °C (inklusive Auswertung)
 - PTC: ±5 °C (inklusive Auswertung)
- Aufgrund der robusteren Übertragungsphysik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag bei nicht aufgelegten Leitungsschirmen

Durch kapazitive Überkopplung können lebensgefährliche Berührspannungen bei nicht aufgelegten Leitungsschirmen entstehen.

• Legen Sie beim Gebersystemanschluss den Leitungsschirm über Klemmen an der Komponente auf.

Temperatursensoranschluss

ACHTUNG

Beschädigung des Motors bei falsch angeschlossenem KTY-Temperatursensor

Ein verpolt angeschlossener KTY-Temperatursensor kann eine Überhitzung des Motors nicht erkennen. Die Überhitzung kann zu einem Schaden am Motor führen.

Schließen Sie einen KTY-Temperatursensor polrichtig an.

Angaben zur Parametrierung des KTY-Temperatursensors finden Sie im SINAMICS S120 Funktionshandbuch (FH1) im Kapitel "Überwachungs- und Schutzfunktionen/Thermische Motorüberwachung".

Hinweis

Die maximale Leitungslänge zum Anschluss der Temperatursensoren beträgt 100 m. Die Leitungen sind geschirmt auszuführen.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag bei Spannungsüberschlägen auf den Temperatursensor

Bei Motoren ohne sichere elektrische Trennung der Temperatursensoren kann es zu Spannungsüberschlägen zur Signalelektronik kommen.

- Verwenden Sie Temperatursensoren, welche die Vorgaben der Schutztrennung erfüllen.
- Wenn die sichere elektrische Trennung nicht gewährleistet werden kann (z. B. bei Linearmotoren oder Fremdmotoren), verwenden Sie ein Sensor Module External (SME120 oder SME125) oder das Terminal Module TM120.

8.1 Sensor Modules

X524 Elektronikstromversorgung

Tabelle 8- 15 X524: Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben
	+	Elektronikstromversorgung	Spannung: 24 V (20,4 28,8 V)
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,55 A
 	М	Elektronikmasse	Max. Strom über die Brücke im Stecker:
 I I I I I I I I I 	М	Elektronikmasse	20 A (15 A gemäß UL/CSA)
	demme 2 (Seite		

Die maximal anschließbare Leitungslänge beträgt 10 m.

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

8.1.4.3 Anschlussbeispiele

Anschlussbeispiel 1: HTL-Geber, bipolar, mit Referenzsignal

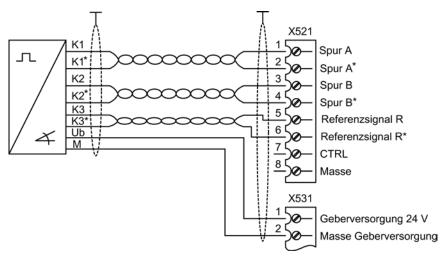


Bild 8-10 Anschlussbeispiel 1: HTL-Geber, bipolar, mit Referenzsignal

Um die Störsicherheit gegenüber induzierten Störungen zu verbessern, sind Signalleitungen paarweise zu verdrillen.

Anschlussbeispiel 2: HTL-Geber, unipolar, mit Referenzsignal

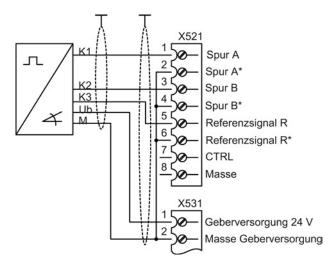


Bild 8-11 Anschlussbeispiel 2: HTL-Geber, unipolar, mit Referenzsignal¹⁾

¹⁾ Aufgrund der robusteren Übertragungsphysik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.

8.1 Sensor Modules

Bild 8-12 Foto zu Anschlussbeispiel 2: SMC30, Breite 30 mm

Hinweis: Darstellung der Drahtbrücken für den Anschluss von unipolaren HTL-Gebern mit Referenzsignal

8.1.4.4 Bedeutung der LEDs

Bedeutung der LEDs am Sensor Module Cabinet-Mounted SMC30

Tabelle 8- 16 Bedeutung der LEDs am Sensor Module Cabinet SMC30

LED	Farbe	Zustand	Beschreibung, Ursache	Abhilfe
RDY READY	_	Aus	Die Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs.	_
	Grün	Dauerlicht	Die Komponente ist betriebsbereit. Zyklische DRIVE-CLiQ-Kommunikation findet statt.	-
	Orange	Dauerlicht	Die DRIVE-CLiQ-Kommunikation wird aufgebaut.	_
	Rot	Dauerlicht	Mindestens eine Störung dieser Komponente an. Hinweis: Die LED wird unabhängig vom Umprojektieren der entsprechenden Meldungen angesteuert.	Störung beseitigen und quittieren
	Grün/Rot	Blinklicht 0,5 Hz	Der Firmware-Download wird durchgeführt.	-
	Grün/Rot	Blinklicht 2 Hz	Der Firmware-Download ist abgeschlossen. Auf POWER ON wird gewartet.	POWER ON durchführen
	Grün/ Orange oder Rot/ Orange	Blinklicht	Die Erkennung der Komponente über LED ist aktiviert ¹⁾ . Hinweis: Die beiden Möglichkeiten hängen vom Zustand der LED beim Aktivieren ab.	_
OUT > 5 V	-	Aus	Die Elektronikstromversorgung fehlt oder ist außerhalb des zulässigen Toleranzbereichs. Spannungsversorgung ≤ 5 V	-
	Orange	Dauerlicht	Die Elektronikstromversorgung für Gebersystem ist vorhanden. Spannungsversorgung > 5 V Achtung	
			Es muss sichergestellt sein, dass der angeschlossene Geber mit 24-V-Spannungsversorgung betrieben werden darf. Der Betrieb eines für 5-V-Anschluss vorgesehenen Gebers an 24 V kann zur Zerstörung der Geberelektronik führen.	

¹⁾ Für den Parameter zum Aktivieren der Erkennung der Komponente über LED siehe SINAMICS S120/S150 Listenhandbuch

Ursache und Behebung von Störungen

Weitere Informationen über die Ursache und Behebung von Störungen sind in folgenden Dokumenten dargestellt:

SINAMICS S120 Inbetriebnahmehandbuch (IH1)

SINAMICS S120/S150 Listenhandbuch (LH1)

8.1 Sensor Modules

8.1.4.5 Maßbild

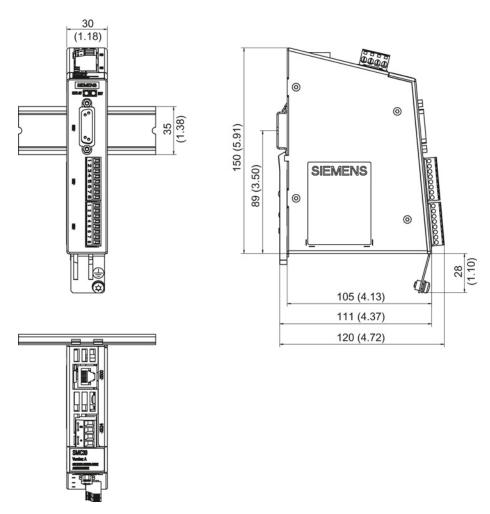
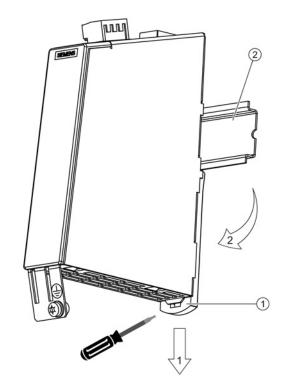


Bild 8-13 Maßbild Sensor Module Cabinet SMC30, alle Angaben in mm und (inch)


8.1.4.6 Montage

Montage

- 1. Neigen Sie die Komponente leicht nach hinten und setzen Sie sie mit den Haken auf die Hutschiene auf.
- 2. Schwenken Sie die Komponente auf die Hutschiene, bis der Montageschieber auf der Rückseite hörbar einrastet.
- 3. Schieben Sie die Komponente auf der Hutschiene nach links oder rechts an die endgültige Position.

Demontage

- 1. Schieben Sie den Montageschieber zuerst an der Lasche nach unten, um die Verriegelung mit der Hutschiene zu lösen.
- 2. Schwenken Sie die Komponente nach vorne und entfernen Sie sie anschließend nach oben von der Hutschiene.

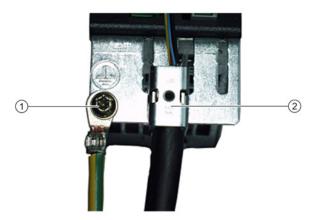

- ① Montageschieber
- 2 Hutschiene

Bild 8-14 Demontage von einer Hutschiene

8.1 Sensor Modules

8.1.4.7 Schutzleiteranschluss und Schirmauflage

Schirmauflagen sind nur notwendig bei Anschluss an X521/X531.

- ① Schutzleiteranschluss M4 / 1,8 Nm
- ② Schirmanschlussklemme Fa. Weidmüller, Typ: KLBÜ CO1, Bestellnummer: 1753311001

Bild 8-15 Schirmauflage und Schutzleiteranschluss

Die Biegeradien der Leitungen sind, wie bei MOTION-CONNECT beschrieben, einzuhalten.

ACHTUNG

Schädigung oder fehlerhafter Betrieb durch falsche Schirmung oder unzulässige Leitungslängen

Werden die korrekten Vorgehensweisen zur Schirmung oder die jeweils zulässigen Leitungslängen nicht eingehalten, kann es zu einer Schädigung oder einem fehlerhaften Betrieb der Maschine kommen.

- Verwenden Sie ausschließlich geschirmte Leitungen.
- Überschreiten Sie nicht die in den Technischen Daten aufgeführten Leitungslängen.

8.1.4.8 Technische Daten

Tabelle 8- 17 Technische Daten

6SL3055-0AA00-5CA2	Einheit	Wert
Elektronikstromversorgung		
Spannung	V _{DC}	24 (20,4 28,8)
Strom (ohne Gebersystem)	A _{DC}	≤ 0,20
Strom (mit Gebersystem)	A _{DC}	≤ 0,55
Verlustleistung	W	≤ 10
Gebersystemversorgung		
Spannung	V_{DC}	5 (mit oder ohne Remote Sense)1) oder V _{DC} - 1 V
Strom	A _{DC}	0,35
Auswertbare Geberfrequenz (fGeber)	kHz	≤ 300
SSI-Baudrate	kBd	100 - 1000 ²⁾
PE-/Masse-Anschluss		Am Gehäuse mit Schraube M4 / 1,8 Nm
Gewicht		0,45
Schutzart		IP20 bzw. IPXXB

Ein Regler vergleicht die über die Remote / Sense Leitungen erfasste Gebersystem-Versorgungsspannung mit der Sollversorgungsspannung des Gebersystems und verstellt die Versorgungsspannung für das Gebersystem am Ausgang des Sensormoduls solange, bis sich direkt am Gebersystem die gewünschte Versorgungsspannung einstellt (nur bei 5-V-Gebersystem-Versorgung). Remote Sense nur an X520.

²⁾ Siehe Diagramm "Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern"

8.1 Sensor Modules

Anschließbare Gebersysteme

Tabelle 8- 18 Spezifikation anschließbarer Gebersysteme

Parameter	Bezeichnung	Schwelle	Min.	Max.	Einheit
Signalpegel high (TTL bipolar an X520 oder X521/X531) ¹⁾	Uнdiff		2	5	V
Signalpegel low (TTL bipolar an X520 oder X521/X531) ¹⁾	U _{Ldiff}		-5	-2	V
Signalpegel high	U _H ³⁾	Hoch	17	Vcc	V
(HTL unipolar)		Niedrig	10	Vcc	V
Signalpegel low	U _L 3)	Hoch	0	7	V
(HTL unipolar)		Niedrig	0	2	V
Signalpegel high (HTL bipolar) ²⁾	U _{Hdiff}		3	Vcc	V
Signalpegel low (HTL bipolar) ²⁾	U _{Ldiff}		-Vcc	-3	V
Signalpegel high (SSI bipolar an X520 oder X521/X531) ¹⁾	U _{Hdiff}		2	5	V
Signalpegel low (SSI bipolar an X520 oder X521/X531) ¹⁾	U _{Ldiff}		-5	-2	V
Signalfrequenz	fs		-	300	kHz
Flankenabstand	t _{min}		100	-	ns
"Nullimpuls inaktiv Zeit" (vor und nach A=B=high)	tLo		640	(t _{ALo-BHi} - t _{Hi})/2 ⁴⁾	ns
"Nullimpuls aktiv Zeit" (während A=B=high und darüber hinaus) ⁵⁾	t _{Hi}		640	t _{ALo-BHi} - 2*t _{Lo} ⁴⁾	ns

¹⁾ Weitere Signalpegel gemäß RS422-Norm.

²⁾ Der absolute Pegel der Einzelsignale bewegt sich zwischen 0 V und VCC des Gebersystems.

³⁾ Erst ab Bestellnummer 6SL3055-0AA00-5CA2 und Firmware-Version 2.5 SP1 ist dieser Wert durch die Software konfigurierbar. Für ältere Firmwarestände und Bestellnummern kleiner 6SL3055-0AA00-5CA2 gilt die Schwelle "Niedrig".

⁴⁾ t_{ALo-BHi} ist kein spezifizierter Wert, sondern ist der zeitliche Abstand zwischen der fallenden Flanke der Spur A und der übernächsten steigenden Flanke der Spur B.

⁵⁾ Weitere Informationen über die Einstellung des "Nullimpuls aktiv Zeit" finden Sie im Handbuch: SINAMICS S120, Funktionshandbuch, tolerante Geberüberwachung bei SMC30.

Tabelle 8- 19 Anschließbare Geber

	X520 (SUB-D)	X521 (Klemme)	X531 (Klemme)	Spurüber- wachung	Remote Sense ²⁾
HTL bipolar 24 V	Ja	J	а	Ja	Nein
HTL unipolar 24 V ¹⁾	Ja	Ja (bipolarer Anschluss wird jedoch empfohlen) 1)		Nein	Nein
TTL bipolar 24 V	Ja	Ja		Ja	Nein
TTL bipolar 5 V	Ja	Ja		Ja	An X520
SSI 24 V / 5 V	Ja	Ja		Nein	Nein
TTL unipolar		Nein			

- Aufgrund der robusteren Übertragungsphysik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.
- ²⁾ Ein Regler vergleicht die über die Remote/Sense Leitungen erfasste Gebersystem-Versorgungsspannung mit der Sollversorgungsspannung des Gebersystems und verstellt die Versorgungsspannung für das Gebersystem am Ausgang des Sensormoduls solange, bis sich direkt am Gebersystem die gewünschte Versorgungsspannung einstellt (nur bei 5-V-Gebersystem-Versorgung).

Maximale Geberleitungslängen

Tabelle 8-20 Maximale Geberleitungslänge

Gebertyp	Maximale Geberleitungslänge in m
TTL ¹⁾	100
HTL unipolar ²⁾	100
HTL bipolar	300
SSI	100 ³⁾

- 1) Bei TTL-Geber an X520 → Remote Sense → 100 m
- Aufgrund der robusteren Übertragungsphysik ist grundsätzlich der bipolare Anschluss zu bevorzugen. Lediglich wenn der eingesetzte Gebertyp keine Gegentaktsignale zur Verfügung stellt, sollte auf unipolaren Anschluss ausgewichen werden.
- 3) Siehe Diagramm "Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern"

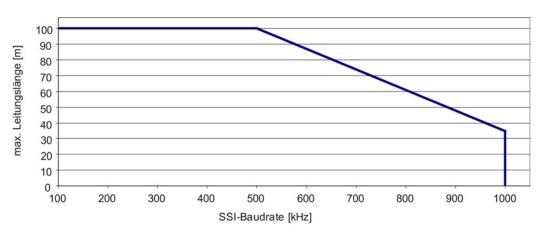


Bild 8-16 Maximale Leitungslänge in Abhängigkeit von der SSI-Baudrate bei SSI-Gebern

Gebern mit 5-V-Versorgung an X521/X531

Bei Gebern mit 5-V-Versorgung an X521/X531 ist die Leitungslänge abhängig vom Geberstrom (gilt für Leitungsquerschnitte mit 0,5 mm²):

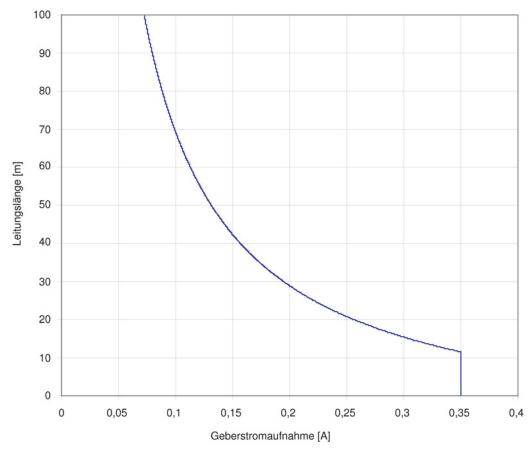


Bild 8-17 Abhängigkeit der max. Leitungslänge von der Höhe der Geberstromaufnahme

Gebern ohne Remote Sense

Bei Gebern ohne Remote Sense ist die zulässige Leitungslänge auf 100 m begrenzt. Grund: Der Spannungsabfall ist abhängig von der Leitungslänge und dem Geberstrom.

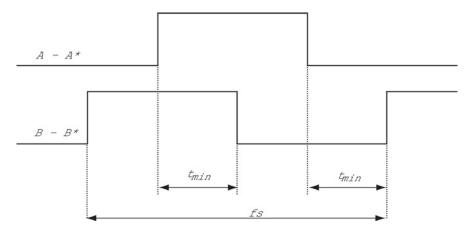


Bild 8-18 Signalverlauf der Spur A und Spur B zwischen zwei Flanken: Zeit zwischen zwei Flanken bei Impulsgebern

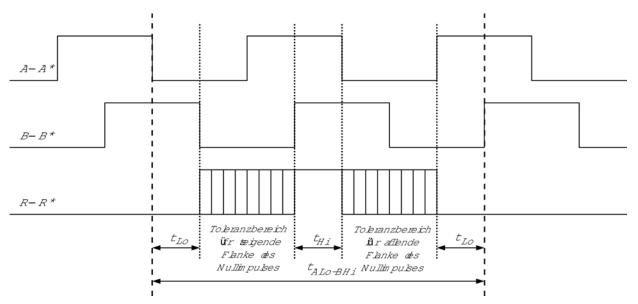


Bild 8-19 Lage des Nullimpulses zu den Spursignalen

8.2 Optionsmodul Safe Brake Relay

8.2.1 Einleitung

Für den Betrieb von Motoren mit Haltebremsen bis 2 A ist ein Safe Brake Relay notwendig.

Das Safe Brake Relay ist die Schnittstelle zwischen Control Unit / Power Module Blocksize und der Motorbremse DC 24 V.

Die Motorbremse wird elektronisch angesteuert.

Die Versorgungsspannung für die Motorbremse muss separat am Safe Brake Relay eingespeist werden. Dazu ist eine geregelte Stromversorgung notwendig, deren Nennwert (zum Ausgleich des Spannungsabfalls in der Zuleitung zur DC-24-V-Spule der Motorbremse) auf 26 V einstellbar sein sollte, z. B. SITOP modular.

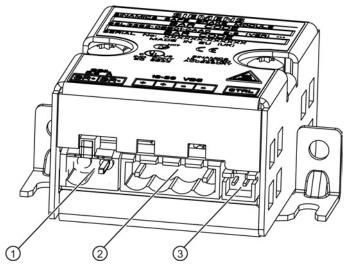
Tabelle 8-21 Schnittstellenübersicht Safe Brake Relay

Art	Anzahl
Anschluss für die Spule der Motorbremse	1
Anschluss für DC 24-V-Versorgung	1
Anschluss für das Formkabel (CTRL) zum Power Module Bauform Blocksize	1

Im Lieferumfang des Safe Brake Relay sind das Formkabel zur Verbindung mit dem Power Module und alle Kundenstecker enthalten.

8.2.2 Sicherheitshinweise für Safe Brake Relays

Hinweis


Zum Betrieb von Motoren mit eingebauter Haltebremse ist eine geregelte DC-Stromversorgung notwendig. Die Spannungsversorgung erfolgt über die internen 24-V-Schienen. Die Spannungstoleranzen der Motor-Haltebremsen und die Spannungsverluste der Anschlussleitungen sind zu beachten.

Die DC-Stromversorgung sollte auf 26 V eingestellt werden. Dadurch kann sichergestellt werden, dass die Versorgungsspannung der Bremse im zulässigen Bereich liegt, wenn die folgenden Randbedingungen erfüllt sind:

- Verwendung von Siemens-Drehstrommotoren
- Verwendung von Siemens-MOTION-CONNECT-Leistungsleitungen
- Motorleitungslängen maximal 100 m

8.2.3 Schnittstellenbeschreibung

8.2.3.1 Übersicht

- ① Anschluss für die Spule der Motorbremse
- 2 Anschluss für die Stromversorgung DC 24 V
- 3 Anschluss für das Formkabel (CTRL) zum Power Module Bauform Blocksize

Bild 8-20 Schnittstellenbeschreibung: Safe Brake Relay

8.2.3.2 X524 Elektronikstromversorgung

Tabelle 8- 22 X524 Elektronikstromversorgung

	Klemme	Funktion	Technische Angaben
	+	Elektronikstromversorgung	Spannung: 24 V (20,4 28,8 V)
	+	Elektronikstromversorgung	Stromaufnahme: max. 0,3 A (ohne
	M	Elektronikmasse	Motorhaltebremse)
E	M	Elektronikmasse	Maximaler Strom über die Brücke im Stecker: 20 A (15 A gemäß UL/CSA)

Art: Schraubklemme 2 (Seite 441)

Max. anschließbarer Querschnitt: 2,5 mm²

Die maximal anschließbare Leitungslänge beträgt 10 m.

Hinweis

Die beiden "+"- bzw. "M"- Klemmen sind im Stecker gebrückt. Damit wird ein Durchschleifen der Versorgungsspannung gewährleistet.

8.2 Optionsmodul Safe Brake Relay

8.2.3.3 Bremsenanschluss

Tabelle 8-23 Stecker

Bezeichnung	Technische Angaben	
Bremsenanschluss	Relais-Ausgang (schließen)	
PE-Anschluss	M4 / 3 Nm	

8.2.4 Anschlussbeispiel

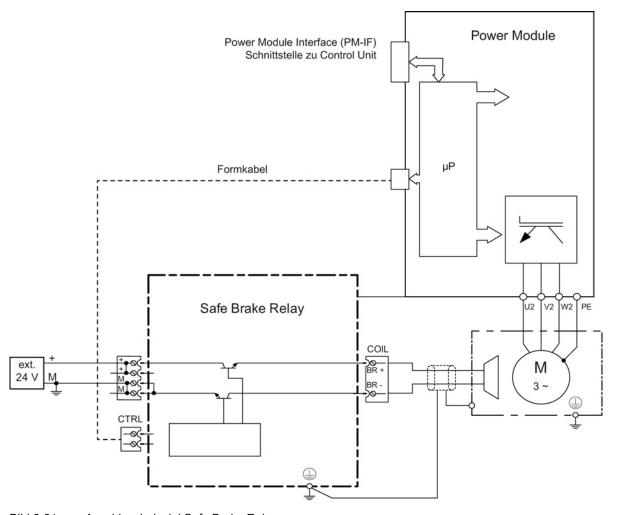


Bild 8-21 Anschlussbeispiel Safe Brake Relay

8.2.5 Maßbild

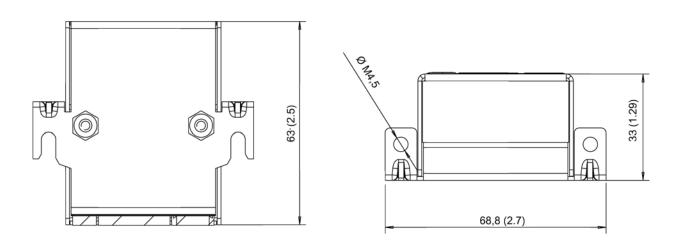
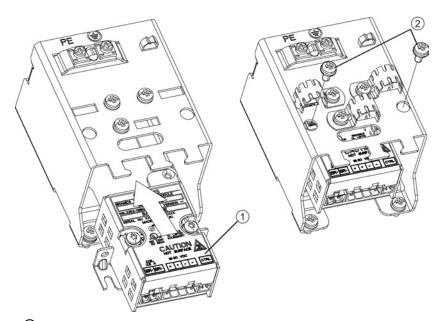
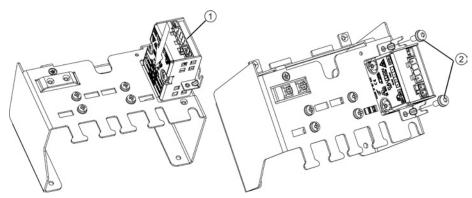


Bild 8-22 Maßbild Safe Brake Relay, alle Angaben in mm und (inch)


8.2.6 Montage

Montage mit Power Modules PM240-2

Das Safe Brake Relay wird neben das Power Module auf die Rückseite des Schaltschranks montiert.


Montage mit Power Modules PM340

Das Safe Brake Relay wird unterhalb des Power Module auf dem Schirmanschlusssatz oder alternativ auf die Rückwand des Schaltschranks montiert.

- Safe Brake Relay
- ② Befestigungsschrauben

Bild 8-23 Montage Safe Brake Relay und Schirmanschluss-Satz (Baugröße FSA)

- 1 Safe Brake Relay
- ② Befestigungsschrauben

Bild 8-24 Montage Safe Brake Relay und Schirmanschluss-Satz (Baugröße FSB / FSC)

8.2.7 Technische Daten

Tabelle 8- 24 Technische Daten

6SL3252-0BB01-0AA0	Einheit	
Versorgungsspannung	V _{DC}	20,4 28,8 Empfohlener Nennwert der Versorgungsspannung DC 26 V (zum Ausgleich des Spannungsabfalls in der Zuleitung zur DC-24- V-Spule der Motorbremse)
Strombedarf, max.		
Motorbremse	Α	2
bei DC 24 V	Α	0,05 + Strombedarf der Motorbremse
Anschlussquerschnitt, max.	mm ²	2,5
Maße (B x H x T)	mm	69 x 63 x 33
Gewicht	kg	Ca. 0,17

8.3 Optionsmodul Safe Brake Adapter

8.3.1 Beschreibung

Der Safe Brake Adapter (SBA) wird zur Realisierung einer Sicheren Bremsenansteuerung (SBC) in Verbindung mit Power Modules der Bauform Chassis benötigt.

Die Sichere Bremsenansteuerung (SBC) ist eine Sicherheitsfunktion, die in sicherheitsrelevanten Anwendungen, z. B. in Pressen oder in Walzwerken eingesetzt wird. Die Bremse wirkt im stromlosen Zustand durch Federkraft auf den Motor des Antriebs. Durch Stromfluss wird die Bremse gelöst (= Low active).

Zur Spannungsversorgung muss auf dem Safe Brake Adapter eine Einspeisung an der Klemme X12 angeschlossen werden.

Zur Ansteuerung der Bremse muss eine Verbindung zwischen der Klemme X14 auf dem Safe Brake Adapter und der Motorhaltebremse hergestellt werden.

Zur Ansteuerung muss eine Verbindung zwischen dem Safe Brake Adapter und dem Control Interface Module hergestellt werden.

Dafür kann das Formkabel mit der Bestellnummer 6SL3060-4DX04-0AA0 eingesetzt werden.

Schnellentregung

Zur Schnellentregung werden Gleichstrombremsen teilweise mit einem vorgeschalteten Bremsgleichrichter (AC 230 V eingangsseitig) betrieben. Einige Bremsgleichrichter verfügen über zwei zusätzliche Anschlüsse zum DC-seitigen Schalten der Bremslast. Auf diese Weise wird eine Schnellentregung der Bremsspule möglich, d. h. die Bremswirkung setzt früher ein.

Der Safe Brake Adapter unterstützt eine solche Schnellentregung über die zwei zusätzlichen Anschlüsse X15.1 und X15.2. Diese Funktion gehört nicht zur Sicheren Bremsenansteuerung.

8.3.2 Sicherheitshinweise für Safe Brake Adapter

/ WARNUNG

Lebensgefahr durch Freigabe der Motorbremse bei Beschädigung der Anschlussleitung

Ein Kabelbruch oder Kurzschluss der Anschlussleitung zwischen Safe Brake Adapter und Motorbremse kann zu einer Stromversorgung und Freigabe der Motorbremse führen. Wenn der Motor nicht abgebremst werden kann, können Sie Tod oder schwere Verletzungen erleiden.

 Testen Sie die Motorbremse mithilfe der Safety Integrated Extended Function "Safe Brake Test".

ACHTUNG

Beschädigung des Safe Brake Adapter beim Anschluss einer DC-24-V-Bremse

Wird an den Safe Brake Adapter AC 230 V anlagenseitig eine DC-24-V-Bremse angeschlossen, kann dies Schäden im Safe Brake Adapter verursachen. Folgende unerwünschten Auswirkungen können hervorgerufen werden:

- Das Schließen der Bremse wird nicht über LED angezeigt.
- Die Sicherung wird ausgelöst.
- Die Kontaktlebensdauer des Relais wird reduziert.
- Schließen Sie an den Safe Brake Adapter AC 230 V anlagenseitig keine DC 24-V-Bremse an.

Hinweis

Die integrierten Sicherheitsfunktionen erfüllen ab den Safety Integrated (SI) - Eingangsklemmen der SINAMICS-Komponenten (Control Unit, Motor Module) die Anforderungen gemäß der EN 61800-5-2, der EN 60204-1, der DIN EN ISO 13849-1 Kategorie 3 (ehemals EN 954-1) für Performance Level (PL) d und IEC 61508 SIL2.

Mit dem Safe Brake Adapter werden die Anforderungen gemäß der EN 61800-5-2, EN 60204-1, der DIN EN ISO 13849-1 Kategorie 3 (ehemals EN 954-1) sowie Performance Level (PL) d und IEC 61508 SIL 2 erfüllt.

8.3 Optionsmodul Safe Brake Adapter

8.3.3 Schnittstellenbeschreibung

8.3.3.1 Übersicht

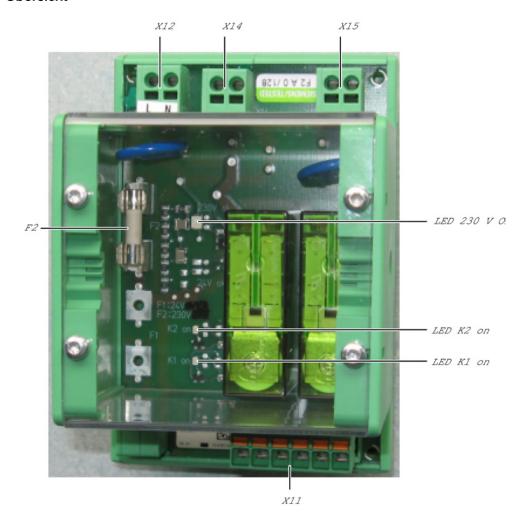


Bild 8-25 Schnittstellenübersicht Safe Brake Adapter AC 230 V

F2 Sicherung

Typ der Ersatzsicherung: 2 A, träge

8.3.3.2 X11 Schnittstelle zum Control Interface Module

Tabelle 8- 25 X11 Schnittstelle zum Control Interface Module

Klemme	Signal	Beschreibung	Technische Angaben	
X11.1	BR+	Ansteuerkanal 1	Verbindung zu Control Interface Board, X46.1	
X11.2	BR-	Ansteuerkanal 2	al 2 Verbindung zu Control Interface Board, X46.2	
X11.3	FB+	Relaisrückmeldung	Verbindung zu Control Interface Board, X46.3	
X11.4	FB-	Masse der Relaisrückmeldung	Verbindung zu Control Interface Board, X46.4	
X11.5	P24	P24 der Hilfsspannung zur Speisung der Rückmeldung	Verbindung zu Control Interface Board, X42.2	
X11.6	М	Masse der Hilfsspannung	Verbindung zu Control Interface Board, X42.3	

/ WARNUNG

Brandgefahr durch Überhitzung bei Überschreiten der zulässigen Längen von Leistungsleitungen

Durch zu lange Leistungsleitungen kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

- Die maximal zulässige Leitungslänge zwischen dem Safe Brake Adapter AC 230 V und dem Control Interface Module von 10 m darf nicht überschritten werden.
 - Setzen Sie das Formkabel (Länge: 4 m) mit der Bestellnummer 6SL3060-4DX04-0AA0 ein.

8.3.3.3 X12 Spannungsversorgung AC 230 V

Tabelle 8- 26 X12 Spannungsversorgung AC 230 V

Klemme	Signal	Technische Angaben
X12.1	L	Anschluss-Spannung: AC 230 V
X12.2	N	Stromaufnahme: 2 A
Max. anschließbarer Querschnitt: 2,5 mm ²		

8.3 Optionsmodul Safe Brake Adapter

8.3.3.4 X14 Lastanschluss

Tabelle 8-27 X14 Lastanschluss

Klemme	Signal	Technische Angaben
X14.1	BR L	Anschluss-Spannung: AC 230 V
X14.2	BR N	Stromaufnahme: 2 A
Max. anschließbarer Querschnitt: 2,5 mm ²		

/ WARNUNG

Brandgefahr durch Überhitzung bei Überschreiten der zulässigen Leitungslängen

Durch zu lange Leitungen kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

 Die maximal zulässige Leitungslänge zwischen dem Safe Brake Adapter AC 230 V und der Bremse von 300 m darf nicht überschritten werden.

Informationen zur genauen Berechnung der maximalen Leitungslänge finden Sie im Projektierungshandbuch: SINAMICS-Low Voltage.

8.3.3.5 X15 Schnellentregung

Tabelle 8-28 X15 Schnellentregung

Klemme	Signal	Technische Angaben
X15.1	AUX 1	Anschluss-Spannung: AC 230 V
X15.2	AUX 2	Stromaufnahme
Max. anschließbarer Querschnitt: 2,5 mm²		

8.3.4 Anschlussbeispiel

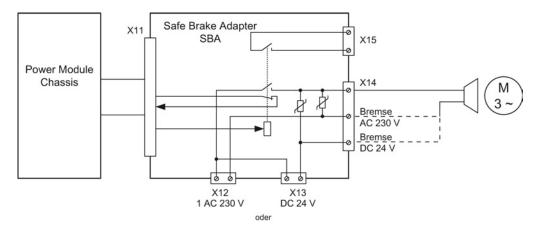


Bild 8-26 Anschlussbeispiel für einen Safe Brake Adapter

8.3.5 Maßbild

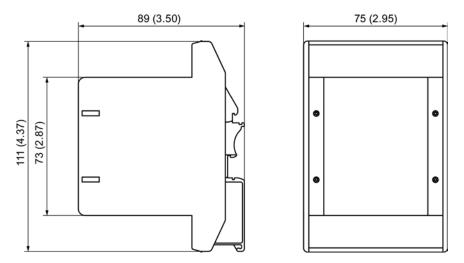


Bild 8-27 Maßbild Safe Brake Adapter, alle Angaben in mm und (inch)

8.3 Optionsmodul Safe Brake Adapter

8.3.6 Montage

Safe Brake Adapter

Der Safe Brake Adapter ist für die Montage auf einer Hutschiene nach EN 60715 vorgesehen.

Gehäusedeckel nach Tausch der Sicherung

Auf dem Gehäusedeckel ist ein Aufkleber mit der Position der Anschluss-Stecker angebracht. Montieren Sie den Gehäusedeckel so, dass die Beschriftung auf dem Aufkleber mit den Steckern übereinstimmt.

8.3.7 Technische Daten

Tabelle 8-29 Technische Daten

6SL3355-2DX00-1AA0	Einheit	Wert
Elektronikstromversorgung (Versorgungsspannung über das Control Interface Module)	V _{DC}	24 (20,4 28,8)
Spannungsversorgung Motorhaltebremse	Vac	230
Stromaufnahme, max. Motorhaltebremse Schnellentregung	A A	2 2
Gewicht	kg	0,25

Zubehör

9.1 DRIVE-CLiQ-Schrankdurchführung

9.1.1 Beschreibung

Eine DRIVE-CLiQ-Schrankdurchführung dient der Verbindung der DRIVE-CLiQ-Leitungen zwischen Schaltschrank-Innenseite und Schaltschrank-Außenseite. Sie wird in eine Schaltschrankwand eingesetzt. Die Datenleitungen und die Spannungsversorgungskontakte des DRIVE-CLiQ werden mitgeführt. Die DRIVE-CLiQ-Schrankdurchführung ist für DRIVE-CLiQ-Leitungen mit DRIVE-CLiQ-Stecker und M12-Stecker/Buchse verfügbar.

DRIVE-CLiQ-Schrankdurchführung für DRIVE-CLiQ-Stecker

Die Schrankdurchführung ist von außen nach innen in der Schutzart IP54 nach EN 60529 ausgeführt. Im Schaltschrankinneren wird eine Verbindung gemäß der Schutzart IP20 bzw. IPXXB nach EN 60529 realisiert. Damit die komplette Außenseite der Schrankdurchführung einschließlich der DRIVE-CLiQ-Schnittstelle der Schutzart IP54 genügt, muss eine DRIVE-CLiQ-Leitung verwendet werden, die ebenfalls mindestens die Schutzart IP54 aufweist.

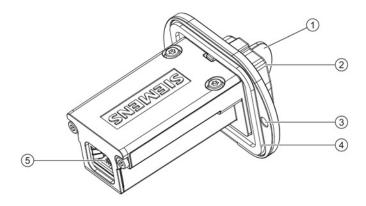
DRIVE-CLiQ-Schrankdurchführung für M12-Stecker/Buchse

Die Schrankdurchführung ist von außen nach innen in der Schutzart IP67 nach EN 60529 ausgeführt. Im Schaltschrankinneren wird ebenfalls eine Verbindung gemäß Schutzart IP67 nach EN 60529 realisiert.

ACHTUNG

Schäden durch Verwendung falscher DRIVE-CLiQ-Leitungen

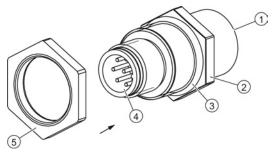
Beim Einsatz falscher oder nicht frei gegebener DRIVE-CLiQ-Leitungen können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.


 Verwenden Sie ausschließlich passende DRIVE-CLiQ-Leitungen, die von Siemens für den jeweiligen Anwendungsfall frei gegeben sind.

9.1 DRIVE-CLiQ-Schrankdurchführung

9.1.2 Schnittstellenbeschreibung

9.1.2.1 Übersicht


DRIVE-CLiQ-Schrankdurchführung für DRIVE-CLiQ-Leitungen mit DRIVE-CLiQ-Stecker

- ① Schutzkappe, Fa. Yamaichi, Bestellnummer: Y-ConAS-24-S
- ② DRIVE-CLiQ-Schnittstelle Außenseite (zum Anschluss von DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit Schutzart IP67)
- 3 Befestigungsbohrungen
- 4 Flanschdichtung zur Gewährleistung der Schutzart IP54 an der Schaltschrank-Außenseite
- DRIVE-CLiQ-Schnittstelle Innenseite (zum Anschluss von DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit Schutzart IP20)

Bild 9-1 Schnittstellenübersicht DRIVE-CLiQ-Schrankdurchführung

DRIVE-CLiQ-Schrankdurchführung für DRIVE-CLiQ-Leitungen mit M12-Stecker/Buchse

- ① DRIVE-CLiQ-Schnittstelle mit M12-Buchse (8-polig)
- 2 Flansch, SW18
- 3 Dichtung
- 4 DRIVE-CLiQ-Schnittstelle mit M12-Stiften (8-polig)
- 5 O-Ring, SW20, Anzugsdrehmoment: 3 bis 4 Nm

Bild 9-2 Schnittstellenübersicht DRIVE-CLiQ-Schrankdurchführung M12

9.1.3 Maßbilder

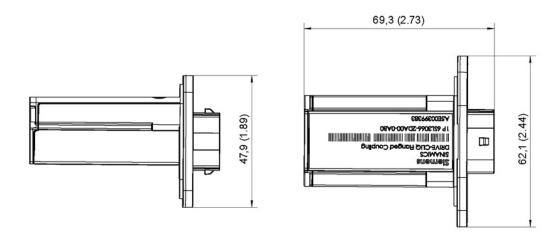
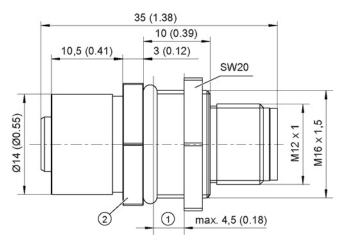



Bild 9-3 Maßbild DRIVE-CLiQ-Schrankdurchführung, alle Angaben in mm und (inch)

- 1 Schrankwand
- ② Flansch, SW18

Bild 9-4 Maßbild DRIVE-CLiQ-Schrankdurchführung M12, alle Angaben in mm und (inch)

9.1 DRIVE-CLiQ-Schrankdurchführung

9.1.4 Montage

9.1.4.1 DRIVE-CLiQ-Schrankdurchführung für Leitungen mit DRIVE-CLiQ-Stecker

Schaffen Sie zur Montage der DRIVE-CLiQ-Schrankdurchführung einen Ausschnitt in der Schaltschrankwand gemäß unten stehender Abbildung.

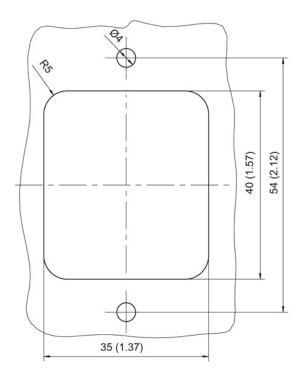
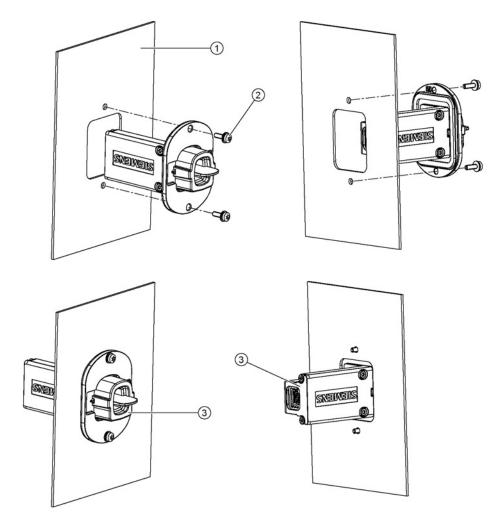



Bild 9-5 Ausschnitt im Schaltschrank, alle Angaben in mm und (inch)

Montage

- 1. Stecken Sie die DRIVE-CLiQ-Schrankdurchführung von der Schaltschrank-Außenseite durch den Ausschnitt im Schaltschrank.
- 2. Befestigen Sie die DRIVE-CLiQ-Schrankdurchführung mit 2 Schrauben M3 und 2 Muttern an der Schaltschrank-Außenwand. Für eine gute elektromagnetische Verträglichkeit muss die DRIVE-CLiQ-Schrankdurchführung flächig und elektrisch leitend mit der Wand verbunden sein.

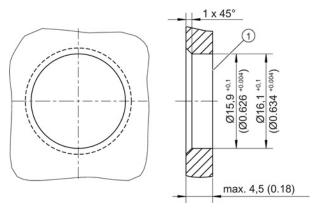
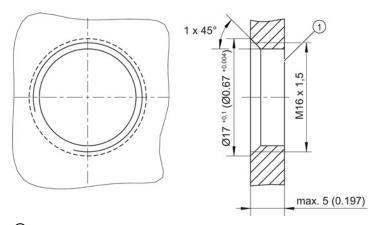

- Schaltschrankwand
- 2 Schraube M3, Anzugsdrehmoment 0,8 Nm
- ③ DRIVE-CLiQ-Schrankdurchführung

Bild 9-6 Montage der DRIVE-CLiQ-Schrankdurchführung für Leitungen mit DRIVE-CLiQ-Stecker

9.1.4.2 DRIVE-CLiQ-Schrankdurchführung für Leitungen mit M12-Stecker/Buchse

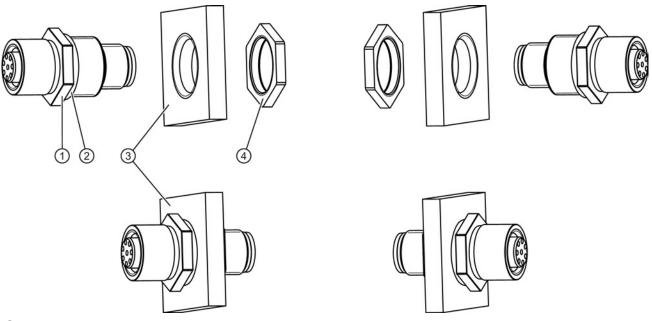
Bereiten Sie die Schaltschrankwand für die Montage der DRIVE-CLiQ-Schrankdurchführung M12 wie unten dargestellt vor. Der abnehmbare O-Ring kann von innen oder von außen verschraubt werden.


Montage mit von innen verschraubbarem O-Ring

① Durchgangsbohrung mit Fase

Bild 9-7 Durchgangsbohrung für die Montage der DRIVE-CLiQ-Schrankdurchführung M12 mit von innen verschraubbarem O-Ring

Montage mit von außen verschraubbarem O-Ring



Gewindebohrung mit Fase

Bild 9-8 Gewindebohrung für die Montage der DRIVE-CLiQ-Schrankdurchführung M12 mit von außen verschraubbarem O-Ring

Montage

- 1. Stecken Sie die DRIVE-CLiQ-Schrankdurchführung durch die Öffnung im Schaltschrank.
- 2. Befestigen Sie die DRIVE-CLiQ-Schrankdurchführung durch den zugehörigen O-Ring mit einem Anzugsdrehmoment von 3 bis 4 Nm

- 1 Flansch SW18
- ② Dichtung
- 3 Schrankwand
- 4 O-Ring, SW20, Anzugsdrehmoment: 3 bis 4 Nm

Bild 9-9 Montage der DRIVE-CLiQ-Schrankdurchführung für Leitungen mit M12-Stecker

9.1.5 Technische Daten

Tabelle 9-1 Technische Daten DRIVE-CLiQ-Schrankdurchführungen

	Einheit	6SL3066-2DA00-0AA0 DRIVE-CLIQ	6FX2003-0DT67 M12
Gewicht	kg	0,165	0,035
Schutzart nach EN 60529		IP54 außerhalb vom Schaltschrank IP20 bzw. IPXXB im Schaltschrank	IP67

9.2 DRIVE-CLiQ-Kupplung

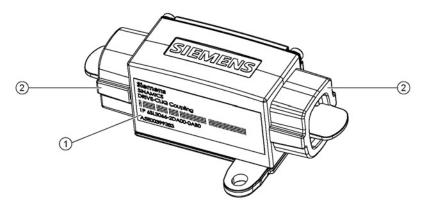
9.2.1 Beschreibung

Die DRIVE-CLiQ-Kupplung dient der Verbindung von 2 DRIVE-CLiQ-Leitungen gemäß Schutzart IP67 nach EN 60529.

Neben den Datenleitungen werden auch die Spannungsversorgungskontakte des DRIVE-CLiQ mitgeführt.

Informationen über die zulässige Leitungslänge befinden sich im Kapitel DRIVE-CLiQ-Signalleitungen (Seite 431).

ACHTUNG


Schäden durch Verwendung falscher DRIVE-CLiQ-Leitungen

Beim Einsatz falscher oder nicht frei gegebener DRIVE-CLiQ-Leitungen können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

 Verwenden Sie ausschließlich passende DRIVE-CLiQ-Leitungen, die von Siemens für den jeweiligen Anwendungsfall frei gegeben sind.

9.2.2 Schnittstellenbeschreibung

9.2.2.1 Übersicht

- 1 Typenschild
- ② Schutzkappe, Fa. Yamaichi, Bestellnummer: Y-ConAS-24-S

Bild 9-10 Schnittstellenübersicht DRIVE-CLiQ-Kupplung

9.2.3 Maßbild

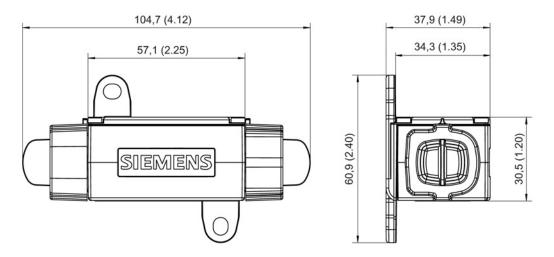
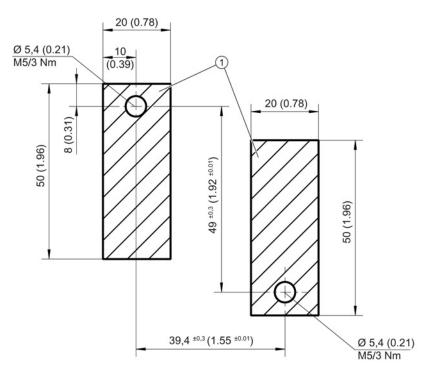



Bild 9-11 Maßbild DRIVE-CLiQ-Kupplung, alle Angaben in mm und (inch)

9.2.4 Montage

1 Auflagefläche

Bild 9-12 Bohrbild für die Montage

Montage

- Befestigen Sie die DRIVE-CLiQ-Kupplung dem Bohrbild entsprechend auf der Montagefläche.
- 2. Entfernen Sie die Schutzkappen der DRIVE-CLiQ-Kupplung.
- 3. Lassen Sie die DRIVE-CLiQ-Stecker auf beiden Seiten der DRIVE-CLiQ-Kupplung einrasten.

9.2.5 Technische Daten

Tabelle 9-2 Technische Daten

DRIVE-CLiQ-Kupplung 6SL3066-2DA00-0AB0	Einheit	
Gewicht	kg	0,272
Schutzart	IP67 nach EN 60529	

9.3 Einbaurahmen

9.3.1 Beschreibung

Die Power Modules 240-2 Push Through sollten mit einem Einbaurahmen im Schaltschrank montiert werden. Der Einbaurahmen enthält die notwendigen Dichtungen und den Rahmen zur Erreichung der Schutzklasse IP54.

Bestellnummern

FSA: 6SL3260-6AA00-0DA0FSB: 6SL3260-6AB00-0DA0FSC: 6SL3260-6AC00-0DA0

Das Zusatzpaket enthält alle notwendigen Muttern und Dichtungen.

9.3.2 Maßbilder

Maßbilder Einbaurahmen, Baugrößen FSA bis FSC

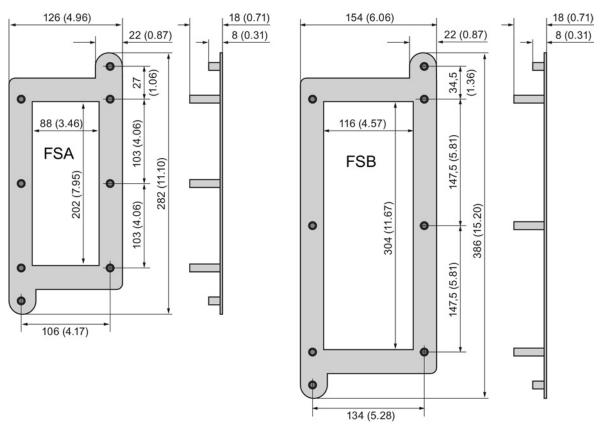


Bild 9-13 Maßbild Einbaurahmen, Baugröße FSA und FSB, alle Angaben in mm und (inch)

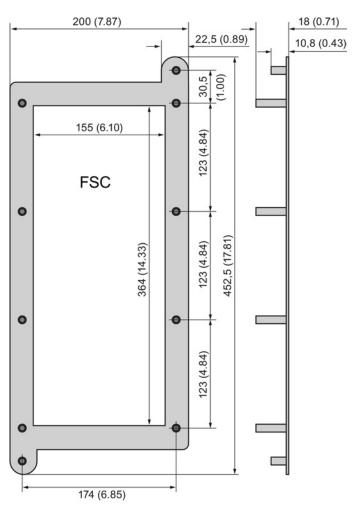


Bild 9-14 Maßbild Einbaurahmen, Baugröße FSC, alle Angaben in mm und (inch)

9.3.3 Montage

Montageschritte

- 1. Schaffen Sie einen Montagedurchbruch und Bohrungen für das Power Module und den Einbaurahmen entsprechend dem Bohrbild.
- 2. Befestigen Sie den Einbaurahmen an die Außenseite des Schaltschranks. Ziehen Sie die 2 Schrauben handfest an.
- 3. Befestigen Sie die Dichtung auf der Innenseite des Schaltschranks.
- 4. Befestigen Sie das Power Module. Ziehen Sie die Schrauben handfest an.
- 5. Ziehen Sie alle Schrauben mit einem Drehmoment von 3,5 Nm fest.
- 6. Um die EMV-Anforderungen zu erfüllen, achten Sie darauf, dass die Auflagefläche des Kühlkörpers lackfrei ist.

9.4.1 Beschreibung

Für die Power Modules PM340 der Baugrößen FSA bis FSF wird zur Schirmauflage ein Schirmanschlusssatz als Option angeboten. Er dient der Schirmauflage der zwei Leistungsleitungen. Der Schirmanschluss-Satz wird bei den Baugrößen FSA bis FSC direkt auf die Schaltschrankwand geschraubt. Bei den Baugrößen FSD bis FSF wird er am Power Module befestigt.

Für die Baugrößen FSB und FSC liegt dem Beipack zum Schirmanschlusssatz ein Ferritkern zur Dämpfung der hochfrequenten Leitungsstörungen bei.

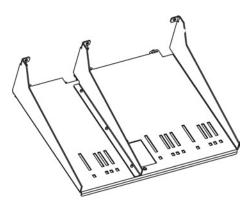


Bild 9-15 Schirmanschluss-Satz zur Befestigung an einem Power Module PM340, Baugröße FSD/FSE

Tabelle 9-3 Übersicht Schirmanschluss-Sätze für Power Modules PM340, Baugröße FSA bis FSF

Baugröße PM340	FSA	FSB	FSC	FSD	FSE	FSF
6SL3262-	1AA00-0BA0	1AB00-0DA0	1AC00-0DA0	1AD00-0DA0	1AD00-0DA0	1AF00-0DA0
		(mit Ferritkern)	(mit Ferritkern)			

9.4.2 Maßbilder

9.4.2.1 Schirmanschluss-Sätze

Maßbilder Schirmanschlusssatz, Baugrößen FSA bis FSC

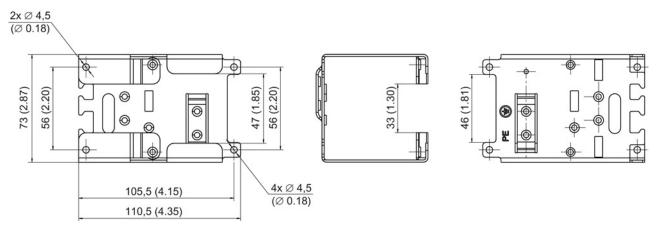


Bild 9-16 Maßbild Schirmanschlusssatz für Power Modules PM340, Baugröße FSA, alle Angaben in mm (inch)

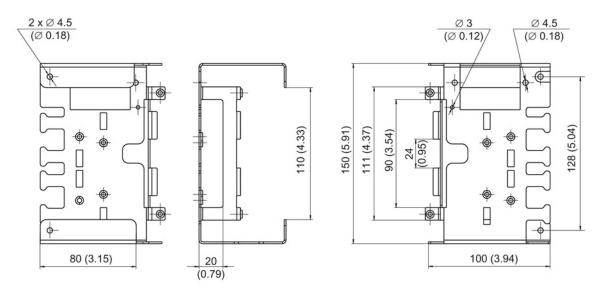


Bild 9-17 Maßbild Schirmanschlusssatz für Power Modules PM340, Baugröße FSB, alle Angaben in mm (inch)

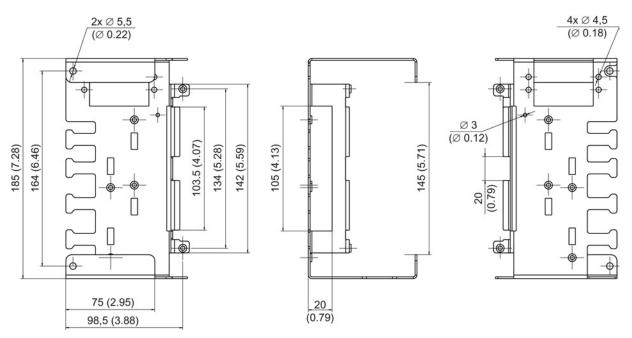


Bild 9-18 Maßbild Schirmanschlusssatz für Power Modules PM340, Baugröße FSC, alle Angaben in mm (inch)

9.4.2.2 Power Modules Blocksize mit Schirmanschluss-Satz

Maßbilder Power Modules mit Schirmanschluss-Satz, Baugrößen FSA bis FSF

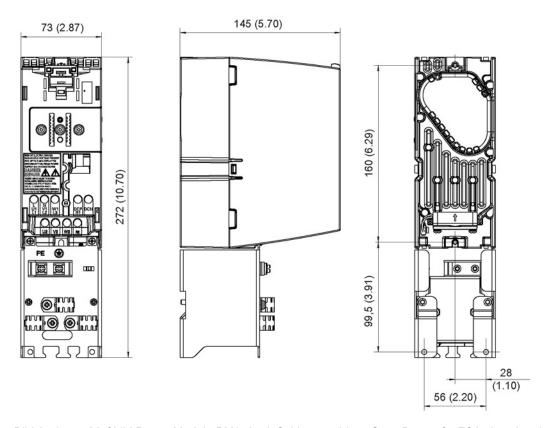


Bild 9-19 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSA, Angaben in mm (inch)

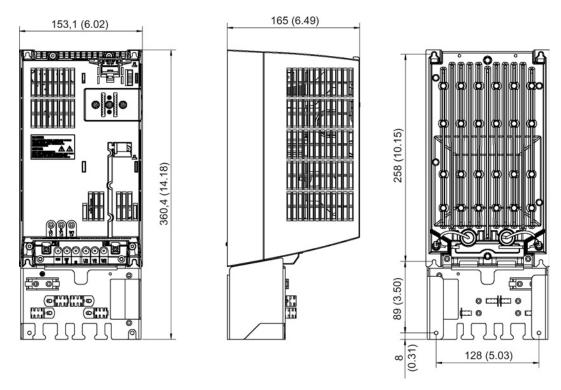


Bild 9-20 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSB, Angaben in mm (inch)

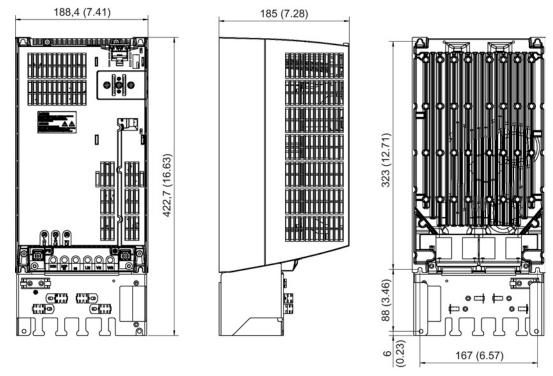


Bild 9-21 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSC, Angaben in mm (inch)

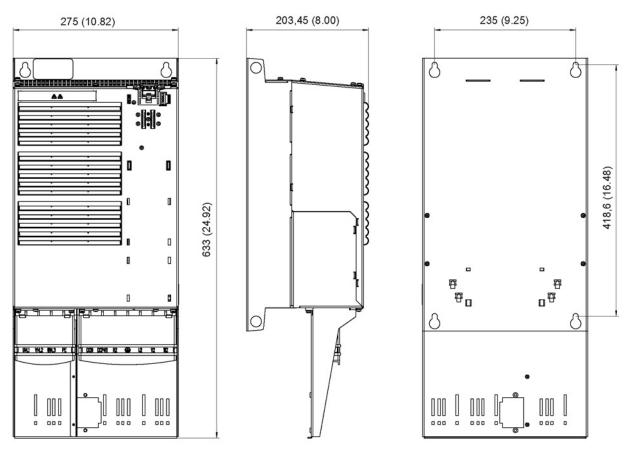


Bild 9-22 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSD mit integriertem Netzfilter, Angaben in mm (inch)

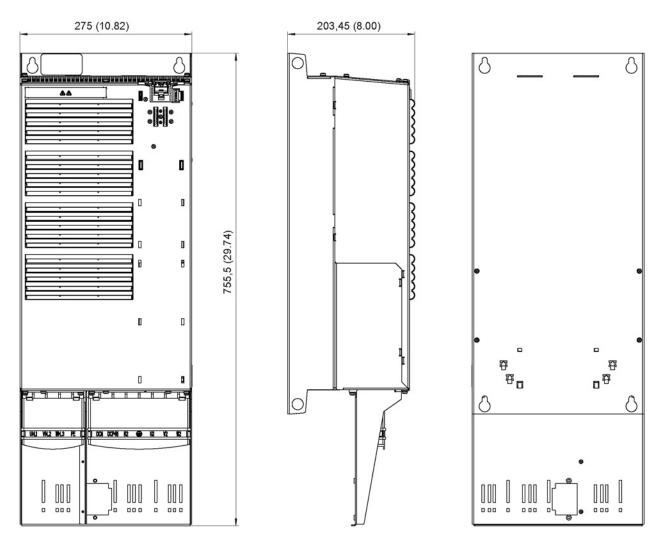


Bild 9-23 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSE mit integriertem Netzfilter, Angaben in mm (inch)

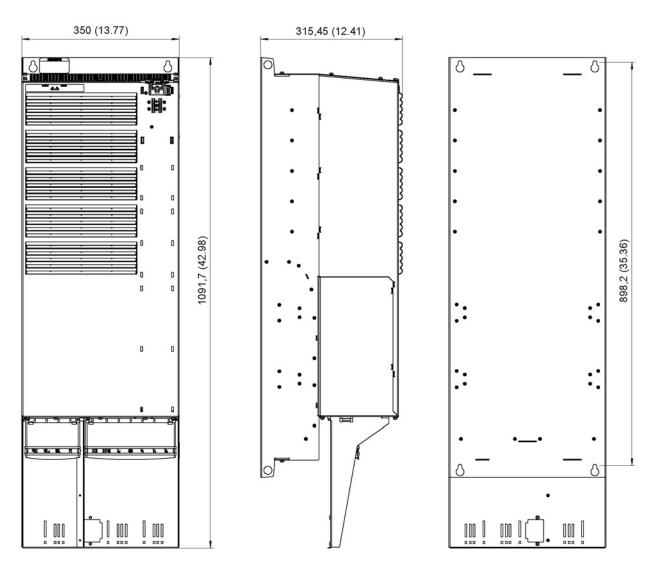


Bild 9-24 Maßbild Power Module PM340 mit Schirmanschluss-Satz, Baugröße FSF mit integriertem Netzfilter, alle Angaben in mm (inch)

9.4.3 Montage

9.4.3.1 Power Modules Blocksize PM340

Die Abbildungen zeigen die Montage des Schirmanschluss-Satzes an die Power Modules PM340 verschiedener Baugrößen.

Baugröße FSA

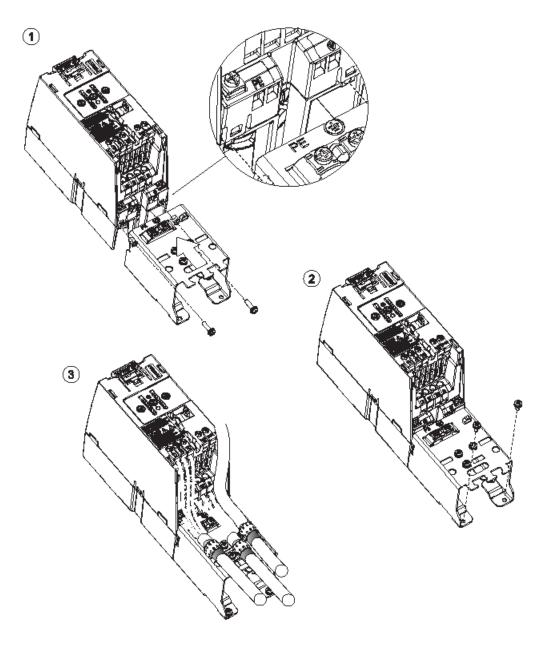


Bild 9-25 Montage: Schirmanschluss-Satz an Power Module PM340 (FSA)

Baugröße FSB / FSC

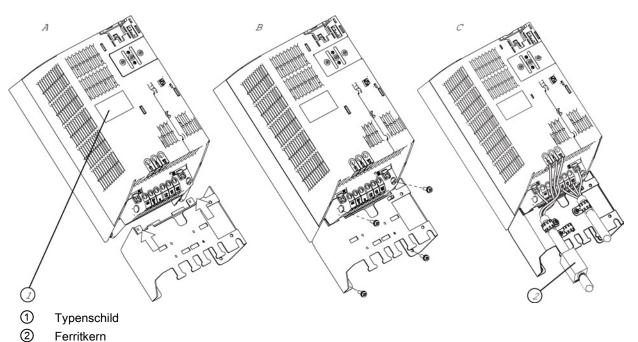


Bild 9-26 Montage: Schirmanschluss-Satz und Ferritkern an Power Module PM340 (FSB / FSC)

Montage des Ferritkerns

Zur Dämpfung hochfrequenter Leitungsstörungen sollte der mitgelieferte Ferritkern an der Netzleitung montiert werden. Der im Bild unten dargestellte geteilte Ferritkern wird um die Leitung gelegt und durch Zuklappen verschlossen. Der Kern klemmt sich aufgrund der eingearbeiteten Verengung - siehe U-förmiger Kragen im folgenden Bild - selbst an der Leitung fest und ist damit gegen Verschieben gesichert.

1 Kragen (U-förmig)

Bild 9-27 Ferritkern, geteilt

Sollte der Kern bei geringen Leitungsdurchmessern nicht fest auf der Leitung positioniert sein, kann neben dem geschlossenen Ferritkern ein Kabelbinder fest um die Leitung gezurrt werden, um damit ein Verschieben des Ferrits quer zur Leitung zu verhindern.

Baugröße FSD / FSE

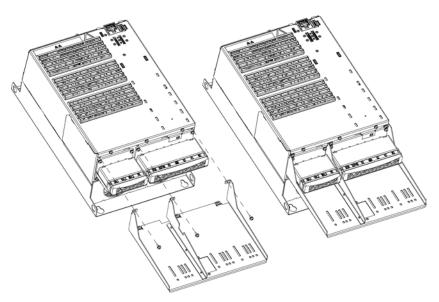


Bild 9-28 Montage: Schirmanschluss-Satz an Power Module PM340 (FSD/FSE)

Baugröße FSF

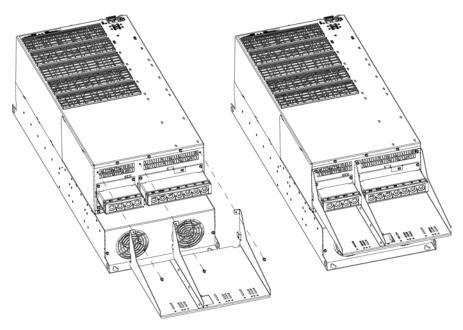
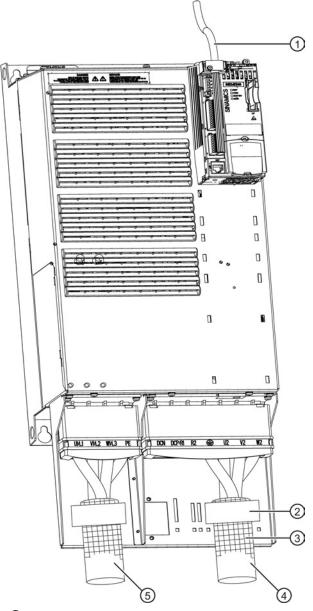



Bild 9-29 Montage: Schirmanschluss-Satz an Power Module PM340 (FSF)

9.4.3.2 Auflage der Leistungsleitungen

Die Abbildung zeigt die Auflage der Leistungsleitungen auf dem Schirmanschlusssatz am Beispiel des Power Module PM340, Baugröße FSD / FSE.

- 1 Signalleitung
- ② Befestigungsschelle
- 3 Schirmgeflecht
- 4 Motorleitung
- S Netzleitung

Bild 9-30 Power Module PM340 (Baugröße: FSD / FSE) mit Control Unit und Schirmanschluss-Satz

Schaltschrankbau und EMV bei Komponenten der Bauform Blocksize

10.1 Allgemeines

Die Komponenten der Baureihe SINAMCS S sind gemäß Schutzart IPXXB nach EN 60529 und als open type-Geräte nach UL 50 ausgeführt. Damit ist der Schutz gegen elektrischen Schlag sichergestellt.

Um auch den Schutz gegen mechanische und klimatische Beanspruchungen sicherzustellen, sollten die Komponenten nur in Gehäusen, Schränken oder abgeschlossenen elektrotechnischen Betriebsräumen betrieben werden, die mindestens die Schutzart IP54 aufweisen und als enclosure type 12 nach UL 50 klassifiziert sind.

Der Einsatz von fertig konfektionierten MOTION-CONNECT-Leitungen wird empfohlen.

Hinweis

Funktionale Sicherheit der SINAMICS-Komponenten

Die Komponenten müssen gegen leitfähige Verschmutzung geschützt werden, z. B. durch Einbau in einen Schaltschrank mit der Schutzart IP54 nach EN 60529. Unter der Voraussetzung, dass am Aufstellort das Auftreten von leitfähigen Verschmutzungen ausgeschlossen werden kann, ist auch eine entsprechend geringere Schutzart des Schaltschranks zulässig.

Zur Gewährleistung der Sicherheitsfunktionen von Safety-Integrated wird der Einbau in einen Schaltschrank der Schutzart IP54 nach EN 60529 empfohlen.

Niederspannungs-Schaltgerätekombinationen

Teil 1: Typgeprüfte und partiell typgeprüfte Niederspannungs-Schaltgerätekombinationen

Wird der Antriebsverband SINAMICS S für die elektrische Ausrüstung von Maschinen eingesetzt, gelten zusätzlich die zutreffenden Anforderungen von EN 60204-1.

Sicherheit von Maschinen

Elektrische Ausrüstung von Maschinen

Teil 1: Allgemeine Anforderungen

Alle Hinweise zur Geräteauswahl in diesem Abschnitt gelten für:

- Betrieb am TN-Netz
- Bereich der Betriebsspannung von 1 AC 200 V bis 3 AC 440 V

10.2 Sicherheitshinweise für den Schaltschrankbau

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ WARNUNG

Lebensgefahr bei Unterbrechen des externen Schutzleiters durch hohe Ableitströme

Die Antriebskomponenten führen einen hohen Ableitstrom über den Schutzleiter. Das Berühren leitfähiger Teile kann bei Unterbrechung des Schutzleiters zum Tod oder schweren Verletzungen führen.

- Sorgen Sie dafür, dass der externe Schutzleiter zumindest eine der nachfolgenden Bedingungen erfüllt:
 - Er ist gegen mechanische Beschädigung geschützt verlegt.1)
 - Bei einem Einzelleiter weist er einen Querschnitt von mindestens 10 mm² Cu auf.
 - Als Ader eines Mehraderkabels weist er einen Querschnitt von mindestens 2,5 mm²
 Cu auf.
 - Er weist einen parallelen zweiten Schutzleiter mit gleichem Querschnitt auf.
 - Er entspricht den örtlichen Vorschriften für Ausrüstungen mit erhöhtem Ableitstrom.
 - ¹⁾ Innerhalb von Schaltschränken oder geschlossenen Maschinengehäusen verlegte Leitungen gelten als ausreichend geschützt gegen mechanische Beschädigungen.

/ WARNUNG

Lebensgefahr durch elektrischen Schlag bei unsachgemäß verlegten Bremsleitungen

Bei Verlegung von Bremsleitungen ohne sichere elektrische Trennung kann es zu Isolationsversagen mit elektrischem Schlag kommen.

- Schließen Sie die Haltebremse mit der vorgesehenen MOTION-CONNECT Leitung an.
- Verwenden Sie nur Fremdleitungen mit sicher elektrisch getrennten Bremsadern oder verlegen Sie die Bremsadern sicher elektrisch getrennt.

/ WARNUNG

Brandgefahr durch Überhitzung bei Überschreiten der zulässigen Längen von Leistungsleitungen

Durch zu lange Leistungsleitungen kann es zur Überhitzung von Komponenten mit Brand und Rauchentwicklung kommen.

• Die in den Technischen Daten aufgeführten Leitungslängen (z. B. Motorleitung, Zwischenkreisleitung) dürfen nicht überschritten werden.

/ WARNUNG

Verletzungsgefahr durch Fremdkörper im Gerät

In das Gerät fallende Teile (z. B.: Bohrspäne, Aderendhülsen) können zu Kurzschlüssen und Schäden der Isolierung führen. Daraus können schwere Verletzungen entstehen (Lichtbogen, Knall, herausfliegende Teile).

- Führen Sie Montage und sonstige Arbeiten grundsätzlich im spannungsfreien Zustand der Geräte durch.
- Decken Sie die Lüftungsschlitze während der Montage des Schaltschranks ab und entfernen Sie die Abdeckung vor dem Einschalten.

ACHTUNG

Schäden durch Verwendung falscher Kupplungen oder Schrankdurchführungen bei DRIVE-CLiQ-Verbindungen

Beim Einsatz falscher oder nicht frei gegebener Kupplungen oder Schrankdurchführungen bei DRIVE-CLiQ-Verbindungen können Schäden oder Funktionsstörungen an Geräten bzw. dem System auftreten.

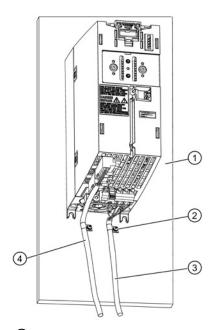
 Verwenden Sie ausschließlich die im Kapitel Zubehör (Seite 395) beschriebenen DRIVE-CLiQ-Kupplungen und DRIVE-CLiQ-Schrankdurchführungen.

10.3 Hinweise zur Elektromagnetischen Verträglichkeit (EMV)

Anforderungen zur Realisierung der EMV sind in EN 61000-6-2, EN 61000-6-4, EN 61800-3, EN 60204-1 und im Projektierungshandbuch "EMV-Aufbaurichtlinie" (Bestellnummer 6FC5297-0AD30-0xPx) zu finden. Mit den im Projektierungshandbuch "EMV-Aufbaurichtlinie" beschriebenen Maßnahmen kann die Konformität zur EMV-Richtlinie der EG sichergestellt werden.

Für den Einbau von Komponenten in Schaltschränke müssen zur Erfüllung der EMV-Richtlinie zusätzlich folgende Bedingungen erfüllt sein:

- Betrieb am TN- oder TT-Netzsystem mit geerdetem Sternpunkt
- SINAMICS-Netzfilter
- Berücksichtigung der Hinweise zur Schirmung von Leitungen und zum Potenzialausgleich
- Anwendung der empfohlenen Siemens–Leistungs- und Signalleitungen
- Für DRIVE-CLiQ-Verbindungen sind ausschließlich Siemens-Leitungen zu verwenden MOTION-CONNECT-Leitungen siehe Katalog PM21


10.4 Schirmung und Verlegung der Leitungen

Insbesondere zur Erfüllung von Anforderung der EMV müssen bestimmte Leitungen hinreichend getrennt von anderen Leitungen verlegt sein und bestimmte Komponenten in ausreichendem Abstand montiert sein. Zur Erfüllung der EMV-Anforderungen müssen folgende Leitungen geschirmt verlegt werden:

- Netzzuleitungen von Netzfilter über Netzdrossel zum Power Module
- Alle Motorleitungen, ggf. inklusive der Leitungen für die Motorhaltebremse
- · Leitungen für "schnelle" Eingänge der Control Unit
- Leitungen für analoge Gleichspannungs- oder Gleichstromsignale
- Signalleitungen für Geber
- Leitung für Temperatursensoren

Maßnahmen, die vergleichbare Ergebnisse erbringen (z. B. Verlegung hinter Montageplatten, entsprechende Abstände), können auch verwendet werden. Hiervon ausgeschlossen sind Maßnahmen, die sich auf die Ausführung, Montage und Verlegung von Motor-Leistungsleitungen und Signalleitungen beziehen. Bei Einsatz von ungeschirmten Leitungen von der Netzanschluss-Stelle bis zum Netzfilter ist darauf zu achten, dass keine störbehaftete Leitung parallel zu dieser geführt wird.

Die Leitungsschirme sind möglichst nahe an den Leiteranschluss-Stellen großflächig aufzulegen, sodass die Verbindung mit der Masse des Schaltschranks mit niedriger Impedanz sichergestellt ist.

- Metallrückwand
- ② Schelle zur Befestigung der Abschirmung des Motor- und des Netzkabels an der Metallrückwand
- 3 Motorleitung (geschirmt)
- 4 Netzeingang (geschirmt)

Bild 10-1 Schirmung eines Power Module PM240-2 Baugröße FSA

Alternativ können die Leitungsschirme mittels Rohrschellen und Zackenschienen auf die metallische Montageplatte kontaktiert werden. Die Leitungslänge zwischen Schirmanschlusspunkt und Anschlussklemmen für Leitungsadern ist so kurz wie möglich zu halten.

Zum Auflegen der Schirme für Leistungsleitungen von Power Modules stehen Schirmanschlussbleche bzw. Schirmanschlusssätze mit vorbereiteter Schellenkontaktierung zur Verfügung.

Alle Leitungen innerhalb des Schaltschranks sollen so nahe wie möglich an den mit Schrankmasse verbundenen Konstruktionsteilen, wie Montageplatte oder Hüllteile des Schranks, gelegt sein. Kanäle aus Stahlblech oder das Legen der Leitungen, abgeschottet durch Stahlblech, z. B. zwischen Montageplatte und Rückwand, ist hinsichtlich der Schirmung ausreichend.

Die Führung von ungeschirmten Leitungen, angeschlossen am Antriebsverband, in unmittelbarer Nähe von Störquellen, z. B. Transformatoren, ist weitestgehend zu vermeiden. Signalleitungen (geschirmt und ungeschirmt), angeschlossen am Antriebsverband, müssen weit entfernt von starken Fremdmagnetfeldern (z. B. Transformatoren, Netzdrossel) geführt werden. In beiden Fällen wird ein Abstand von ≥ 300 mm in der Regel ausreichend sein.

Verlegung der 24-V-Leitungen

Bei der Verlegung der 24-V-Leitungen ist zusätzlich Folgendes zu beachten:

- Es sollte max. 1 Leiterpaar gebündelt werden.
- 24-V-Leitungen sind separat von anderen Leitungen und Leitern, die Betriebsstrom führen können, zu verlegen.
- 24-V-Leitungen dürfen nicht parallel zu Leistungsleitungen verlegt werden.
- 24-V-Leitungen sind wie Leistungsleitungen so an die Komponenten heranzuführen, dass sie die Lüftungsschlitze nicht abdecken

Einsatzbedingungen für 24-V-Leitungen

- Umgebungstemperatur 55 °C
- Leitergrenztemperatur ≤ 70 °C für Betrieb mit Bemessungslaststrom
- Leitungslänge max.:
 - 10 m für die 24-V-Versorgungsleitungen
 - 30 m für Signalleitungen ohne Zusatzbeschaltung

10.5 Versorgung DC 24 V

10.5.1 Allgemeines

Die Spannung DC 24 V ist erforderlich zur Versorgung:

- Der Lastspannung der Digitalausgänge der Control Units
 Die Control Units werden über PM-IF mit Spannung versorgt. In folgenden Fällen müssen zusätzlich 24 V angeschlossen werden:
 - Inbetriebnahme / Diagnose bei abgeschalteter Versorgungsspannung der Power Modules.
 - Betrieb der Digitalausgänge CU310-2
- 2. Der Elektronik von Sensor Modules
- 3. Der Safe Brake Relays (Motorhaltebremsen)

Andere Verbraucher dürfen an diese Stromversorgungsgeräte angeschlossen sein, wenn sie separat gegen Überstrom geschützt sind.

Hinweis

Die Elektronikstromversorgung ist vom Anwender so zu versorgen, wie es im Kapitel Systemdaten (Seite 35) beschrieben ist.

Beim Anschluss an eine "Gleichstromversorgung" im Sinne der EN 60204-1:1997, Kap. 4.3.3 können wegen der dort zugelassenen Spannungsunterbrechungen Funktionsstörungen auftreten.

ACHTUNG

Beschädigung weiterer Verbraucher durch Überspannung

Überspannung von geschalteten Induktivitäten (Schütze, Relais) kann angeschlossene Verbraucher beschädigen.

Installieren Sie einen geeigneten Überspannungsschutz.

Hinweis

Funktionsstörung durch zu niedrige 24-V-Versorgungsspannung

Falls die 24-V-Versorgungsspannung den angegebenen Minimalwert an einem Gerät im Verband unterschreitet, kann eine Funktionsstörung auftreten.

 Wählen Sie die Eingangsspannung so hoch, dass am letzten Gerät ausreichend Spannung anliegt. Überschreiten Sie dabei nicht den Maximalwert der Versorgungsspannung. Speisen Sie die Spannung ggf. an verschiedenen Stellen in den Verband ein.

Hinweis

Zum Betrieb von Motoren mit eingebauter Haltebremse ist eine geregelte DC-Stromversorgung notwendig. Die Spannungsversorgung erfolgt über den 24-V-Anschluss (Safe Brake Relay). Die Spannungstoleranzen der Motorhaltebremsen (24 V ± 10 %) und die Spannungsverluste der Anschlussleitungen sind zu beachten.

Die DC-Stromversorgung sollte auf 26 V eingestellt werden. Dadurch kann sichergestellt werden, dass die Versorgungsspannung der Bremse im zulässigen Bereich liegt, wenn die folgenden Randbedingungen erfüllt sind:

- Verwendung von Siemens Drehstrommotoren
- Verwendung von Siemens MOTION-CONNECT-Leistungsleitungen
- Motorleitungslängen maximal 100 m

10.5.2 Überstromschutz

Die Leitungen auf der Primär- und Sekundärseite des 24-V-Stromversorgungsgeräts müssen gegen Überstrom geschützt sein.

Der Schutz auf der Primärseite richtet sich nach den Hinweisen des Geräteherstellers.

Der Schutz auf der Sekundärseite richtet sich nach den vorliegenden Gegebenheiten. Dabei sind folgende Punkte zu beachten:

- Belastung durch Verbraucher incl. des Gleichzeitigkeitsfaktors in Abhängigkeit vom Betrieb der Maschine
- Strombelastbarkeit der anzuwendenden Leiter und Leitungen im normalen Betrieb und im Kurzschlussfall
- Umgebungstemperatur
- Bündelung von Leitungen (Verlegen im gemeinsamen Kanal)
- Art der Leitungsverlegung nach EN 60204-1

Die Überstromschutzorgane können nach EN 60204-1, Abschn. 14 bestimmt werden.

Als Überstromschutzorgan auf der Primärseite werden Leistungsschalter nach Siemens-Katalog LV 1 und LV 1T empfohlen.

Als Überstromschutzorgan auf der Sekundärseite werden Leitungsschutzschalter oder SITOP select (Bestellnummer 6EP1961-2BA00) empfohlen. Die Leitungsschutzschalter sind ebenfalls nach Siemens-Katalog LV 1 und LV 1T auswählbar.

Als Überstromschutzorgane für Leitungen und Schienen werden Leitungsschutzschalter empfohlen. Das Massepotenzial M muss mit dem Schutzleitersystem verbunden werden (PELV / SELV).

Bei der Auswahl der Leitungsschutzschalter sind die lokalen Installationsvorschriften zu beachten.

10.5 Versorgung DC 24 V

Tabelle 10-1 Leitungsschutzschalter nach Aderquerschnitt und Temperatur

Aderquerschnitt	Max. Wert bis 40 °C	Max. Wert bis 55 °C
1,5 mm ²	10 A	6 A
2,5 mm ²	16 A	10 A
4 mm ²	25 A	16 A
6 mm ²	32 A	20 A

Das Auslöseverhalten der Leitungsschutzschalter ist so auszuwählen, dass Verbraucher bei einem Kurzschluss des Stromversorgungsgeräts vor dem auftretenden Maximalstrom geschützt bleiben.

10.5.3 Überspannungsschutz

Überspannungsschutzeinrichtungen sind bei großen Leitungslängen erforderlich.

- Versorgungsleitungen > 10 m
- Signalleitungen > 30 m

Um die 24-V-Versorgung der Komponenten und die 24-V-Signalleitungen vor Überspannung zu schützen, werden folgende Überspannungsschutzelemente der Fa. Weidmüller empfohlen:

Tabelle 10-2 Empfehlungen für den Überspannungsschutz

Gleichstromversorgung	24 V-Signalleitungen
Weidmüller	Weidmüller
ArtNr.: PU III R 24V	ArtNr.: MCZ OVP TAZ
Bestellnummer: 8860360000	Bestellnummer: 844915 0000

Die Überspannungsschutzelemente müssen immer an der Grenze des zu schützenden Bereichs, z. B. am Schaltschrankeintritt, platziert werden.

10.5.4 Typische 24-V-Stromaufnahme der Komponenten

Für den SINAMICS S120-Antriebsverband ist eine separate 24 V-Stromversorgung zu verwenden.

Für die Berechnung der Stromversorgung DC 24 V für die Komponenten kann folgende Tabelle verwendet werden. Die Werte der typischen Stromaufnahme dienen als Projektierungsgrundlage.

Tabelle 10-3 Übersicht DC 24 V-Stromaufnahme

Komponente	Typische Stromaufnahme [A _{DC}]		
Control Units und Control Unit Adapter			
CU310-2 DP ohne Last	0,8		
je Digitalausgang	0,1		
CU310-2 PN ohne Last	0,8		
je Digitalausgang	0,1		
CUA31 ohne DRIVE-CLiQ	0,15		
CUA32 ohne DRIVE-CLiQ und Geber	0,15		
Geber (max.)	0,4		
DRIVE-CLiQ und Bremse			
DRIVE-CLiQ (z. B. Motoren mit DRIVE-CLiQ-Schnittstelle)	0,19		
Bremse (z. B. Motorhaltebremse)	typ. 0,4 bis 1,1; max. 2		
Sensor Modules Cabinet			
SMC10			
ohne / mit Gebersystem	0,20 / 0,35		
SMC20			
ohne / mit Gebersystem	0,20 / 0,35		
SMC30			
ohne / mit Gebersystem	0,20 / 0,55		
Sensor Modules External			
SME20			
ohne / mit Gebersystem	0,15 / 0,25		
SME25			
ohne / mit Gebersystem	0,15 / 0,25		
SME120			
ohne / mit Gebersystem	0,20 / 0,30		
SME125			
ohne / mit Gebersystem	0,20 / 0,30		

10.5 Versorgung DC 24 V

10.5.5 Auswahl der Stromversorgungsgeräte

Empfohlen wird die Anwendung der Geräte nach folgender Tabelle. Diese Geräte erfüllen die zutreffenden Anforderungen von EN 60204-1.

Tabelle 10-4 Empfehlungen SITOP Power modular

Bemessungs- Ausgangsstrom [A]	Phasen	Eingangsnennspannung [V] Arbeitsspannungsbereich [V]	Kurzschluss-Strom [A]	Bestellnummer
5	1/2	AC 120 230 / 230 500 85 264 / 176 550	Ca. 5,5 (Hochlauf) typ. 15 für 25 ms (Betrieb)	6EP1333-3BA00-8AC0
10	1/2	AC 120 230 / 230 500 85 264 / 176 550	Ca. 12 (Hochlauf) typ. 30 für 25 ms (Betrieb)	6EP1334-3BA00-8AB0
20 1/2		AC 120 / 230 85 132 / 176 264	Ca. 23 (Hochlauf) typ. 60 für 25 ms (Betrieb)	6EP1336-3BA00-8AA0
	3	3 AC 230 / 400 288 / 500 320 550		6EP1436-3BA00-8AA0
40	1/2	AC 120 / 230 85 132 / 176 264	Ca. 46 (Hochlauf) typ. 120 für 25 ms (Betrieb)	6EP1337-3BA00-8AA0
	3	3 AC 230 / 400 288 / 500 320 550		6EP1437-3BA00-8AA0

Tabelle 10-5 Empfehlung Control Supply Module

Bemessungsaus- gangsstrom [A]	Eingangsspannungsbereich [V]	Kurzschluss-Strom [A]	Bestellnummer
20	3 AC 380 -10 % (-15 % < 1 min) bis 3 AC 480 +10 %	< 24	6SL3100-1DE22-0AAx
	DC 300 800		

Siehe auch Kataloge PM21 bzw. NC61.

/ WARNUNG

Lebensgefahr durch gefährliche Spannung beim Anschluss einer externen Stromversorgung

Beim Berühren unter Spannung stehender Teile können Sie schwere Verletzungen oder Tod erleiden.

- Verbinden Sie das Massepotenzial mit dem Schutzleiteranschluss.
- Montieren Sie die Stromversorgung in räumlicher Nähe zum Antriebsverband.
 Idealerweise erfolgt der Aufbau auf einer gemeinsamen Montageplatte. Bei Verwendung unterschiedlicher Montageplatten muss deren elektrische Verbindung den Anforderungen der Aufbaurichtlinie EMV entsprechen.

10.6 Verbindungstechnik

10.6.1 DRIVE-CLiQ-Signalleitungen

10.6.1.1 Übersicht

Für die Verbindung von DRIVE-CLiQ-Komponenten stehen verschiedene konfektionierte und unkonfektionierte DRIVE-CLiQ-Signalleitungen zur Verfügung. Auf die folgenden konfektionierten DRIVE-CLiQ-Signalleitungen wird in den nächsten Kapiteln näher eingegangen:

- Signalleitungen ohne 24-V-Adern mit RJ45-Steckern
- Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Steckern
- Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Stecker und M12-Buchse

Tabelle 10- 6 Übersicht konfektionierter DRIVE-CLiQ-Signalleitungen

Typ der DRIVE-CLiQ-	24-V-Adern	Schutzart		Steckertyp
Signalleitung		IP20	IP67	
6SL3060-4A 6FX2002-1DC		х	х	RJ45
6FX5002-2DC00 bis2DC20 6FX8002-2DC00 bis2DC20	х	х	х	DRIVE-CLiQ
6FX5002-2DC30 6FX8002-2DC30	х	X (DRIVE-CLiQ)	X (M12)	DRIVE-CLiQ / M12

10.6 Verbindungstechnik

10.6.1.2 DRIVE-CLiQ-Signalleitungen ohne DC 24-V-Adern

Konfektionierte DRIVE-CLiQ-Signalleitungen ohne DC-24-V-Adern werden zur Verbindung von Komponenten mit DRIVE-CLiQ-Anschluss eingesetzt, die eine eigene oder externe DC 24-V-Stromversorgung haben. Sie sind hauptsächlich für den Einsatz im Schaltschrank vorgesehen. Die Signalleitungen sind mit RJ45-Steckern in den Schutzarten IP20 und IP67 verfügbar.

Tabelle 10-7 Tatsächliche Leitungslängen der DRIVE-CLiQ-Brücken

DRIVE-CLiQ-Brücke	Leitungslänge L ¹⁾
50 mm	110 mm
100 mm	160 mm
150 mm	210 mm
200 mm	260 mm
250 mm	310 mm
300 mm	360 mm
350 mm	410 mm

¹⁾ Leitungslänge ohne Stecker

Leitungslängen ab 600 mm dienen der Verdrahtung für andere Anwendungen (z. B. Aufbau einer 2. Zeile im Antriebsverband, Aufbau einer Sternverdrahtung usw.)

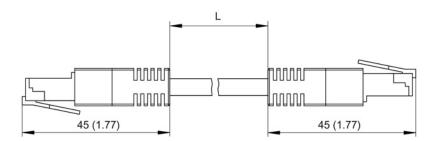


Bild 10-2 Drive-CLiQ-Signalleitung ohne DC-24-V-Adern (IP20)

10.6.1.3 DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Steckern

Die DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Steckern verfügen über DC 24-V-Adern. Sie werden für Komponenten mit DRIVE-CLiQ-Anschluss eingesetzt, wenn höhere Anforderungen wie mechanische Beanspruchung und Ölbeständigkeit erfüllt werden müssen. Die Signalleitungen werden z. B. für Verbindungen außerhalb des Schaltschranks eingesetzt

Die maximale Leitungslänge der DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Steckern beträgt:

- 100 m für MOTION-CONNECT 500-Leitungen
- 75 m für MOTION-CONNECT 800PLUS-Leitungen

Die Signalleitungen sind in den Schutzarten IP20 und IP67 verfügbar.

Hinweis

DRIVE-CLiQ-Schrankdurchführung für DRIVE-CLiQ-Stecker

Angaben zur Schrankdurchführung siehe DRIVE-CLiQ-Schrankdurchführung (Seite 395).

10.6.1.4 DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Stecker und M12-Buchse

Die DRIVE-CLiQ-Signalleitungen MOTION-CONNECT mit DRIVE-CLiQ-Stecker und M12-Buchse verfügen über DC 24-V-Adern. Sie stellen die Verbindung zwischen Komponenten mit DRIVE-CLiQ-Anschluss und einem mit DRIVE-CLiQ ASIC ausgestatteten direkten Messsystem mit 8-poligem M12-Stecker her. So können Messsysteme von Fremdherstellern unmittelbar an SINAMICS S120 angeschlossen werden.

Basisleitung

Die konfektionierte Basisleitung besitzt acht Adern, von denen vier für die Datenübertragung und zwei für die 24-V-Versorgung verwendet werden. Sie bietet die Umsetzung von einem DRIVE-CLiQ-Stecker (IP20) auf eine M12-Buchse (IP67).

Bild 10-3 DRIVE-CLiQ-Basisleitung mit DRIVE-CLiQ-Stecker und M12-Buchse

10.6 Verbindungstechnik

Verlängerung

Die konfektionierte Verlängerung einer Basisleitung verfügt über einen M12-Stecker (IP67) und eine M12-Buchse (IP67).

Bild 10-4 DRIVE-CLiQ-Verlängerung mit M12-Stecker und M12-Buchse

Hinweis

Maximale Anzahl an Verlängerungen

Es können maximal zwei Verlängerungen eingesetzt werden. Bei mehr als zwei Verlängerungen können Störungen bei der Datenübertragung auftreten.

Hinweis

Maximale zulässige Gesamtleitungslänge

Die maximal zulässige Gesamtleitungslänge zwischen dem Messsystem und der DRIVE-CLiQ-Buchse der SINAMICS S120-Komponente beträgt 30 m. Bei einer größeren Gesamtleitungslänge können Störungen bei der Datenübertragung auftreten. Daher darf an eine Basisleitung von 30 m Länge keine zusätzliche Verlängerung angeschlossen werden.

Hinweis

DRIVE-CLiQ-Schrankdurchführung mit M12-Stecker

Angaben zur Schrankdurchführung siehe DRIVE-CLiQ-Schrankdurchführung (Seite 395).

10.6.1.5 Vergleich der DRIVE-CLiQ-Signalleitungen

Die DRIVE-CLiQ-Signalleitungen sind für unterschiedliche Einsatzfälle ausgelegt. Die folgende Tabelle bietet eine Übersicht der wichtigsten Eigenschaften.

Tabelle 10-8 Eigenschaften der DRIVE-CLiQ-Signalleitungen

DRIVE-CLiQ-Signalleitung	DRIVE-CLIQ	DRIVE-CLIQ MOTION-CONNECT 500	DRIVE-CLIQ MOTION-CONNECT 800PLUS
Zulassungen			
VDE cURus oder UR/CSA	Ja UL STYLE 2502/CSA- N.210.2-M90	Ja UL STYLE 2502/CSA- N.210.2-M90	Ja UL STYLE 2502/CSA- N.210.2-M90
UR-CSA File Nr. ¹⁾ RoHS-konform	Ja Ja	Ja Ja	Ja Ja
Bemessungsspannung U ₀ /U nach EN 50395	30 V	30 V	30 V
Prüfspannung, effektiv	500 V	500 V	500 V
Betriebstemperatur an der Ob	perfläche		
Fest verlegt Beweglich	-20 +80 °C -	-20 +80 °C 0 60 °C	-20 +80 °C -20 +60 °C
Zugbeanspruchung, max.			
Fest verlegt Beweglich	45 N/mm ²	80 N/mm ² 30 N/mm ²	50 N/mm ² 20 N/mm ²
Kleinster Biegeradius			
Fest verlegt Beweglich	50 mm -	35 mm 125 mm	35 mm 75 mm
Torsionsbeanspruchung	-	30°/m absolut	30°/m absolut
Biegungen	-	100000	10 Mio.
Max. Verfahrgeschwindigkeit	-	30 m/min	300 m/min
Max. Beschleunigung	-	2 m/s ²	50 m/s ² (3 m Verfahrweg) ²⁾
Isolationsmaterial	FCKW-/silikonfrei	FCKW-/silikonfrei	FCKW-/halogen-/silikonfrei IEC 60754-1/DIN VDE 0472-815
Ölbeständigkeit	EN 60811-2-1	EN 60811-2-1 (nur Mineralöl)	EN 60811-2-1
Außenmantel	PVC grau RAL 7032	PVC DESINA-Farbe grün RAL 6018	PUR, HD22.10 S2 (VDE 0282, Teil 10) DESINA-Farbe grün, RAL 6018
Flammenhemmend	EN 60332-1-1 bis 1-3	EN 60332-1-1 bis 1-3	EN 60332-1-1 bis 1-3

¹⁾ Die File-Nummer ist auf dem Leitungsmantel aufgedruckt.

²⁾ Kennlinien zur Beschleunigung finden Sie im Katalog "D31" im Kapitel "Verbindungstechnik MOTION-CONNECT".

10.6 Verbindungstechnik

10.6.1.6 Mischeinsatz von MOTION-CONNECT 500 und MOTION-CONNECT 800PLUS

Prinzipiell können MOTION-CONNECT 500-Leitungen und MOTION-CONNECT 800PLUS-Leitungen gemischt verwendet werden.

Basisleitungen und Verlängerungen für MOTION-CONNECT-Leitungen mit DRIVE-CLiQ-Stecker und M12-Buchse können ohne Einschränkungen gemischt eingesetzt werden.

Für den gemischten Einsatz von MOTION-CONNECT-Leitungen mit DRIVE-CLiQ-Steckern gelten die unten stehenden Bedingungen.

Einsatz von DRIVE-CLiQ-Kupplungen

Zur Kombination von MOTION-CONNECT 500-Leitungen und MOTION-CONNECT 800PLUS-Leitungen mit DRIVE-CLiQ-Steckern werden DRIVE-CLiQ-Kupplungen verwendet. Die maximal zulässige Leitungslänge wird wie folgt berechnet:

 $\Sigma MC500 + 4/3 * \Sigma MC800 PLUS + n_c * 5 m \le 100 m$

ΣMC500: Gesamtlänge aller MC500-Leitungsstücke (feste Verlegung)

ΣMC800PLUS: Gesamtlänge aller MC800PLUS-Leitungsstücke (Schleppkette)

n_c: Anzahl der DRIVE-CLiQ-Kupplungen (0 bis maximal 3)

Mit dieser Kombination können DRIVE-CLiQ-Leitungen mit einer maximalen Leitungslänge von über 75 m auch für Anwendungen mit einer Schleppkette realisiert werden.

Tabelle 10- 9 Beispiele für maximale Leitungslängen beim Einsatz einer DRIVE-CLiQ-Kupplung

ΣMC500 (feste Verlegung)	87 m	80 m	66 m	54 m	40 m	30 m	20 m	10 m	5 m
ΣMC800PLUS (Schleppkette)	5 m	10 m	20 m	30 m	40 m	48 m	55 m	63 m	66 m
ΣMC500+ ΣMC800PLUS	92 m	90 m	86 m	84 m	80 m	78 m	75 m	73 m	71 m

Einsatz eines DRIVE-CLiQ Hub Module

Durch den Einsatz eines DRIVE-CLiQ Hub Module (DMC20 bzw. DME20) kann die maximal zulässige Leitungslänge für MOTION-CONNECT-Leitungen mit DRIVE-CLiQ-Steckern verdoppelt werden. Nach dem Hub gelten die gleichen Längenbedingungen wie vor dem Hub.

 Σ MC500 + 4/3 * Σ MC800PLUS + n_c * 5 m \leq 100 m vor dem Hub

 Σ MC500 + 4/3 * Σ MC800PLUS + n_c * 5 m \leq 100 m nach dem Hub

Eine Reihenschaltung (Kaskadierung) von zwei DRIVE-CLiQ Hub Modules ist möglich.

10.6.2 Leistungsleitungen für Motoren

10.6.2.1 Projektierung der Leitungslänge

Für den Fall, dass eine längere Motorleitung erforderlich ist, wird das Power Module überdimensioniert bzw. der dauerhaft zulässige Ausgangsstrom I_{Dauer} ist gegenüber dem Bemessungs-Ausgangsstrom I_N zu reduzieren. Für die Power Modules Blocksize gilt folgende Projektierung:

Tabelle 10- 10 Zulässige Leitungslängen für geschirmte Motorleitungen

Power Module PM340	Länge der MOTION-CONNECT Motorleitung (geschirmt)			
Bemessungs- Ausgangsstrom I _N	> 50 100 m	> 100 150 m	> 150 200 m	> 200 m
1,3 A 1,7 A 2,2 A 3,1 A 4,1 A	Nicht zulässig	Nicht zulässig	Nicht zulässig	Nicht zulässig
5,9 A 7,7 A	$I_{\text{max}} \le 1,1 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,6 \times I_{\text{N}}$	Nicht zulässig	Nicht zulässig	Nicht zulässig
10,2 A	$I_{\text{max}} \le 1,2 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,7 \times I_{\text{N}}$	Nicht zulässig	Nicht zulässig	Nicht zulässig
18 A	$I_{\text{max}} \le 1,2 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,7 \times I_{\text{N}}$	$I_{\text{max}} \le 0.7 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0.45 \times I_{\text{N}}$	Nicht zulässig	Nicht zulässig
25 A 32 A	$I_{\text{max}} \le 1,5 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,9 \times I_{\text{N}}$	$I_{\text{max}} \le 1,3 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,8 \times I_{\text{N}}$	Nicht zulässig	Nicht zulässig
38 A 45 A 60 A	$I_{\text{max}} \le 1,6 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,95 \times I_{\text{N}}$ 1)	$I_{\text{max}} \le 1,5 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,9 \times I_{\text{N}}$	$I_{\text{max}} \le 1,4 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,85 \times I_{\text{N}}$	Nicht zulässig
75 A 90 A	Immer zulässig	$I_{\text{max}} \le 1,6 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0,95 \times I_{\text{N}}$	$I_{\text{max}} \le 1.5 \times I_{\text{N}}$ $I_{\text{Dauer}} \le 0.9 \times I_{\text{N}}$	Nicht zulässig
110 A 145 A 178 A	Immer zulässig	Nicht zulässig	Nicht zulässig	Nicht zulässig

¹⁾ Bis 70 m immer zulässig

Die zulässige Leitungslänge einer ungeschirmten Motorleitung beträgt 150 % der Leitungslänge für eine geschirmte Motorleitung.

Um längere Motorleitungen zu ermöglichen, können auch Motordrosseln eingesetzt werden.

10.6 Verbindungstechnik

10.6.2.2 Vergleich der Leistungsleitungen MOTION-CONNECT

Leistungsleitungen MOTION-CONNECT 500 eignen sich für vorwiegend feste Verlegung. Die Leistungsleitungen MOTION-CONNECT 800PLUS erfüllen alle hohen mechanischen Anforderungen für den Einsatz in Schleppketten. Sie sind gegen Schneidöle beständig.

Tabelle 10- 11 Vergleich der Leistungsleitungen MOTION-CONNECT 500 und MOTION-CONNECT 800PLUS

Leistungsleitung	MOTION-CONNECT 500	MOTION-CONNECT 800PLUS
Zulassungen		
VDE ¹⁾ cURus oder UR/CSA UR-CSA File Nr. ²⁾ RoHS-konform	Ja UL758-CSA-C22.2-N.210.2-M90 Ja Ja	Ja UL758-CSA-C22.2-N.210.2-M90 Ja Ja
Bemessungsspannung U ₀ /U nach EN 5	0395	
Versorgungsadern Signaladern	600 V / 1000 V 24 V (EN) 1000 V (UL/CSA)	600 V / 1000 V 24 V (EN) 1000 V (UL/CSA)
Prüfspannung, effektiv		
Versorgungsadern Signaladern	4 kV 2 kV	4 kV 2 kV
Betriebstemperatur an der Oberfläche		
Fest verlegt Beweglich	-20 80 °C 0 60 °C	-50 80 °C -20 60 °C
Zugbeanspruchung, max.		
Fest verlegt Beweglich	50 N/mm ² 20 N/mm ²	50 N/mm ² 20 N/mm ²
Kleinster Biegeradius		
Fest verlegt Beweglich ³⁾	5 x D _{max} ca. 18 x D _{max}	4 x D _{max} ca. 8 x D _{max}
Torsionsbeanspruchung	30°/m absolut	30°/m absolut
Biegungen	100000	10 Mio. Ab 10 mm ² : 3 Mio.
Max. Verfahrgeschwindigkeit	30 m/min	Bis 300 m/min
Max. Beschleunigung	2 m/s ²	50 m/s ² (3 m) ⁴⁾
Isolationsmaterial	FKWC-/silikonfrei	FCKW-/halogen-/silikonfrei IEC 60754-1 / DIN VDE 0472-815
Ölbeständigkeit	EN 60811-2-1 (nur Mineralöl)	EN 60811-2-1
Außenmantel	PVC DESINA-Farbe orange RAL 2003	PUR, HD22.10 S2 (VDE 0282, Teil 10) DESINA-Farbe orange RAL 2003
Flammenhemmend	EN 60332-1-1 bis 1-3	EN 60332-1-1 bis 1-3

¹⁾ Die jeweilige Registriernummer ist auf dem Leitungsmantel aufgedruckt.

²⁾ Die File Nummer ist auf dem Leitungsmantel aufgedruckt.

 $^{^{3)}}$ Genaue Angaben zu D_{max} sowie zum kleinsten zulässigen Biegeradius finden Sie im Katalog D31 im Kapitel "Verbindungstechnik MOTION-CONNECT".

⁴⁾ Kennlinien zur Beschleunigung finden Sie im Katalog D31 im Kapitel "Verbindungstechnik MOTION-CONNECT".

10.6.3 Strombelastbarkeit und Derating-Faktoren für Leistungs- und Signalleitungen

Die Strombelastbarkeit PVC/PUR-isolierter Kupferleitungen ist für die Verlegearten B1, B2 und C unter Dauerbetriebsbedingungen in der Tabelle in Bezug auf eine Umgebungstemperatur der Luft von 40 °C angegeben. Für andere Umgebungstemperaturen müssen die Werte mit den Faktoren aus der Tabelle "Derating-Faktoren für abweichende Umgebungstemperaturen" berichtigt werden.

Tabelle 10- 12 Strombelastbarkeit gemäß EN 60204-1 für 40 °C Umgebungstemperatur

Querschnitt	Strombelastbarkeit effektiv; AC 50 / 60 Hz oder DC				
	bei Verlegeart				
	B1	B2	С		
mm²	Α	Α	Α		
Elektronik					
0,20	-	4,3	4,4		
0,50	-	7,5	7,5		
0,75	-	9	9,5		
Leistung					
0,75	8,6	8,5	9,8		
1,00	10,3	10,1	11,7		
1,50	13,5	13,1	15,2		
2,50	18,3	17,4	21		
4	24	23	28		
6	31	30	36		
10	44	40	50		
16	59	54	66		
25	77	70	84		
35	96	86	104		
50	117	103	125		
70	149	130	160		
95	180	165	194		
120	208	179	225		

Tabelle 10- 13 Strombelastbarkeit gemäß IEC 60364-5-52 für 40 °C Umgebungstemperatur

Querschnitt	Strombelastbarkeit effekt	Strombelastbarkeit effektiv; AC 50 / 60 Hz oder DC bei Verlegeart			
Leistung					
150	_	_	344		
185	_	_	392		
> 185	Werte sind der Norm zu entnehmen				

10.6 Verbindungstechnik

Verlegearten

- B1 Leitungen in Schutzrohren oder Installationskanälen
- B2 mehradrige Leitungen in Schutzrohren oder Installationskanälen
- C Leitungen an Wänden, ohne Schutzrohre und Installationskanäle

Tabelle 10- 14 Derating-Faktoren für abweichende Umgebungstemperaturen

Umgebungstemperatur der Luft [°C]	Derating-Faktor nach EN 60204-1, Tabelle D1
30	1,15
35	1,08
40	1,00
45	0,91
50	0,82
55	0,71
60	0,58

10.6.4 Federdruckklemmen

Tabelle 10- 15 Federdruckklemmen

Art Fe	Art Federdruckklemme				
1	Anschließbare Leitungsquerschnitte	Starr Flexibel Flexibel mit Aderendhülse ohne Kunststoffhülse Flexibel mit Aderendhülse mit Kunststoffhülse AWG / kcmil	0,21,5 mm ² 0,2 1,5 mm ² 0,25 1,5 mm ² 0,25 0,75 mm ² 24 16		
	Abisolierlänge	10 mm			
	Werkzeug	Schraubendreher 0,4 x 2,0 mm			

10.6.5 Schraubklemmen

Anschließbare Leitungsquerschnitte der Schraubklemmen

Die Art der Schraubklemme ist der Schnittstellenbeschreibung der jeweiligen Komponente zu entnehmen.

Tabelle 10- 16 Schraubklemmen

Art Sc	hraubklemme				
1	Anschließbare Leitungsquerschnitte	Flexibel Mit Aderendhülse ohne Kunststoffhülse Mit Aderendhülse mit Kunststoffhülse	0,14 1,5 mm ² 0,25 1,5 mm ² 0,25 0,5 mm ²		
Abisolierlänge 7 mm					
	Werkzeug	Schraubendreher 0,4 x 2,0 mm			
	Anzugsmoment	0,22 0,25 Nm			
2	Anschließbare Leitungsquerschnitte	Starr / flexibel Mit Aderendhülse ohne Kunststoffhülse Mit Aderendhülse mit Kunststoffhülse AWG / kcmil	0,2 2,5 mm ² 0,2 2,5 mm ² 0,2 1,5 mm ² 22 12		
	Abisolierlänge	6 7 mm			
	Werkzeug	Schraubendreher 0,5 x 3 mm			
	Anzugsmoment	0,4 0,5 Nm			

10.7 Schutzverbindung und Potenzialausgleich

Schutzverbindungen

Das Antriebssystem SINAMICS S ist für den Einsatz in Schaltschränken mit Schutzleiteranschluss ausgelegt.

Der Schutzleiteranschluss der SINAMICS-Komponenten ist mit dem Schutzleiteranschluss des Schaltschranks wie folgt zu verbinden:

Tabelle 10- 17 Leitungsquerschnitt für Schutzverbindungen aus Kupfer

Netzleitung in mm²	Schutzverbindung in mm² Kupfer	
Bis 16 mm ²	Wie Netzleitung	
Von 16 35 mm ²	16 mm ²	
Ab 35 mm ²	0,5 x Netzleitung	

Bei anderen Materialien als Kupfer ist der Querschnitt so zu vergrößern, dass mindestens der gleiche Leitwert erreicht wird.

Alle Anlagen- und Maschinenteile sind in das Schutzkonzept einzubeziehen.

Die Schutzverbindung (PE-Verbindung) der eingesetzten Motoren muss über die Motorleitung erfolgen. Aus EMV-Gründen ist der Leitungsschirm der Motorleitung sowohl am Power Module als auch am Motor flächig aufzulegen.

Zur Einhaltung der EMV-Grenzwerte ist der Antriebsverband auf einer gemeinsamen metallisch blanken Montageplatte anzuordnen. Die Montageplatte muss mit dem Schutzleiteranschluss des Schaltschranks niederimpedant verbunden werden.

Für die Schutzverbindungen der PROFIBUS-Teilnehmer sind Kupferleitungen mit einem entsprechenden Querschnitt (> 2,5 mm²) zu verwenden.

Weitere Informationen zu Erdung beim PROFIBUS finden Sie unter: http://www.profibus.com/fileadmin/media/wbt/WBT_Assembly_V10_Dec06/index.html

Funktionspotenzialausgleich

Eine Montageplatte, die mit dem Schutzleiteranschluss des Schaltschranks niederimpedant verbunden ist, dient gleichzeitig als Funktionspotenzial-Ausgleichsfläche. Innerhalb des Antriebsverbandes ist damit kein zusätzlicher Funktionspotenzialausgleich erforderlich.

Ist keine gemeinsame metallisch blanke Montageplatte vorhanden, muss ein möglichst gleichwertiger Funktionspotenzialausgleich mit Leitungsquerschnitten wie in oben stehender Tabelle oder mindestens leitwertgleich ausgeführt sein.

Für die Montage von Komponenten auf Hutschienen gelten die in der Tabelle angeführten Angaben auch für den Funktionspotenzialausgleich. Sind nur kleinere Anschlussquerschnitte an den Komponenten zulässig, ist der größtmögliche Querschnitt anzuwenden, z. B. 6 mm² für SMC. Diese Anforderungen gelten auch für dezentral außerhalb des Schaltschranks angeordnete Komponenten.

ACHTUNG

Zerstörung von Komponenten durch hohe Ableitströme

Die Control Unit oder andere PROFIBUS- bzw. PROFINET-Teilnehmer können zerstört werden, wenn über die PROFIBUS- bzw. PROFINET-Leitung erhebliche Ableitströme fließen.

 Verwenden Sie zwischen voneinander entfernten Teilen einer Anlage einen Funktionspotenzialausgleichs-Leiter mit einem Querschnitt von mindestens 25 mm².

Innerhalb eines Schaltschranks sind für den PROFIBUS keine Funktionspotenzialausgleichs-Leiter notwendig. Bei PROFIBUS-Verbindungen zwischen verschiedenen Gebäuden oder Gebäudeteilen muss ein Funktionspotenzialausgleich parallel zur PROFIBUS-Leitung verlegt werden. Dabei sind folgende Mindestquerschnitte nach IEC 60364-5-54 einzuhalten:

- Kupfer 6 mm²
- Aluminium 16 mm²
- Stahl 50 mm²

Weitere Informationen zum Potenzialausgleich beim PROFIBUS finden Sie unter: http://www.profibus.com/fileadmin/media/wbt/WBT_Assembly_V10_Dec06/index.html

Hinweis

Eine Nichtbeachtung der oben genannten Vorgaben zum Funktionspotenzialausgleich kann Feldbus-Schnittstellen stören oder zu Gerätedefekten führen.

Hinweis

PROFINET

Aufbaurichtlinien und Hinweise zu Schutzerdung und Potenzialausgleich für alle Typen und Topologien von PROFINET finden Sie im Punkt DOWNLOADS unter: http://www.profibus.com

10.8 Anordnung der Komponenten und Geräte

10.8.1 Allgemeines

Die Anordnung der Komponenten und Geräte erfolgt unter Berücksichtigung von:

- Platzbedarf
- Leitungslegung
- Biegeradien der Anschlussleitungen MOTION-CONNECT-Leitungen siehe Katalog PM21
- Entwärmung
- EMV

Die Anordnung erfolgt in der Regel zentral im Schaltschrank.

Die angegebenen Montagefreiräume oberhalb und unterhalb der Komponenten sind zu beachten.

10.8.2 Montage

Die Komponenten sind auf einer gut leitfähigen Montageebene zu montieren, sodass niedrige Impedanz zwischen Komponente und Montageebene sichergestellt ist. Montageplatten mit verzinkter Oberfläche sind dafür geeignet.

Bild 10-5 Montage der CU310-2 auf ein Power Module PM340 (Baugröße FSD)

Montage der Power Modules PM340 mit Unterbaukomponenten

Für die Power Modules PM340 Baugröße FSA bis FSE sind viele Systemkomponenten als Unterbaukomponenten ausgeführt. Die Unterbaukomponente wird in diesem Fall auf der Montageebene montiert und das Power Module PM340 Platz sparend davor.

Tabelle 10- 18 Verfügbare Unterbaukomponenten

	FSA	FSB	FSC	FSD	FSE
Netzfilter	Х	-	-	-	-
Netzdrossel	Х	Х	Х	Х	Х
Bremswiderstand	Х	Х			
Motordrossel	Х	Х	Х		

x: Unterbaufähig

^{-:} Nicht als externe Komponente verfügbar (Power Module mit integriertem Netzfilter verwenden)

10.8 Anordnung der Komponenten und Geräte

Bis zu zwei Unterbaukomponenten sind hintereinander montierbar. Bei mehr als zwei unterbaufähigen Komponenten (z. B. Netzdrossel + Motordrossel + Bremswiderstand) sind die einzelnen Komponenten seitlich neben das Power Module zu montieren.

Für die Power Modules PM340 mit Baugrößen FSA bis FSC gelten folgende Montagereihenfolgen:

Tabelle 10- 19 Montagereihenfolge für Unterbaukomponenten ausgehend von der Schaltschrankwand

Baugröße	Montagereihenfolge
FSA Ohne externes Netzfilter: Motordrossel - Netzdrossel - PM340	
	Mit externem Netzfilter: Netzdrossel - Netzfilter - PM340 oder Motordrossel - Netzfilter - PM340
FSB	Motordrossel - Netzdrossel - PM340
FSC	Motordrossel - Netzdrossel - PM340

Hinweis

Montage der Bremswiderstände

Die Bremswiderstände für Power Modules sollten aufgrund der hohen Wärmeentwicklung seitlich neben dem Power Module oder außerhalb des Schaltschranks montiert werden.

Verdrahtungsregeln für DRIVE-CLiQ

Weitere Informationen finden Sie im Handbuch: SINAMICS, Inbetriebnahmehandbuch.

10.9 Hinweise zur Schaltschrankentwärmung

10.9.1 Allgemeines

Möglichkeiten der Schaltschrankentwärmung sind unter anderem die Anwendung von:

- Filterlüfter
- Wärmetauscher
- Kühlgerät

Über die Anwendung ist jeweils nach den vorliegenden Umweltbedingungen und der notwendigen Kühlleistung zu entscheiden.

Die Luftführung innerhalb des Schaltschranks und die hier angegebenen Freiräume für die Belüftung sind einzuhalten. In diesen Bereichen dürfen keine anderen Bauteile und Leitungen verlegt werden bzw. montiert sein.

Folgende Spezifikationen sind beim Einbau von SINAMICS-Komponenten zu beachten:

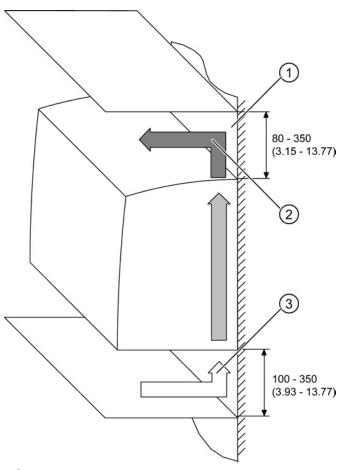

- Lüftungsfreiraum
- Leitungsführung
- Luftführung, Klimageräte

Tabelle 10- 20 Lüftungsfreiräume um die Komponenten

Komponente	Abstand ober- und unterhalb in mm und (inch)	Seitlicher Abstand in mm und (inch)	Abstand vor der Komponente
CU310-2 DP	50 (1.97)		
CU310-2 PN	50 (1.97)		
CUA31	50 (1.97)		
SMCxx	50 (1.97)		
Netzfilter	100 (3.93)		
Netzdrossel	100 (3.93)		
PM240-2 Blocksize, Baugröße FSA FSC	Oberhalb: 80 (3.15) Unterhalb: 100 (3.93)	1 (0,04)	
PM340 Blocksize, Baugröße FSA	100 (3.93)	30 (1.18) ¹⁾	
PM340 Blocksize, Baugröße FSB	100 (3.93)	40 (1.57) ¹⁾	30 (1.18)
PM340 Blocksize, Baugröße FSC	125 (4.92)	50 (1.97) ¹⁾	30 (1.18)
PM340 Blocksize, Baugröße FSD und FSE	300 (11.81)		30 (1.18)
PM340 Blocksize, Baugröße FSF	350 (13.77)		30 (1.18)

Die Power Modules PM340 k\u00f6nnen ohne Unterbaukomponenten bis zu einer Umgebungstemperatur von 40 °C nebeneinander montiert werden. In Kombination mit Unterbaukomponenten und bei Umgebungstemperaturen von 40 °C bis 55 °C sind die angegebenen seitlichen Mindestabst\u00e4nde einzuhalten. F\u00fcr Kombinationen mit unterschiedlichen Baugr\u00f6\u00dfen gilt der gr\u00f6\u00dfere der beiden Abst\u00e4nde.

10.9 Hinweise zur Schaltschrankentwärmung

- Montagefläche
- 2 Abluft
- 3 Zuluft

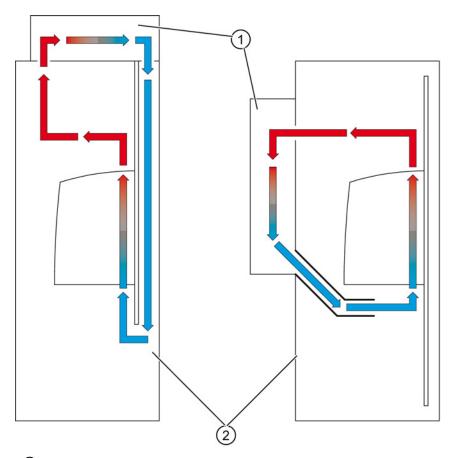
Bild 10-6 Lüftungsfreiräume

10.9.2 Hinweise zur Belüftung

Die SINAMICS-Geräte werden mit eingebauten Lüftern fremdbelüftet und teilweise durch Eigenkonvektion gekühlt.

Die Komponenten müssen senkrecht von der Kühlluft von unten (kalter Bereich) nach oben (durch den Betrieb warmer Bereich) durchströmt werden.

Beim Einsatz von Filterlüftern, Wärmetauschern oder Klimageräten ist auf die richtige Luftströmungsrichtung zu achten. Außerdem muss sichergestellt sein, dass die warme Luft oben entweichen kann. Der Lüftungsfreiraum oben und unten muss eingehalten werden.


ACHTUNG

Schäden durch Überhitzung

Eine Überhitzung kann zur Beschädigung des Systems führen.

- Montieren Sie die Komponenten in der angegebenen Ausrichtung.
- Halten Sie die angegebenen Mindestabstände zu anderen Komponenten ein.
- Installieren Sie im Schaltschrank eine geeignete Belüftung, um die Verlustleistung der einzelnen Komponenten abzuführen.
- Installieren Sie geeignete Luftfilter und halten Sie Kühlkörper sauber.
- Stellen Sie sicher, dass durch die Lüftungsöffnungen der Komponenten eine ungehinderte Luftströmung möglich ist. Insbesondere Signal- und Leistungsleitungen dürfen die Lüftungsöffnungen nicht abdecken.
- Achten Sie darauf, dass der Kühlluftstrom nicht von anderen Geräten blockiert wird oder sich mit der Abluft anderer Geräte vermischt. Setzen Sie gegebenenfalls Luftleitbleche ein

10.9 Hinweise zur Schaltschrankentwärmung

- 1 Kühlgerät
- ② Schaltschrank

Bild 10-7 Beispiele der Schaltschrankbelüftung

Beim Einsatz von Klimageräten ist zu beachten, dass durch das Abkühlen der Luft im Klimagerät die relative Luftfeuchte der ausgeblasenen Luft ansteigt und gegebenenfalls den Taupunkt überschreiten kann. Liegt die relative Luftfeuchte der in die SINAMICS-Geräte eintretenden Luft längere Zeit über 80 %, ist im Gerät mit Isolationsversagen durch elektrochemische Reaktionen zu rechnen (siehe Kapitel Systemübersicht (Seite 29)). Es ist z. B. durch Luftleitbleche sicherzustellen, dass die aus dem Klimagerät ausgeblasene kalte Luft sich mit warmer Schrankluft mischen kann, bevor die Luft in die Geräte eintritt. Durch das Mischen mit warmer Schrankluft sinkt die relative Luftfeuchte auf unkritische Werte.

ACHTUNG

Schäden durch Betauung

Betauung an den Komponenten kann zum Ausfall der Komponenten führen.

- Wählen Sie Luftführung und Anordnung der Kühleinrichtung so, dass eine Betauung der Komponenten ausgeschlossen ist. Der Abstand von der Ausblasöffnung des Klimageräts zu elektronischen Geräten muss mindestens 200 mm betragen.
- Bauen Sie gegebenenfalls eine Schaltschrankheizung ein.

10.9.3 Verlustleistung der Komponenten bei Nennbetrieb

10.9.3.1 Allgemeines

In den nachfolgenden Tabellen sind die Verlustleistungen für Komponenten im Nennbetrieb aufgeführt. Die Kennwerte gelten für folgende Bedingungen:

- Netzspannung für Power Modules 1 AC 200 V bis 3 AC 380 V bis 480 V ±10 %.
- Bemessungspulsfrequenz der Power Modules Blocksize 4 kHz
- Bemessungspulsfrequenz der Power Modules Chassis 2 kHz
- Betrieb der Komponenten mit Typleistung

10.9.3.2 Verlustleistungen für Control Units, Control Unit Adapter und Sensor Modules

Tabelle 10- 21 Übersicht Verlustleistungen im Nennbetrieb für Control Units, Control Unit Adapter, Sensor Modules

Komponente	Einheit	Verlustleistung	
Control Units			
CU310-2 DP	W	< 20	
CU310-2 PN	W	20	
Control Unit Adapter			
CUA31	W	2,4	
CUA32	W	2,6	
Sensor Modules			
SMC10	W	< 10	
SMC20	W	< 10	
SMC30	W	< 10	

10.9.3.3 Verlustleistungen für Netzdrosseln und Netzfilter

Tabelle 10-22 Übersicht Verlustleistungen bei Nennbetrieb für Netzdrosseln und Netzfilter

Bemessungs-Ausgangsstrom In	Baugröße	Netzspannung	Einheit	Verlustleistung 50 / 60 Hz		
Netzdrosseln für PM240-2 Blocksize						
4,0 A	FSA (1,1 kW)	1 AC 200 240 V	W	23 / 25,3		
11,3 A	FSA (4,0 kW)	1 AC 200 240 V	W	36 / 39,6		
22,3 A	FSB	1 AC 200 240 V	W	53 / 58,3		
47,0 A	FSC	1 AC 200 240 V	W	88 / 96,8		
4,0 A	FSA (1,1 kW)	3 AC 380 480 V	W	23 / 25,3		
11,3 A	FSA (4,0 kW)	3 AC 380 480 V	W	36 / 39,6		
22,3 A	FSB	3 AC 380 480 V	W	53 / 58,3		
47,0 A	FSC	3 AC 380 480 V	W	88 / 96,8		
Netzdrosseln für PM340 Blocksize						
0,9 A / 2,3 A	FSA	1 AC 200 240 V	W	12,5 / 15		
3,9 A	FSA	1 AC 200 240 V	W	11,5 / 14,5		
1,3 A / 1,7 A	FSA	3 AC 380 480 V	W	6/7		
2,2 A / 3,1 A	FSA	3 AC 380 480 V	W	12,5 / 15		
4,1 A	FSA	3 AC 380 480 V	W	7,5 / 9		
5,9 A / 7,7 A	FSB	3 AC 380 480 V	W	9 / 11		
10,2 A	FSB	3 AC 380 480 V	W	27 / 32		
18 A / 25 A	FSC	3 AC 380 480 V	W	98 / 118		
32 A	FSC	3 AC 380 480 V	W	37 / 44		
38 A / 45 A / 60 A	FSD	3 AC 380 480 V	W	90 / 115		
75 A / 90 A	FSE	3 AC 380 480 V	W	170 / 215		
110A / 145 A / 178 A	FSF	3 AC 380 480 V	W	280 / 360		
Netzdrosseln für Power Modules Cha	ssis	·	•			
210 A	FX	3 AC 380 480 V	W	274		
260 A	FX	3 AC 380 480 V	W	247		
310 A	GX	3 AC 380 480 V	W	267		
380 A	GX	3 AC 380 480 V	W	365		
490 A	GX	3 AC 380 480 V	W	365		
Netzfilter für PM240-2 Blocksize	·	·	•			
15 A	FSA	3 AC 380 480 V	W	13		
23,5 A	FSB	3 AC 380 480 V	W	22		
49,4 A	FSC	3 AC 380 480 V	W	39		
Netzfilter für PM340 Blocksize	FSA	3 AC 380 480 V	W	< 5		
Netzfilter für Power Modules Chassis						
210 A / 260 A	FX	3 AC 380 480 V	W	49		
310 A / 380 A	GX	3 AC 380 480 V	W	49		
490 A	GX	3 AC 380 480 V	W	55		

10.9.3.4 Verlustleistungen für Power Modules

Tabelle 10- 23 Übersicht Verlustleistungen bei Nennbetrieb für Power Modules

Bemessungs-Ausgangsstrom I _n / Typleistung auf Basis I _n	Baugröße	Netzspannung	Einheit	Verlustleistung
PM240-2 Blocksize				
7,5 A / 0,55 kW	FSA	1 AC / 3 AC 200 240 V	kW	0,04
9,6 A / 0,75 kW	FSA	1 AC / 3 AC 200 240 V	kW	0,04
13,5 A / 1,1 kW	FSB	1 AC / 3 AC 200 240 V	kW	0,05
1801 A / 1,5 kW	FSB	1 AC / 3 AC 200 240 V	kW	0,07
24,0 A / 2,2 kW	FSB	1 AC / 3 AC 200 240 V	kW	0,12
35,9 A / 3,0 kW	FSC	1 AC / 3 AC 200 240 V	kW	0,14
43,0 A / 4,0 kW	FSC	1 AC / 3 AC 200 240 V	kW	0,18
29,0 A / 5,5 kW	FSC	3 AC 200 240 V	kW	0,2
37,0 A / 7,5 kW	FSC	3 AC 200 240 V	kW	0,26
2,3 A / 0,55 kW	FSA	3 AC 380 480 V	kW	0,04
2,9 A / 0,75 kW	FSA	3 AC 380 480 V	kW	0,04
4,1 A / 1,1 kW	FSA	3 AC 380 480 V	kW	0,04
5,5 A / 1,5 kW	FSA	3 AC 380 480 V	kW	0,07
7,7 A / 2,2 kW	FSA	3 AC 380 480 V	kW	0,1
10,1 A / 3,0 kW	FSA	3 AC 380 480 V	kW	0,12
13,3 A / 4,0 kW	FSB	3 AC 380 480 V	kW	0,11
17,2 A / 5,5 kW	FSB	3 AC 380 480 V	kW	0,15
22,2 A / 7,5 kW	FSB	3 AC 380 480 V	kW	0,2
32,6 A / 11,0 kW	FSC	3 AC 380 480 V	kW	0,3
39,9 A / 15,0 kW	FSC	3 AC 380 480 V	kW	0,37
PM240-2 Blocksize Push Through				
9,6 A / 0,75 kW	FSA	1 AC / 3 AC 200 240 V	kW	0,04
24,0 A / 2,2 kW	FSB	1 AC / 3 AC 200 240 V	kW	0,12
43,0 A / 4,0 kW	FSC	1 AC / 3 AC 200 240 V	kW	0,18
10,1 A / 3,0 kW	FSA	3 AC 380 480 V	kW	0,12
22,2 A / 7,5 kW	FSB	3 AC 380 480 V	kW	0,2
39,9 A / 15,0 kW	FSC	3 AC 380 480 V	kW	0,37

10.9 Hinweise zur Schaltschrankentwärmung

Bemessungs-Ausgangsstrom I _n / Typleistung auf Basis I _n	Baugröße	Netzspannung	Einheit	Verlustleistung
PM340 Blocksize				
0,9 A / 0,12 kW	FSA	1 AC 200 240 V	kW	0,06
2,3 A / 0,37 kW	FSA	1 AC 200 240 V	kW	0,075
3,9 A / 0,75 kW	FSA	1 AC 200 240 V	kW	0,11
1,3 A / 0,37 kW	FSA	3 AC 380 480 V	kW	0,10
1,7 A / 0,55 kW	FSA	3 AC 380 480 V	kW	0,10
2,2 A / 0,75 kW	FSA	3 AC 380 480 V	kW	0,10
3,1 A / 1,1 kW	FSA	3 AC 380 480 V	kW	0,11
4,1 A / 1,5 kW	FSA	3 AC 380 480 V	kW	0,11
5,9A / 2,2 kW	FSB	3 AC 380 480 V	kW	0,14
7,7 A / 3 kW	FSB	3 AC 380 480 V	kW	0,16
10,2 A / 4 kW	FSB	3 AC 380 480 V	kW	0,18
18 A / 7,5 kW	FSC	3 AC 380 480 V	kW	0,24
25 A / 11 kW	FSC	3 AC 380 480 V	kW	0,30
32 A / 15 kW	FSC	3 AC 380 480 V	kW	0,40
38 A / 18,5 kW	FSD	3 AC 380 480 V	kW	0,38
45 A / 22 kW	FSD	3 AC 380 480 V	kW	0,51
60 A / 30 kW	FSD	3 AC 380 480 V	kW	0,69
75 A / 37 kW	FSE	3 AC 380 480 V	kW	0,99
90 A / 45 kW	FSE	3 AC 380 480 V	kW	1,21
110 A / 55 kW	FSF	3 AC 380 480 V	kW	1,42
145 A / 75 kW	FSF	3 AC 380 480 V	kW	1,93
178 A / 90 kW	FSF	3 AC 380 480 V	kW	2,31
Power Modules Chassis				
210 A / 110 kW	FX	3 AC 380 480 V	kW	2,46
260A / 132 kW	FX	3 AC 380 480 V	kW	3,27
310 A / 160 kW	GX	3 AC 380 480 V	kW	4,0
380 A / 200 kW	GX	3 AC 380 480 V	kW	4,54
490 A / 250 kW	GX	3 AC 380 480 V	kW	5,78

Service und Wartung

11.1 Sicherheitshinweise für Service und Wartung

/ WARNUNG

Lebensgefahr durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken

Durch Nichtbeachtung der Grundlegenden Sicherheitshinweise und Restrisiken in Kapitel 1 können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Grundlegenden Sicherheitshinweise ein.
- Berücksichtigen Sie bei der Risikobeurteilung die Restrisiken.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag wegen Restladung der Zwischenkreiskondensatoren

Durch die Zwischenkreiskondensatoren steht noch für bis zu 5 Minuten nach dem Abschalten der Versorgung gefährliche Spannung im Zwischenkreis an.

Das Berühren spannungsführender Teile führt zum Tod oder schweren Verletzungen.

- Führen Sie Arbeiten an den Komponenten erst nach Ablauf dieser Zeit durch.
- Messen Sie die Spannung vor Beginn der Arbeiten an den Zwischenkreisklemmen DCP und DCN.

/!\WARNUNG

Lebensgefahr durch elektrischen Schlag der externen Versorgungsspannung

Bei vorhandenen Hilfseinspeisungen mit AC 230 V liegt an den Komponenten auch bei ausgeschaltetem Hauptschalter noch gefährliche Spannung an.

Beim Berühren unter Spannung stehender Teile erleiden Sie Tod oder schwere Verletzungen.

• Schalten Sie die vorhandenen Hilfsspannungskreise spannungsfrei.

11.1 Sicherheitshinweise für Service und Wartung

/ WARNUNG

Lebensgefahr durch unsachgemäßen Transport oder Montage der Geräte und Bauteile

Unsachgemäßer Transport oder Montage der Geräte kann schwere oder sogar tödliche Körperverletzungen und beträchtlichen Sachschaden zur Folge haben.

- Transportieren, montieren und demontieren Sie Geräte und Bauteile nur, wenn Sie dafür qualifiziert sind.
- Beachten Sie, dass die Geräte und Komponenten teilweise schwer und kopflastig sind und treffen Sie nötige Vorsichtsmaßnahmen.

11.2.1 Tausch von Hardware-Komponenten

Hinweis

Der Tausch von Hardware-Komponenten darf nur in spannungslosen Zustand erfolgen!

Folgende Komponenten können durch Austausch-Komponenten mit der gleichen Bestellnummer ersetzt werden:

- Power Modules
- DRIVE-CLiQ-Komponenten
- Control Units

11.2.2 Lüftertausch CU310-2 DP und CU310-2 PN

Der Lüfter befindet sich an der Unterseite der CU310-2. Er schaltet sich in Abhängigkeit von der Innentemperatur des Geräts ein.

Wenn die Innentemperatur der CU310-2 den zulässigen Grenzwert überschreitet, wird eine Warnmeldung für die Kategorie "CU" ausgegeben, dass die Regelungsbaugruppe eine Übertemperatur aufweist.

Prüfen Sie in diesem Fall folgende Möglichkeiten:

- 1. Liegt die Schaltschranktemperatur im zulässigen Bereich?
- 2. Ist eine freie Konvektion möglich?
- 3. Ist der Lüfter durch Schmutz oder Fremdkörper blockiert?
- 4. Kann der Lüfter frei rotieren?

Die Warnmeldung erlischt, sobald der Fehler behoben ist und der zulässige Temperaturgrenzwert unterschritten wird.

Hinweis

Wenn der Lüfter nicht rotiert und alle Fehlerquellen (Punkte 1 bis 4) ausgeschlossen werden können, ist der Lüfter defekt und muss ausgetauscht werden.

Tausch des Lüfters

Der Lüfter ist als Ersatzteil erhältlich und hat die Bestellnummer: 6SL3064-1AC00-0AA0.

- 1. Trennen Sie den Antriebsverband von der Stromversorgung.
- 2. Bauen Sie die CU310-2 aus dem Antriebsverband aus (siehe Kapitel Montage der Control Units und Control Unit Adapter (Seite 336)).

3. Lösen Sie die Schnapphaken auf der linken und rechten Seite des Lüfters, indem Sie sie nach innen drücken.

4. Ziehen Sie den Lüfter nach vorn aus dem Gehäuse der CU310-2.

 Setzen Sie den Zentrierrahmen des Ersatzlüfters auf die Montagenocke der CU310-2. 6. Schieben Sie den Ersatzlüfter auf der Montagenocke in die Control Unit.

Achten Sie darauf, dass sich der Lüfterstecker in den Zentrierrahmen der Leiterplatte einpasst. Lassen Sie beide Schnapphaken am Lüfter in das Gehäuse der Control Unit einrasten.

Montieren Sie die CU310-2 an den Antriebsverband.

11.2.3 Lüftertausch am PM240-2

Die Lüfter für das PM240-2 aller Baugrößen sind als Ersatzteil bestellbar.

Hinweis

Der Lüfter ist nur von geschultem Personal unter Einhaltung der EGB-Richtlinien zu tauschen.

Voraussetzungen

- 1. Trennen Sie das PM240-2 von der Stromversorgung.
- 2. Klemmen Sie alle Kabelanschluss-Stecker vom Power Module ab.

Baugröße FSA / FSB / FSC

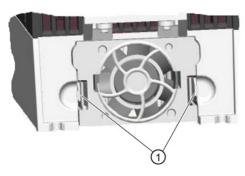


Bild 11-1 Lüftertausch PM240-2, Baugröße FSB

- 1. Lösen Sie die Verriegelung ① des Lüfters (1 Verriegelung bei FSA, 2 Verriegelungen bei FSB und FSC).
- 2. Ziehen Sie den Lüfter aus dem Power Module.
- 3. Entfernen Sie den Anschluss-Stecker.
- 4. Entnehmen Sie den Lüfter.
- 5. Verbinden Sie den Anschluss-Stecker mit dem neuen Lüfter.
- 6. Setzen Sie den neuen Lüfter ins Power Module ein.

11.2.4 Lüftertausch am PM340

Die Lüfter für das PM340 aller Baugrößen sind als Ersatzteil bestellbar.

Hinweis

Der Lüfter ist nur von geschultem Personal unter Einhaltung der EGB-Richtlinien zu tauschen.

Voraussetzungen

- 1. Trennen Sie das PM340 von der Stromversorgung.
- 2. Bauen Sie das Gerät aus dem Antriebsverband aus.

Baugröße FSA / FSB / FSC

Hinweis

Um den Lüfter des PM340 der Baugrößen FSA bis FSC aus- und einzubauen, benötigen Sie einen Kreuzschlitz-Schraubendreher.

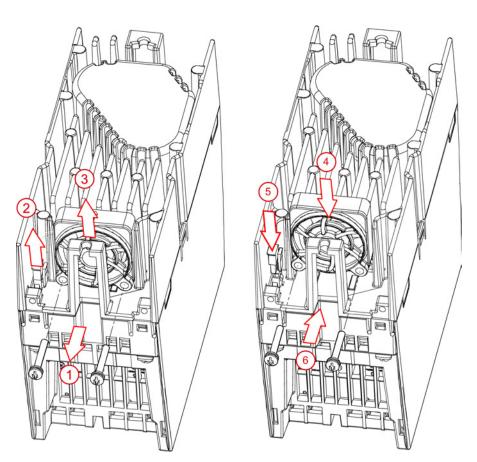


Bild 11-2 Lüftertausch PM340, Baugröße FSA

- 1. Lösen Sie die Befestigungsschrauben.
- 2. Entfernen Sie den Anschluss-Stecker.
- 3. Nehmen Sie den Lüfter ab.
- 4. Setzen Sie den neuen Lüfter ein.
- 5. Stecken Sie den Anschluss-Stecker.
- 6. Ziehen Sie die Befestigungsschrauben an (Anzugsdrehmoment 0,4 Nm).

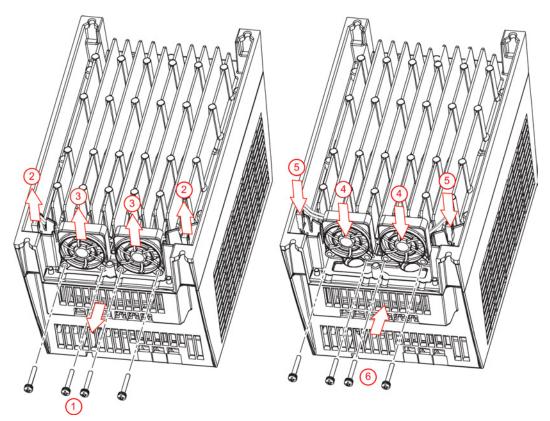


Bild 11-3 Lüftertausch PM340, Baugröße FSB / FSC (Anzugsdrehmoment 0,4 Nm)

Baugröße FSD / FSE

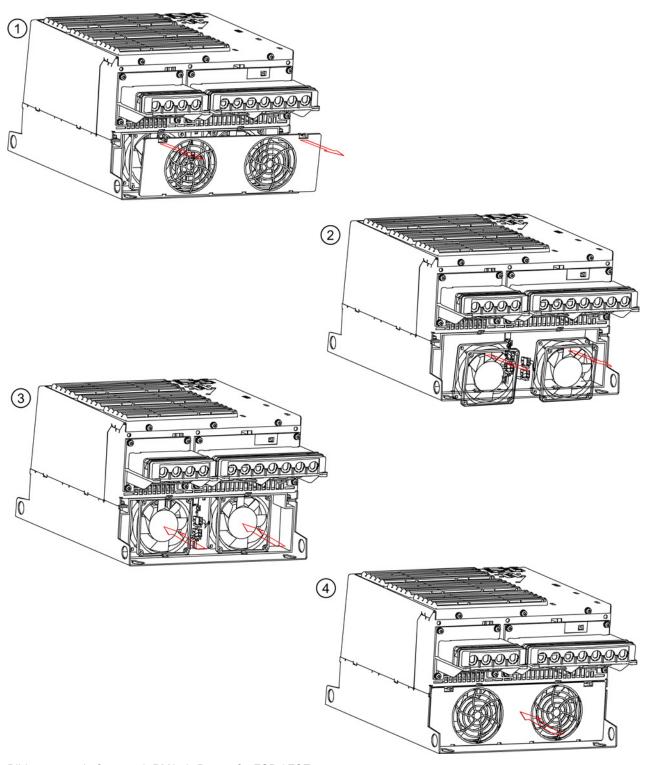


Bild 11-4 Lüftertausch PM340, Baugröße FSD / FSE

- 1. Entfernen Sie die Abdeckung.
- 2. Ziehen Sie beide Stecker und beide Lüfter ab.
- 3. Setzen Sie die neuen Lüfter ein und befestigen Sie die beiden Stecker.
- 4. Schließen Sie die Abdeckklappe.

Baugröße FSF

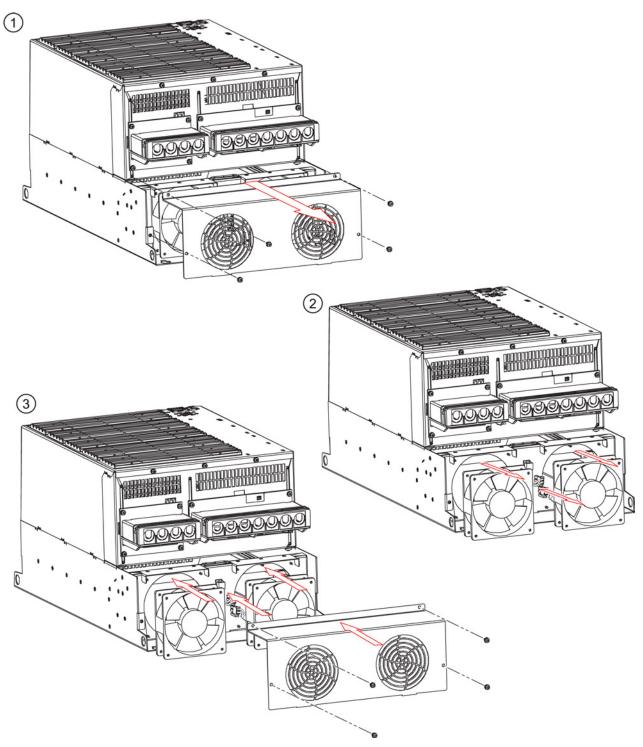


Bild 11-5 Lüftertausch PM340, Baugröße FSF

- 1. Lösen Sie die Schrauben und entfernen Sie die Abdeckung.
- 2. Ziehen Sie beide Stecker und beide Lüfter ab.
- 3. Setzen Sie die neuen Lüfter ein. Stecken Sie beide Stecker. Schließen Sie die Abdeckklappe und befestigen Sie die Schrauben (Anzugsdrehmoment 3,0 Nm).

11.3 Service und Wartung bei Komponenten der Bauform Chassis

11.3 Service und Wartung bei Komponenten der Bauform Chassis

Die Wartung dient zur Bewahrung des Sollzustands der Geräte. Verschmutzungen sind regelmäßig zu beseitigen bzw. Verschleißteile auszuwechseln.

Generell sind die nachfolgenden Punkte zu beachten.

Staubablagerungen

Staubablagerungen im Innern des Geräts sind von qualifiziertem Personal unter Beachtung der erforderlichen Sicherheitsbestimmungen in regelmäßigen Abständen, mindestens jedoch einmal im Jahr, gründlich zu entfernen. Die Reinigung muss mit Pinsel und Staubsauger, an nicht zugänglichen Stellen mit trockener Pressluft (max. 100 kPa) erfolgen.

Belüftung

Die Belüftungsschlitze der Geräte müssen stets frei gehalten werden. Die einwandfreie Funktion der Lüfter muss gewährleistet sein.

Kabel- und Schraubklemmen

Die Kabel- und Schraubklemmen sind regelmäßig auf ihren festen Sitz zu überprüfen und möglicherweise nachzuziehen. Die Verkabelung ist auf Defekte zu untersuchen. Defekte Teile sind unverzüglich auszutauschen.

Hinweis

Die tatsächlichen Zeiträume, in denen die Wartungen zu wiederholen sind, hängen von der Einbaubedingung (Schrankumgebung) und den Betriebsbedingungen ab.

Siemens bietet die Möglichkeit, einen Wartungsvertrag abzuschließen. Informationen erhalten Sie von Ihrer Zweigniederlassung oder von Ihrem Vertriebsstützpunkt.

11.3.1 Instandhaltung

Zur Instandhaltung werden Maßnahmen gezählt, die zur Bewahrung und Wiederherstellung des Betriebszustandes der Geräte dienen.

Benötigte Werkzeuge

Folgende Werkzeuge werden für evtl. erforderliche Austauscharbeiten benötigt:

- Schraubenschlüssel oder Steckschlüssel Schlüsselweite 10
- Schraubenschlüssel oder Steckschlüssel Schlüsselweite 13
- Schraubenschlüssel oder Steckschlüssel Schlüsselweite 16/17
- Schraubenschlüssel oder Steckschlüssel Schlüsselweite 18/19
- Innensechskantschlüssel Gr. 8
- Drehmomentschlüssel bis 50 Nm
- Schraubendreher Gr. 1 / 2

11.3 Service und Wartung bei Komponenten der Bauform Chassis

- Schraubendreher Torx T20
- Schraubendreher Torx T30

Anzugsdrehmomente für Strom führende Teile

Beim Festschrauben von Verbindungen Strom führender Teile (Netz-, Motoranschlüsse, Stromschienen allgemein) gelten die folgenden Anzugsdrehmomente.

Tabelle 11- 1 Anzugsdrehmomente für Verbindung von Strom führenden Teilen

Schraube	Drehmoment
M6	6 Nm
M8	13 Nm
M10	25 Nm
M12	50 Nm

11.3 Service und Wartung bei Komponenten der Bauform Chassis

11.3.2 Montagevorrichtung

Beschreibung

Die Montagevorrichtung ist für den Ein- und Ausbau der Powerblöcke bei den Power Modules im Chassis-Format vorgesehen.

Die Montagevorrichtung stellt eine Montagehilfe dar, sie wird vor dem Modul platziert und am Modul befestigt. Mittels der Teleskopschienen kann die Einschubvorrichtung an die jeweilige Einbauhöhe der Powerblöcke angepasst werden. Nach Lösen der mechanischen und elektrischen Verbindungen kann der Powerblock aus dem Modul herausgezogen werden. Hierbei wird der Powerblock durch die Führungsschienen der Einschubvorrichtungen geführt und gestützt.

Bild 11-6 Montagevorrichtung

Bestellnummer

Die Bestellnummer der Montagevorrichtung lautet 6SL3766-1FA00-0AA0.

11.3.3 Austausch von Bauteilen

11.3.3.1 Austausch des Powerblocks, Power Module, Baugröße FX

Austausch Powerblock

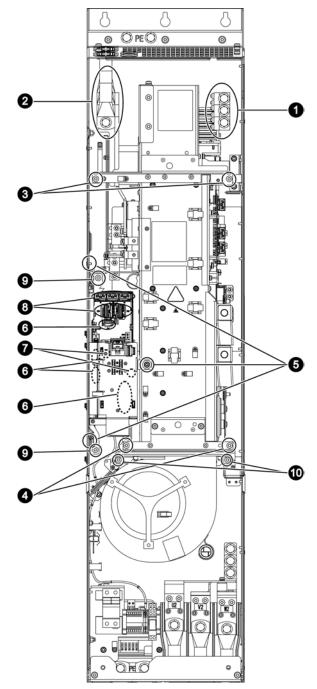


Bild 11-7 Austausch des Powerblocks, Power Module, Baugröße FX

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang zum Powerblock.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern in vorigem Bild.

- 1. Lösen Sie den Anschluss zum Motorabgang (3 Schrauben).
- 2. Lösen Sie den Anschluss zur Netzeinspeisung (3 Schrauben).
- 3. Entfernen Sie die oberen Halteschrauben (2 Schrauben).
- 4. Entfernen Sie die unteren Halteschrauben (2 Schrauben).
- 5. Entfernen Sie die Haltemuttern des Trageblechs für die Control Unit und entnehmen Sie das Trageblech (3 Muttern).
- 6. Entfernen Sie die DRIVE-CLiQ-Leitungen und Verbindungen an –X41 /–X42 / –X46 (6 Stecker).
 - Die DRIVE-CLiQ-Leitungen sollten gekennzeichnet werden, um einen späteren korrekten Zusammenbau zu gewährleisten.
- 7. Entfernen Sie die Halteschrauben der IPD Card (2 Schrauben) und nehmen Sie die IPD Card vom Stecker -X45 am Control Interface Module ab.
- Trennen Sie die Steckverbindungen der Lichtwellenleiter und der Signalleitungen (5 Stecker).
- Entfernen Sie die Halteschrauben des Elektronikeinschubs (2 Schrauben) und ziehen Sie den Elektronikeinschub vorsichtig heraus.
 Beim Herausziehen des Elektronikeinschubs müssen nacheinander 5 weitere Stecker (2 oben, 3 unten) entfernt werden.
- 10.Lösen Sie die 2 Halteschrauben für den Lüfter und befestigen Sie die Montagevorrichtung für den Powerblock an dieser Position.

Anschließend kann der Powerblock herausgezogen werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

Beachten Sie das Gewicht des Powerblocks von ca. 70 kg.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

Hinweis

Anschluss der Lichtwellenleiter

Die Stecker der Lichtwellenleiter müssen wieder an ihren ursprünglichen Steckplatz montiert werden. Für die korrekte Zuordnung sind die Lichtwellenleiter und die Buchsen entsprechend beschriftet (U11, U21, U31).

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

 Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss.

Hinweis

Verbindungsbügel zum Entstörkondensator

Am Ersatzteil-Powerblock ist der Verbindungsbügel zum Entstörkondensator montiert und zusätzlich ein gelbes Warnschild befestigt.

Beachten Sie hierzu die Hinweise im Kapitel "Elektrischer Anschluss" des entsprechenden Geräts.

11.3.3.2 Austausch des Powerblocks, Power Module, Baugröße GX

Austausch Powerblock

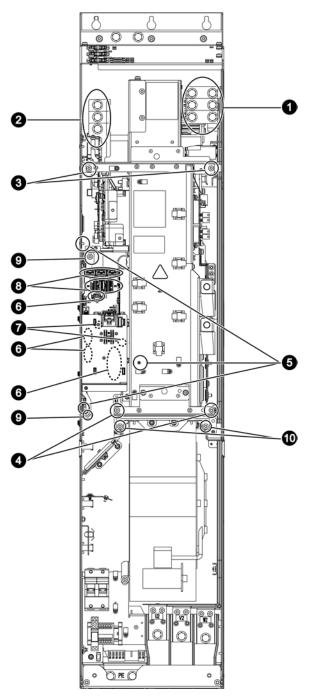


Bild 11-8 Austausch des Powerblocks, Power Module, Baugröße GX

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang zum Powerblock.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern in vorigem Bild.

- 1. Lösen Sie den Anschluss zum Motorabgang (6 Schrauben).
- 2. Lösen Sie den Anschluss zur Netzeinspeisung (3 Schrauben).
- 3. Entternen Sie die oberen Halteschrauben (2 Schrauben).
- 4. Entfernen Sie die unteren Halteschrauben (2 Schrauben).
- 5. Entfernen Sie die Haltemuttern des Trageblechs für die Control Unit und entnehmen Sie das Trageblech (3 Muttern).
- 6. Entfernen Sie die DRIVE-CLiQ-Leitungen und Verbindungen an –X41 /–X42 / –X46 (6 Stecker).
 - Die DRIVE-CLiQ-Leitungen sollten gekennzeichnet werden, um einen späteren korrekten Zusammenbau zu gewährleisten.
- 7. Entfernen Sie die Halteschrauben der IPD Card (2 Schrauben) und nehmen Sie die IPD Card vom Stecker -X45 am Control Interface Module ab.
- 8. Trennen Sie die Steckverbindungen der Lichtwellenleiter und Signalleitungen (5 Stecker).
- Entfernen Sie die Halteschrauben des Elektronikeinschubs (2 Schrauben) und ziehen Sie den Elektronikeinschub vorsichtig heraus.
 Beim Herausziehen des Elektronikeinschubs müssen nacheinander 5 weitere Stecker (2 oben, 3 unten) entfernt werden.
- 10.Lösen Sie 2 Halteschrauben für den Lüfter und befestigen Sie die Montagevorrichtung für den Powerblock an dieser Position.

Anschließend kann der Powerblock herausgezogen werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

· Beachten Sie das Gewicht des Powerblocks von ca. 102 kg.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

Hinweis

Anschluss der Lichtwellenleiter

Die Stecker der Lichtwellenleiter müssen wieder an ihren ursprünglichen Steckplatz montiert werden. Für die korrekte Zuordnung sind die Lichtwellenleiter und die Buchsen entsprechend beschriftet (U11, U21, U31).

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

 Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss.

Hinweis

Verbindungsbügel zum Entstörkondensator

Am Ersatzteil-Powerblock ist der Verbindungsbügel zum Entstörkondensator montiert und zusätzlich ein gelbes Warnschild befestigt.

Beachten Sie hierzu die Hinweise im Kapitel "Elektrischer Anschluss" des entsprechenden Geräts.

11.3.3.3 Austausch des Control Interface Module, Power Module, Baugröße FX

Austausch Control Interface Module

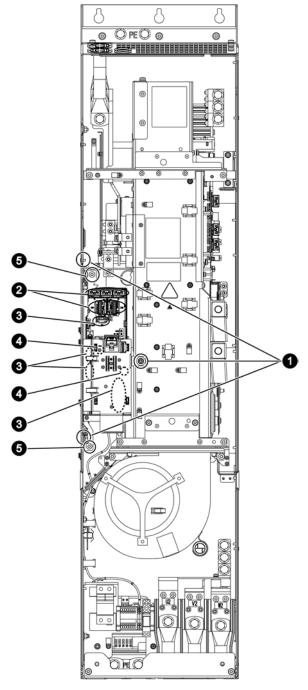


Bild 11-9 Austausch des Control Interface Module, Power Module, Baugröße FX

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang zum Powerblock.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern in vorigem Bild.

- 1. Entfernen Sie die Haltemuttern des Trageblechs für die Control Unit und entnehmen Sie das Trageblech (3 Muttern).
- 2. Trennen Sie die Steckverbindungen der Lichtwellenleiter und Signalleitungen (5 Stecker).
- 3. Entfernen Sie die DRIVE-CLiQ-Leitungen und Verbindungen an –X41 /–X42 / –X46 (6 Stecker).
 - Die DRIVE-CLiQ-Leitungen sollten gekennzeichnet werden, um einen späteren korrekten Zusammenbau zu gewährleisten.
- 4. Entfernen Sie die Halteschrauben der IPD Card (2 Schrauben) und nehmen Sie die IPD Card vom Stecker -X45 am Control Interface Module ab.
- 5. Entfernen Sie die Halteschrauben für das Control Interface Module (2 Schrauben). Beim Herausziehen des Control Interface Module müssen nacheinander 5 weitere Stecker (2 oben, 3 unten) entfernt werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

Beachten Sie das hohe Gewicht des Powerblocks.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

Hinweis

Anschluss der Lichtwellenleiter

Die Stecker der Lichtwellenleiter müssen wieder an ihren ursprünglichen Steckplatz montiert werden. Für die korrekte Zuordnung sind die Lichtwellenleiter und die Buchsen entsprechend beschriftet (U11, U21, U31).

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

• Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss.

11.3.3.4 Austausch des Control Interface Module, Power Module, Baugröße GX

Austausch Control Interface Module

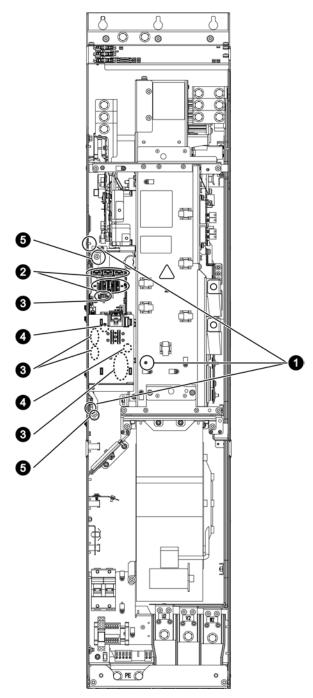


Bild 11-10 Austausch des Control Interface Module, Power Module, Baugröße GX

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang zum Powerblock.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern in vorigem Bild.

- 1. Entfernen Sie die Haltemuttern des Trageblechs für die Control Unit und entnehmen Sie das Trageblech (3 Muttern).
- 2. Trennen Sie die Steckverbindungen der Lichtwellenleiter und Signalleitungen (5 Stecker).
- 3. Entfernen Sie die DRIVE-CLiQ-Leitungen und Verbindungen an –X41 /–X42 / –X46 (6 Stecker).
 - Die DRIVE-CLiQ-Leitungen sollten gekennzeichnet werden, um einen späteren korrekten Zusammenbau zu gewährleisten.
- 4. Entfernen Sie die Halteschrauben der IPD Card (2 Schrauben) und nehmen Sie die IPD Card vom Stecker -X45 am Control Interface Module ab.
- 5. Entfernen Sie die Halteschrauben für das Control Interface Module (2 Schrauben). Beim Herausziehen des Control Interface Module müssen nacheinander 5 weitere Stecker (2 oben, 3 unten) entfernt werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

Beachten Sie das hohe Gewicht des Powerblocks.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

Hinweis

Anschluss der Lichtwellenleiter

Die Stecker der Lichtwellenleiter müssen wieder an ihren ursprünglichen Steckplatz montiert werden. Für die korrekte Zuordnung sind die Lichtwellenleiter und die Buchsen entsprechend beschriftet (U11, U21, U31).

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

• Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss.

11.3.3.5 Austausch des Lüfters, Power Module, Baugröße FX

Austausch Lüfter

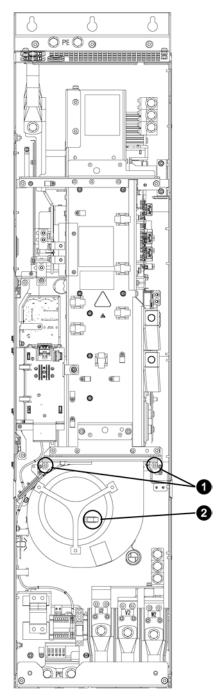


Bild 11-11 Austausch des Lüfters, Power Module, Baugröße FX

Beschreibung

Die Lebensdauer der Gerätelüfter liegt bei typisch 50.000 Stunden. Die tatsächliche Lebensdauer hängt jedoch von weiteren Einflussgrößen z. B. Umgebungstemperatur und Schrankschutzart ab und kann daher im Einzelfall von diesem Wert abweichen.

Die Lüfter müssen rechtzeitig ausgewechselt werden, um die Verfügbarkeit des Geräts zu erhalten.

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern im vorherigen Bild.

- 1. Entfernen Sie die Halteschrauben für den Lüfter (2 Schrauben).
- 2. Lösen Sie die Zuleitungen (1 x "L", 1 x "N")

Jetzt kann der Lüfter vorsichtig herausgezogen werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

· Beachten Sie das hohe Gewicht des Powerblocks.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

Hinweis

Anschluss der Lichtwellenleiter

Die Stecker der Lichtwellenleiter müssen wieder an ihren ursprünglichen Steckplatz montiert werden. Für die korrekte Zuordnung sind die Lichtwellenleiter und die Buchsen entsprechend beschriftet (U11, U21, U31).

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

• Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an, z. B. Netzanschluss, Motoranschluss.

11.3.3.6 Austausch des Lüfters, Power Module, Baugröße GX

Austausch Lüfter

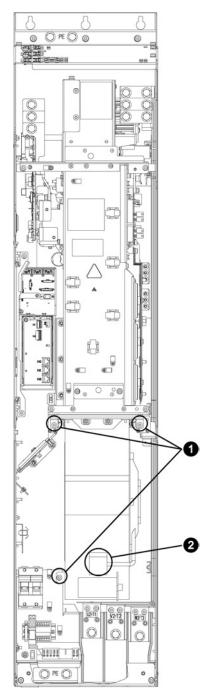


Bild 11-12 Austausch des Lüfters, Power Module, Baugröße GX

Beschreibung

Die Lebensdauer der Gerätelüfter liegt bei typisch 50.000 Stunden. Die tatsächliche Lebensdauer hängt jedoch von weiteren Einflussgrößen z. B. Umgebungstemperatur und Schrankschutzart ab und kann daher im Einzelfall von diesem Wert abweichen.

Die Lüfter müssen rechtzeitig ausgewechselt werden, um die Verfügbarkeit des Geräts zu erhalten.

Vorbereitende Schritte

- Schalten Sie den Antriebsverband spannungsfrei.
- Ermöglichen Sie einen freien Zugang.
- Entfernen Sie die Frontabdeckung.

Ausbauschritte

Die Nummerierungen der Ausbauschritte entsprechen den Ziffern im vorherigen Bild.

- 1. Entfernen Sie die Halteschrauben für den Lüfter (3 Schrauben)
- 2. Lösen Sie die Zuleitungen (1 x "L", 1 x "N")

Jetzt kann der Lüfter vorsichtig herausgezogen werden.

ACHTUNG

Beschädigung von Signalleitungen bei Demontage des Powerblocks

Der Powerblock kann beim Herausziehen Signalleitungen beschädigen.

· Beachten Sie das hohe Gewicht des Powerblocks.

Einbauschritte

Der Einbau erfolgt wie der Ausbau, jedoch in umgekehrter Reihenfolge.

ACHTUNG

Sachschaden durch lockere Leistungsverbindungen

Ungenügende Anzugsdrehmomente können zu fehlerhaften elektrischen Verbindungen führen. Dadurch können Brandschäden oder Funktionsstörungen entstehen.

Ziehen Sie alle Leistungsverbindungen mit vorgeschriebenen Anzugsdrehmomenten an,
 z. B. Netzanschluss, Motoranschluss.

11.4 Formieren der Zwischenkreiskondensatoren

ACHTUNG

Beschädigung bei langer Standzeit

Nach einer Standzeit von mehr als zwei Jahren können die Komponenten beim Einschalten Schaden nehmen.

Formieren Sie die Zwischenkreiskondensatoren der Power Modules erneut.

Erfolgt die Inbetriebnahme innerhalb von zwei Jahren nach der Herstellung, ist kein erneutes Formieren der Zwischenkreiskondensatoren erforderlich. Der Zeitpunkt der Herstellung kann aus der Seriennummer auf dem Typenschild entnommen werden.

Hinweis

Die Lagerungszeit beginnt mit dem Zeitpunkt der Herstellung und nicht mit dem Lieferzeitpunkt.

Fertigungsdatum

Das Fertigungsdatum lässt sich aus der folgenden Zuordnung zur Seriennummer (z. B. T-**S9**2067000015 für 2004, September) ableiten:

Tabelle 11-2 Fertigungsjahr und -monat

Zeichen	Fertigungsjahr	Zeichen	Fertigungsmonat
S	2004	1 bis 9	Januar bis September
Т	2005	0	Oktober
U	2006	N	November
V	2007	D	Dezember
W	2008		
X	2009		
Α	2010		
В	2011		
С	2012		
D	2013		
Е	2014		

Die Seriennummer befindet sich auf dem Typenschild.

Beim Formieren werden die Zwischenkreiskondensatoren mit einer definierten Spannung und einem begrenzten Strom beaufschlagt und die für die Funktion der Zwischenkreiskondensatoren erforderlichen internen Verhältnisse wieder hergestellt.

11.4 Formieren der Zwischenkreiskondensatoren

Formierschaltung

Die Formierschaltung kann mithilfe von Glühlampen oder alternativ mit Widerständen aufgebaut werden.

Benötigte Bauteile zum Formieren außerhalb des Antriebsverbands

- 1 Sicherungsschalter 3-fach 400 V / 10 A bzw. 2-fach 230 V / 10 A
- Leitung 1,5 mm²
- 3 Glühlampen 230 V / 100 W für Netzspannung 3 AC 380 480 V Alternativ sind 3 Widerstände je 1 k Ω / 100 W (z. B. GWK150J1001KLX000, Fa. Vishay) anstelle der Glühlampen einzusetzen
- 2 Glühlampen 230 V / 100 W für Netzspannung 1 AC 200 240 V Alternativ sind 2 Widerstände je 1 k Ω / 100 W (z. B. GWK150J1001KLX000, Fa. Vishay) anstelle der Glühlampen einzusetzen
- Div. Kleinteile, wie Lampenfassung, etc.

/ GEFAHR

Lebensgefahr durch elektrischen Schlag wegen Restladung der Zwischenkreiskondensatoren

Durch die Zwischenkreiskondensatoren steht noch für bis zu 5 Minuten nach dem Abschalten der Versorgung gefährliche Spannung im Zwischenkreis an.

Das Berühren spannungsführender Teile führt zum Tod oder schweren Verletzungen.

- Öffnen Sie die Schutzklappe des Zwischenkreises erst nach Ablauf von 5 Minuten.
- Messen Sie die Spannung vor Beginn der Arbeiten an den Zwischenkreisklemmen DCP und DCN.

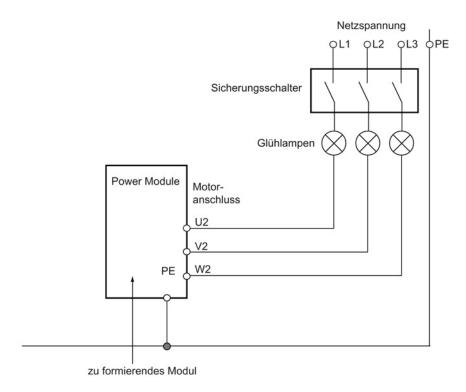


Bild 11-13 Formierschaltung für Power Modules 3 AC mit Glühlampen

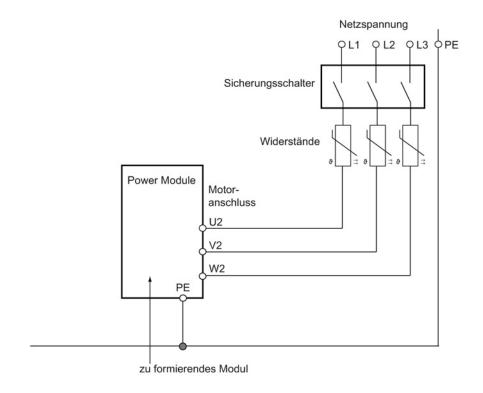


Bild 11-14 Formierschaltung für Power Modules 3 AC mit Widerständen

11.4 Formieren der Zwischenkreiskondensatoren

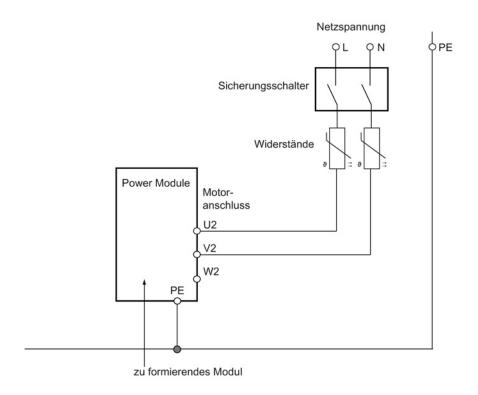


Bild 11-15 Formierschaltung für Power Modules 1 AC mit Widerständen

Vorgehensweise

- Stellen Sie sicher, dass das Gerät **keinen** Einschaltbefehl bekommt (z. B. über Tastatur oder Klemmleiste).
- Schließen Sie die Formierschaltung an.
- Die Glühlampen müssen im Laufe der Formierzeit dunkler werden / verlöschen. Leuchten die Glühlampen dauerhaft, liegt ein Fehler im Gerät oder der Verdrahtung vor.
- Zur Formierung mit Widerständen müssen die Module ca. 1 h in der Schaltung verbleiben. Liegt ein Fehler im Gerät vor, werden die Widerstände sehr heiß (Oberflächentemperatur > 80 °C).

11.5 Ersatzteile

Ersatzteile finden Sie im Internet unter:

http://support.automation.siemens.com/WW/view/de/16612315

11.6 Recycling und Entsorgung

Entsorgen Sie das Produkt gemäß den jeweils gültigen nationalen Vorschriften.

Die in diesem Gerätehandbuch beschriebenen Produkte sind aufgrund ihrer schadstoffarmen Ausrüstung weitgehend recyclingfähig. Für ein umweltverträgliches Recycling und die Entsorgung Ihres Altgeräts wenden Sie sich an einen Entsorgungsbetrieb für Elektronikschrott.

11.6 Recycling und Entsorgung

Anhang

A.1 Abkürzungsverzeichnis

Hinweis

Das folgende Abkürzungsverzeichnis beinhaltet die bei der gesamten Antriebsfamilie SINAMICS verwendeten Abkürzungen und ihre Bedeutungen.

Abkürzung	Ableitung der Abkürzung	Bedeutung	
Α			
A	Alarm	Warnung	
AC	Alternating Current	Wechselstrom	
ADC	Analog Digital Converter	Analog-Digital-Konverter	
Al	Analog Input	Analogeingang	
AIM	Active Interface Module	Active Interface Module	
ALM	Active Line Module	Active Line Module	
AO	Analog Output	Analogausgang	
AOP	Advanced Operator Panel	Advanced Operator Panel	
APC	Advanced Positioning Control	Advanced Positioning Control	
AR	Automatic Restart	Wiedereinschaltautomatik	
ASC	Armature Short-Circuit	Ankerkurzschluss	
ASCII	American Standard Code for Information Interchange	Amerikanische Code-Norm für den Informationsaustausch	
AS-i	AS-Interface (Actuator Sensor Interface)	AS-Interface (Offenes Bussystem in der Automatisierungstechnik)	
ASM	Asynchronmotor	Asynchronmotor	
В			
ВВ	Betriebsbedingung	Betriebsbedingung	
BERO	-	Berührungsloser Näherungsschalter	
ВІ	Binector Input	Binektoreingang	
BIA	Berufsgenossenschaftliches Institut für Arbeitssicherheit	Berufsgenossenschaftliches Institut für Arbeitssicherheit	
BICO	Binector Connector Technology	Binektor-Konnektor-Technologie	
BLM	Basic Line Module	Basic Line Module	

Abkürzung	Ableitung der Abkürzung	Bedeutung
BO	Binector Output	Binektorausgang
BOP	Basic Operator Panel	Basic Operator Panel
C		Duois operation i amo.
С	Capacitance	Kapazität
C	-	Safety-Meldung
CAN	Controller Area Network	Serielles Bussystem
CBC	Communication Board CAN	Kommunikationsbaugruppe CAN
CBE	Communication Board Ethernet	Kommunikationsbaugruppe PROFINET (Ethernet)
CD	Compact Disc	Compact Disc
CDS	Command Data Set	Befehlsdatensatz
CF Card	CompactFlash Card	CompactFlash-Speicherkarte
CI	Connector Input	Konnektoreingang
CLC	Clearance Control	Abstandsregelung
CNC	Computer Numerical Control	Computerunterstützte numerische Steuerung
СО	Connector Output	Konnektorausgang
CO/BO	Connector Output/Binector Output	Konnektor-/Binektorausgang
COB-ID	CAN Object-Identification	CAN Object-Identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a change-over relay	Mittelkontakt eines Wechselkontaktes
COMM	Commissioning	Inbetriebnahme
CP	Communication Processor	Kommunikationsprozessor
CPU	Central Processing Unit	Zentrale Recheneinheit
CRC	Cyclic Redundancy Check	Zyklische Redundanzprüfung
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC MASTER	Control Unit DC MASTER
D		
DAC	Digital Analog Converter	Digital-Analog-Konverter
DC	Direct Current	Gleichstrom
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	Gleichstrombremsung
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Gleichstrom negativ
DCP	Direct Current Positive	Gleichstrom positiv
DDS	Drive Data Set	Antriebsdatensatz
DI	Digital Input	Digitaleingang
DI/DO	Digital Input/Digital Output	Digitaleingang/-ausgang bidirektional
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External

Abkürzung Ableitung der Abkürzung Bedeutung

DMM Double Motor Module Double Motor Module

DO Digital Output Digitalausgang
DO Drive Object Antriebsobjekt

DP Decentralized Peripherals Dezentrale Peripherie

DPRAM Dual Ported Random Access Memory Speicher mit beidseitigem Zugriff

DQ DRIVE-CLiQ DRIVE-CLiQ

DRAM Dynamic Random Access Memory Dynamischer Speicher

DRIVE-CLiQ Drive Component Link with IQ Drive Component Link with IQ

DSC Dynamic Servo Control Dynamic Servo Control

DTC Digital Time Clock Zeitschaltuhr

Ε

EASC External Armature Short-Circuit Externer Ankerkurzschluss

EDS Encoder Data Set Geberdatensatz

EEPROM Electrically Erasable Programmable Elektrisch löschbarer programmierbarer

Read-Only Memory Nur-Lese-Speicher

EGB Elektrostatisch gefährdete Baugruppen Elektrostatisch gefährdete Baugruppen

ELCB Earth Leakage Circuit Breaker Fehlerstrom-Schutzschalter
ELP Earth Leakage Protection Erdschlussüberwachung

EMC Electromagnetic Compatibility Elektromagnetische Verträglichkeit

EMF Electromotive Force Elektromotorische Kraft
EMK Elektromotorische Kraft Elektromotorische Kraft

EMV Elektromagnetische Verträglichkeit Elektromagnetische Verträglichkeit

ΕN Europäische Norm Europäische Norm EnDat Encoder-Data-Interface Geberschnittstelle ΕP **Enable Pulses** Impulsfreigabe **EPOS** Einfachpositionierer Einfachpositionierer ES **Engineering System Engineering System** Ersatzschaltbild Ersatzschaltbild **ESB**

ESD Electrostatic Sensitive Devices Elektrostatisch gefährdete Baugruppen

ESM Essential Service Mode Notfallbetrieb

ESR Extended Stop and Retract Erweitertes Stillsetzen und Rückziehen

F

F... Fault Störung

FAQ Frequently Asked Questions Häufig gestellte Fragen
FBLOCKS Free Blocks Freie Funktionsblöcke
FCC Function Control Chart Function Control Chart
FCC Flux Current Control Flussstromregelung
FD Function Diagram Funktionsplan

F-DI Failsafe Digital Input Fehlersicherer Digitaleingang
F-DO Failsafe Digital Output Fehlersicherer Digitalausgang

Abkürzung	Ableitung der Abkürzung	Bedeutung
FEM	Fremderregter Synchronmotor	Fremderregter Synchronmotor
FEPROM	Flash-EPROM	Schreib- und Lesespeicher nichtflüchtig
FG	Function Generator	Funktionsgenerator
FI	-	Fehlerstrom
FOC	Fiber-Optic Cable	Lichtwellenleiter
FP	Funktionsplan	Funktionsplan
FPGA	Field Programmable Gate Array	Field Programmable Gate Array
FW	Firmware	Firmware
G		
GB	Gigabyte	Gigabyte
GC	Global Control	Global-Control-Telegramm (Broadcast-Telegramm)
GND	Ground	Bezugspotenzial für alle Signal- und Betriebsspannungen, in der Regel mit 0 V definiert (auch als M bezeichnet)
GSD	Gerätestammdatei	Gerätestammdatei: beschreibt die Merkmale eines PROFIBUS-Slaves
GSV	Gate Supply Voltage	Gate Supply Voltage
GUID	Globally Unique Identifier	Globally Unique Identifier
Н		
HF	High frequency	Hochfrequenz
HFD	Hochfrequenzdrossel	Hochfrequenzdrossel
HLA	Hydraulic Linear Actuator	Hydraulischer Linearantrieb
HLG	Hochlaufgeber	Hochlaufgeber
HM	Hydraulic Module	Hydraulic Module
НМІ	Human Machine Interface	Mensch-Maschine-Schnittstelle
HTL	High-Threshold Logic	Logik mit hoher Störschwelle
HW	Hardware	Hardware
I		
i. V.	In Vorbereitung	In Vorbereitung: diese Eigenschaft steht zur Zeit nicht zur Verfügung
I/O	Input/Output	Eingang/Ausgang
I2C	Inter-Integrated Circuit	Interner serieller Datenbus
IASC	Internal Armature Short-Circuit	Interner Ankerkurzschluss
IBN	Inbetriebnahme	Inbetriebnahme
ID	Identifier	Identifizierung
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	Internationale Elektrotechnische Kommission
IF	Interface	Schnittstelle
IGBT	Insulated Gate Bipolar Transistor	Bipolartransistor mit isolierter Steuerelektrode
IGCT	Integrated Gate-Controlled Thyristor	Halbleiter-Leistungsschalter mit integrierter Steuerelektrode

Abkürzung	Ableitung der Abkürzung	Bedeutung
IL	Impulslöschung	Impulslöschung
IP	Internet Protocol	Internet Protokoll
IPO	Interpolator	Interpolator
IT	Isolé Terre	Drehstromversorgungsnetz ungeerdet
IVP	Internal Voltage Protection	Interner Spannungsschutz
J	-	
JOG	Jogging	Tippen
K		
KDV	Kreuzweiser Datenvergleich	Kreuzweiser Datenvergleich
KHP	Know-how protection	Know-how-Schutz
KIP	Kinetische Pufferung	Kinetische Pufferung
Кр	-	Proportionalverstärkung
KTY	-	Spezieller Temperatursensor
L		
L	-	Formelzeichen für Induktivität
LED	Light Emitting Diode	Leuchtdiode
LIN	Linearmotor	Linearmotor
LR	Lageregler	Lageregler
LSB	Least Significant Bit	Niederstwertiges Bit
LSC	Line-Side Converter	Netzstromrichter
LSS	Line-Side Switch	Netzschalter
LU	Length Unit	Längeneinheit
LWL	Lichtwellenleiter	Lichtwellenleiter
М		
М	-	Formelzeichen für Drehmoment
M	Masse	Bezugspotenzial für alle Signal- und Betriebsspannungen, in der Regel mit 0 V definiert (auch als GND bezeichnet)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDI	Manual Data Input	Manuelle Dateneingabe
MDS	Motor Data Set	Motordatensatz
MLFB	Maschinenlesbare Fabrikatebezeichnung	Maschinenlesbare Fabrikatebezeichnung
MM	Motor Module	Motor Module
MMC	Man-Machine Communication	Mensch-Maschine-Kommunikation
MMC	Micro Memory Card	Micro Memory Speicherkarte
MSB	Most Significant Bit	Höchstwertiges Bit
MSC	Motor-Side Converter	Motorstromrichter
MSCY_C1	Master Slave Cycle Class 1	Zyklische Kommunikation zwischen Master (Klasse

1) und Slave

Abkürzung	Ableitung der Abkürzung	Bedeutung
MSR	Motorstromrichter	Motorstromrichter
MT	Messtaster	Messtaster
N		
N. C.	Not Connected	Nicht angeschlossen
N	No Report	Keine Meldung oder Interne Meldung
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie
NC	Normally Closed (contact)	Öffner
NC	Numerical Control	Numerische Steuerung
NEMA	National Electrical Manufacturers Association	Normengremium in USA (United States of America)
NM	Nullmarke	Nullmarke
NO	Normally Open (contact)	Schließer
NSR	Netzstromrichter	Netzstromrichter
NVRAM	Non-Volatile Random Access Memory	Nichtflüchtiger Speicher zum Lesen und Schreiben
0		
OA	Open Architecture	Software-Komponente (Technologiepaket), die zusätzliche Funktionalität für das Antriebssystem SINAMICS einbringt
OAIF	Open Architecture Interface	Version der SINAMICS-Firmware, ab der die OA-Applikation eingesetzt werden kann
OASP	Open Architecture Support Package	Erweitert das Inbetriebnahme-Tool STARTER um die entsprechende OA-Applikation
OC	Operating Condition	Betriebsbedingung
OEM	Original Equipment Manufacturer	Original Equipment Manufacturer
OLP	Optical Link Plug	Busstecker für Lichtleiter
OMI	Option Module Interface	Option Module Interface
Р		
p	-	Einstellparameter
P1	Processor 1	Prozessor 1
P2	Processor 2	Prozessor 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Steuerungshoheit für Master
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Leistungsteildatensatz
PE	Protective Earth	Schutzerde
PELV	Protective Extra Low Voltage	Schutzkleinspannung
PEM	Permanenterregter Synchronmotor	Permanenterregter Synchronmotor
PG	Programmiergerät	Programmiergerät
PI	Proportional Integral	Proportional Integral
PID	Proportional Integral Differential	Proportional Integral Differential
PLC	Programmable Logical Controller	Speicherprogrammierbare Steuerung

Abkürzung Ableitung der Abkürzung Bedeutung

PLL Phase-Locked Loop Phase-Locked Loop

 PM
 Power Module
 Power Module

 PN
 PROFINET
 PROFINET

PNO PROFIBUS Nutzerorganisation PROFIBUS Nutzerorganisation

PPI Point to Point Interface Punkt-zu-Punkt-Schnittstelle

PRBS Pseudo Random Binary Signal Weißes Rauschen
PROFIBUS Process Field Bus Serieller Datenbus
PS Power Supply Stromversorgung
PSA Power Stack Adapter Power Stack Adapter

PTC Positive Temperature Coefficient Positiver Temperaturkoeffizient

PTP Point To Point Punkt zu Punkt

PWM Pulse Width Modulation Pulsweitenmodulation

PZD Prozessdaten Prozessdaten

Q R

r... - Beobachtungsparameter (nur lesbar)

RAM Random Access Memory Speicher zum Lesen und Schreiben

RCCB Residual Current Circuit Breaker Fehlerstrom-Schutzschalter
RCD Residual Current Device Fehlerstrom-Schutzschalter

RCM Residual Current Monitor Differenzstrom-Überwachungsgerät

RFG Ramp-Function Generator Hochlaufgeber

RJ45 Registered Jack 45 Bezeichnung für ein 8-poliges Stecksystem zur

Datenübertragung mit geschirmten oder ungeschirmten mehradrigen Kupferleitungen

RKA Rückkühlanlage Rückkühlanlage

RLM Renewable Line Module Renewable Line Module

RO Read Only

ROM Read-Only Memory Nur-Lese-Speicher

RPDO Receive Process Data Object Receive Process Data Object

RS232 Recommended Standard 232 Schnittstellen-Standard für leitungsgebundene

serielle Datenübertragung zwischen einem Sender

und Empfänger

Nur lesbar

(auch als EIA232 bezeichnet)

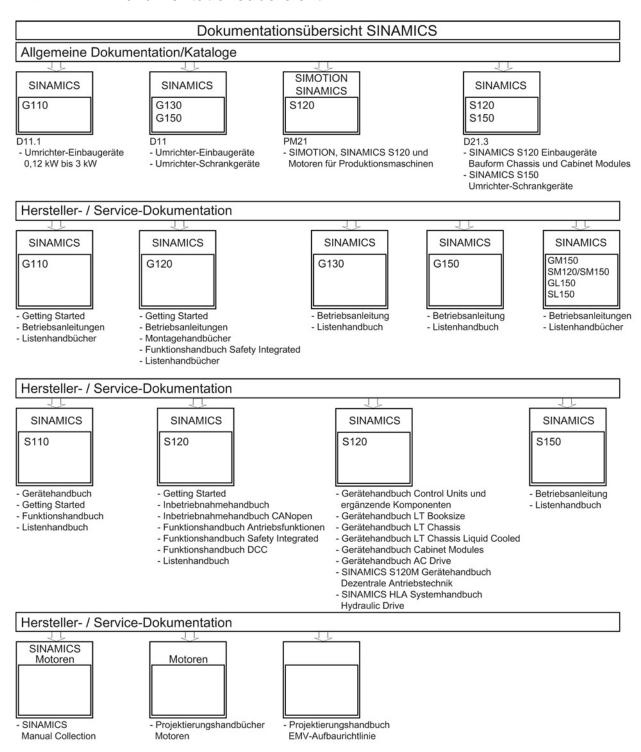
RS485 Recommended Standard 485 Schnittstellen-Standard für ein leitungsgebundenes

differenzielles, paralleles und/oder serielles

Bussystem (Datenübertragung zwischen mehreren

Sendern und Empfängern, auch als EIA485

bezeichnet)


RTC Real Time Clock Echtzeituhr

RZA Raumzeigerapproximation Raumzeigerapproximation

Abkürzung	Ableitung der Abkürzung	Bedeutung
S		
S1	-	Dauerbetrieb
S3	-	Aussetzbetrieb
SAM	Safe Acceleration Monitor	Sichere Überwachung auf Beschleunigung
SBC	Safe Brake Control	Sichere Bremsenansteuerung
SBH	Sicherer Betriebshalt	Sicherer Betriebshalt
SBR	Safe Brake Ramp	Sichere Bremsrampenüberwachung
SBT	Safe Brake Test	Sicherer Bremsentest
SCA	Safe Cam	Sicherer Nocken
SD Card	SecureDigital Card	Sichere digitale Speicherkarte
SDI	Safe Direction	Sichere Bewegungsrichtung
SE	Sicherer Software-Endschalter	Sicherer Software-Endschalter
SG	Sicher reduzierte Geschwindigkeit	Sicher reduzierte Geschwindigkeit
SGA	Sicherheitsgerichteter Ausgang	Sicherheitsgerichteter Ausgang
SGE	Sicherheitsgerichteter Eingang	Sicherheitsgerichteter Eingang
SH	Sicherer Halt	Sicherer Halt
SI	Safety Integrated	Safety Integrated
SIL	Safety Integrity Level	Sicherheitsintegritätsgrad
SLM	Smart Line Module	Smart Line Module
SLP	Safely-Limited Position	Sicher begrenzte Position
SLS	Safely-Limited Speed	Sicher begrenzte Geschwindigkeit
SLVC	Sensorless Vector Control	Geberlose Vektorregelung
SM	Sensor Module	Sensor Module
SMC	Sensor Module Cabinet	Sensor Module Cabinet
SME	Sensor Module External	Sensor Module External
SMI	SINAMICS Sensor Module Integrated	SINAMICS Sensor Module Integrated
SMM	Single Motor Module	Single Motor Module
SN	Sicherer Software-Nocken	Safe software cam
SOS	Safe Operating Stop	Sicherer Betriebshalt
SP	Service Pack	Service Pack
SP	Safe Position	Sichere Position
SPC	Setpoint Channel	Sollwertkanal
SPI	Serial Peripheral Interface	Serielle Schnittstelle für Peripherieanbindung
SPS	Speicherprogrammierbare Steuerung	Speicherprogrammierbare Steuerung
SS1	Safe Stop 1	Sicherer Stop 1 (zeitüberwacht, rampenüberwacht)
SS2	Safe Stop 2	Sicherer Stop 2
SSI	Synchronous Serial Interface	Synchrone serielle Schnittstelle
SSM	Safe Speed Monitor	Sichere Rückmeldung der Geschwindigkeitsüberwachung

Abkürzung	Ableitung der Abkürzung	Bedeutung
SSP	SINAMICS Support Package	SINAMICS Support Package
STO	Safe Torque Off	Sicher abgeschaltetes Moment
STW	Steuerwort	Steuerwort
т		
ТВ	Terminal Board	Terminal Board
TIA	Totally Integrated Automation	Totally Integrated Automation
TM	Terminal Module	Terminal Module
TN	Terre Neutre	Drehstromversorgungsnetz geerdet
Tn	-	Nachstellzeit
TPDO	Transmit Process Data Object	Transmit Process Data Object
TT	Terre Terre	Drehstromversorgungsnetz geerdet
TTL	Transistor-Transistor-Logic	Transistor-Transistor-Logik
Tv	-	Vorhaltezeit
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Unterbrechungsfreie Stromversorgung
USV	Unterbrechungsfreie Stromversorgung	Unterbrechungsfreie Stromversorgung
UTC	Universal Time Coordinated	Universalzeit koordiniert
V		
VC	Vector Control	Vektorregelung
Vdc	-	Zwischenkreisspannung
VdcN	-	Teilzwischenkreisspannung negativ
VdcP	-	Teilzwischenkreisspannung positiv
VDE	Verband Deutscher Elektrotechniker	Verband Deutscher Elektrotechniker
VDI	Verein Deutscher Ingenieure	Verein Deutscher Ingenieure
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt Spitze zu Spitze
VSM	Voltage Sensing Module	Voltage Sensing Module
W		
WEA	Wiedereinschaltautomatik	Wiedereinschaltautomatik
WZM	Werkzeugmaschine	Werkzeugmaschine
X		
XML	Extensible Markup Language	Erweiterbare Auszeichnungssprache (Standardsprache für Web-Publishing und Dokumentenmanagement)
Υ		
Z		
ZK	Zwischenkreis	Zwischenkreis
ZM	Zero Mark	Nullmarke
ZSW	Zustandswort	Zustandswort

A.2 Dokumentationsübersicht

Index

2	C
24-V-Stromaufnahme, 429 24-V-Versorgung, 426	Control Unit Adapter CUA31, 320 Control Unit Adapter CUA32, 327 Control Unit CU310-2 DP, 292 Control Unit CU310-2 PN, 265
A	,
Anordnung der Komponenten, 444 Anschluss Braking Modules Chassis, 199 Bremswiderstände Blocksize, 184 Bremswiderstände Chassis, 211 Control Unit Adapter CUA31, 324 Control Unit Adapter CUA32, 333 Control Unit CU310-2 DP, 312 Control Unit CU310-2 PN, 284 du/dt-Filter compact plus Voltage Peak Limiter Chassis, 255 du/dt-Filter plus Voltage Peak Limiter Chassis, 246 Motordrosseln Blocksize, 229 Netzdrosseln, 73 Power Modules Blocksize PM240-2, 95 Power Modules Blocksize PM340, 133 Power Modules Chassis, 165 Safe Brake Adapter, 393 Safe Brake Relay, 384 Aufstellhöhe, 36 Austausch Control Interface Module Baugröße FX, 475 Control Interface Module Baugröße GX, 477 Lüfter Baugröße FX, 479 Lüfter Baugröße GX, 481 Lüfter CU310-2, 458 Lüfter PM240-2, 459 Lüfter PM340, 460 Powerblock Baugröße GX, 472	Derating, 37 Bei Power Modules Chassis, 179 Bei Power Modules PM240-2, 122 Bei Power Modules PM340, 159 Diagnose über LEDs Sensor Module Cabinet SMC10, 351 Sensor Module Cabinet SMC20, 360 Sensor Module Cabinet SMC30, 373 Differenzstrom-Überwachungsgerät, 42 DRIVE-CLiQ-Kupplung, 402 DRIVE-CLiQ-Schrankdurchführung, 395 DRIVE-CLiQ-Signalleitungen, 431 Eigenschaften, 435 Mischeinsatz MC500 und MC800PLUS, 436 du/dt-Filter compact plus Voltage Peak Limiter Chassis, 250 du/dt-Filter plus Voltage Peak Limiter Chassis, 241 E Einbaurahmen, 405 EMV-Kategorie, 45 EMV-Richtlinie, 423 EMV-Umgebung, 45 Entwärmung, 447 Ersatzteile, 487
В	Federdruckklemmen, 441
Basic Operator Panel BOP20, 338 Belüftung, 449 Bemessungskurzschluss-Strom, 35	Fehlerstrom-Schutzschalter, 42 Formieren der Zwischenkreiskondensatoren, 483
Braking Modules, 195	1
Bremswiderstände Blocksize, 183 Bremswiderstände Chassis, 207	IT-Netz, 78

K	Lüftertausch
Kennlinien	Baugröße FX, 479
Lastspiel Bremswiderstände Blocksize, 194	Baugröße GX, 481
Lastspiel Bremswiderstände Chassis, 212	CU310-2, 458
Lastspiele Power Modules Blocksize PM240-2, 120	PM240-2, 459
Lastspiele Power Modules Blocksize PM340, 157	PM340, 460
Lastspiele Power Modules Chassis, 178	Lüftungsfreiräume, 447
Komponenten	Power Modules Blocksize PM240-2, 92
Basic Operator Panel BOP20, 338	Power Modules Blocksize PM340, 126
Braking Modules, 195	Power Modules Chassis, 162
Bremswiderstände Blocksize, 183	
Bremswiderstände Chassis, 207	
Control Unit Adapter CUA31, 320	M
Control Unit Adapter CUA32, 327	Maßbilder
Control Unit CU310-2 DP, 292	Bremswiderstände Blocksize, 186
Control Unit CU310-2 PN, 265	Bremswiderstände Chassis, 210
DRIVE-CLiQ-Kupplung, 402	Control Unit Adapter CUA31, 325
DRIVE-CLiQ-Schrankdurchführung, 395	Control Unit Adapter CUA32, 335
du/dt-Filter compact plus Voltage Peak Limiter	Control Unit CU310-2 DP, 318
Chassis, 250	Control Unit CU310-2 PN, 290
du/dt-Filter plus Voltage Peak Limiter Chassis, 241	DRIVE-CLiQ-Kupplung, 403
Einbaurahmen, 405	DRIVE-CLiQ-Schrankdurchführung, 397
Motordrosseln Blocksize, 213	du/dt-Drossel, 247
Motordrosseln Chassis, 233	du/dt-Filter compact plus Voltage Peak Limiter
Netzdrosseln, 58	Chassis, 256
Netzfilter, 45	Einbaurahmen, 406
Power Modules Chassis, 162	Motordrosseln Blocksize, 218
Power Modules PM240-2 Blocksize, 90	Motordrosseln Chassis, 235
Power Modules PM340 Blocksize, 124	Netzdrosseln Blocksize, 62
Safe Brake Adapter, 388	Netzdrosseln Chassis, 65
Safe Brake Relay, 382	Netzfilter Blocksize, 53
Schirmanschlluss-Satz, 408	Netzfilter Chassis, 54
Sensor Module Cabinet-Mounted SMC10, 347	Power Modules Blocksize PM240-2, 98
Sensor Module Cabinet-Mounted SMC20, 356	Power Modules Blocksize PM340, 138
Sensor Module Cabinet-Mounted SMC30, 364	Power Modules Chassis, 172
Sinusfilter Chassis, 237	Power Modules mit Screening Kit, Baugröße FSA
	bis FSF, 411
•	Safe Brake Adapter, 393
L	Safe Brake Relay, 385
Lagerung, 36	Screening Kit, Baugröße FSA bis FSC, 409
LEDs	Sensor Module Cabinet SMC10, 352
Control Unit Adapter CUA31, 325	Sensor Module Cabinet SMC20, 361
Control Unit Adapter CUA32, 334	Sensor Module Cabinet SMC30, 374
Control Unit CU310-2 DP, 314	Sinusfilter Chassis, 239
Control Unit CU310-2 PN, 286	Spannungsbegrenzungs-Netzwerk, 248
Sensor Module Cabinet SMC10, 351	Montage
Sensor Module Cabinet SMC20, 360	Basic Operator Panel BOP20, 341
Sensor Module Cabinet SMC30, 373	Braking Modules Chassis, 203
Leistungsleitungen, 437	Bremswiderstände Blocksize, 190
Leistungsschalter, 41	Control Unit, 336
Leitungsverlegung, 424	Control Unit Adapter, 336 DRIVE-CLiQ Schrankdurchführung, 399
	DINVETCER SCHRAHRUULUHUHUHUHU, SSS

DRIVE-CLiQ-Kupplung, 404 Schirmung, 424 DRIVE-CLiQ-Schrankdurchführung M12, 400 Schnittstellenbeschreibungen Basic Operator Panel BOP20, 338 Einbaurahmen, 407 Ferritkern für Baugr. FSB/FSC, 417 Control Unit Adapter CUA31, 321 Motordrosseln Blocksize, 223 Control Unit Adater CUA32, 328 Netzdrosseln, 66 Control Unit CU310-2 DP, 293 Netzfilter, 55 Control Unit CU310-2 PN, 266 Power Modules Blocksize PM240-2, 106 DRIVE-CLiQ-Kupplung, 402 Power Modules Blocksize PM340, 145 DRIVE-CLiQ-Schrankdurchführung, 396 Safe Brake Adapter, 394 DRIVE-CLiQ-Schrankdurchführung M12, 396 Safe Brake Relay, 386 du/dt-Filter compact plus Voltage Peak Limiter Schirmanschluss-Satz Baugr. FSB/FSC, 417 Chassis, 254 Schirmanschluss-Satz Baugr. FSD/FSE, 418 du/dt-Filter plus Voltage Peak Limiter Chassis, 245 Schirmanschluss-Satz Baugr. FSF, 418 Power Modules Blocksize PM240-2, 93 Schirmanschluss-Satz, Baugr. FSA, 416 Power Modules Blocksize PM340, 127 Sensor Modules Cabinet, 353, 362, 375 Power Modules Chassis, 163 Unterbaukomponenten, 445 Safe Brake Adapter, 390 Motordrosseln Blocksize, 213 Safe Brake Relay, 383 Motordrosseln Chassis, 233 Sensor Module Cabinet SMC10, 347 Sensor Module Cabinet SMC20, 356 Sensor Module Cabinet SMC30, 364 Ν Schraubklemmen, 441 Schutzklasse, 36 Netzanschluss-Spannung, 35 Schutzleiteranschluss, 442 Netzdrosseln, 58 Schutzverbindung, 442 Netzfilter, 45 Sensor Module Cabinet-Mounted SMC10, 347 Netzfreguenz, 35 Sensor Module Cabinet-Mounted SMC20, 356 Netzschütz, 44 Sensor Module Cabinet-Mounted SMC30, 364 Netztrenneinrichtung, 40 Service und Wartung, 457 Sicherheitshinweise Braking Modules Chassis, 196 Р Bremswiderstände Blocksize, 183 Plattformkonzept, 31 Bremswiderstände Chassis, 207 Potenzialausgleich, 442 Control Units, 262 Power Modules Chassis, 162 du/dt-Filter compact plus Voltage Peak Limiter Power Modules PM240-2 Blocksize, 90 Chassis, 250 Power Modules PM340 Blocksize, 124 du/dt-Filter plus Voltage Peak Limiter Chassis, 241 PROFIBUS-Adresse einstellen Motordrosseln, 213, 233 CU310-2 DP, 295 Netzdrosseln, 58 Netzfilter, 48 Power Modules, 87 R Power Modules Blocksize, 126 Power Modules Blocksize PM240-2, 92 RCD, 42 Power Modules Chassis, 162 RCM, 42 Safe Brake Adapter, 389 Safe Brake Relay, 382 Schaltschrankbau, 422 S Sensor Modules Cabinet-Mounted, 345 Safe Brake Adapter, 388 Service und Wartung, 455 Safe Brake Relay, 382 Sinusfilter Chassis, 237 Schaltschrankbau, 421 Sicherung, 41 Schirmanschluss-Satz, 408 Single Phase Grounded Midpoint, 83

Sinusfilter Chassis, 237 Spartransformator, 84 Spezifikation Gebersysteme und Geber Sensor Module Cabinet SMC30, 378 Stromversorgungsgeräte, 430

T

Tausch von Komponenten, 457 Technische Daten Braking Modules Chassis, 206 Bremswiderstände Blocksize, 191 Bremswiderstände Chassis, 211 Control Unit Adapter CUA31, 326 Control Unit Adapter CUA32, 335 Control Unit CU310-2 DP, 319 Control Unit CU310-2 PN, 291 DRIVE-CLiQ-Kupplung, 404 DRIVE-CLiQ-Schrankdurchführungen, 401 du/dt-Filter compact plus Voltage Peak Limiter, 258 du/dt-Filter plus Voltage Peak Limiter Chassis, 249 Motordrosseln Blocksize, 230 Motordrosseln Chassis, 236 Netzdrosseln Blocksize, 74 Netzdrosseln Chassis, 77 Netzfilter Blocksize, 56 Netzfilter Chassis, 57 Power Modules Blocksize PM240-2, 109 Power Modules Blocksize PM340, 148 Power Modules Chassis, 176 Safe Brake Adapter, 394 Safe Brake Relay, 387 Sensor Module Cabinet SMC10, 354 Sensor Module Cabinet SMC20, 363 Sensor Module Cabinet SMC30, 377 Sinusfilter Chassis, 240 TN-Netz, 78 Totally Integrated Automation, 31 Transport, 36 Trenntransformator, 85 TT-Netz, 78

U

Überspannungskategorie, 35 Überspannungsschutz, 43 Überspannungsschutz DC 24 V, 428 Überstromschutz, 41 Überstromschutz DC 24 V, 427 Umgebungstemperatur, 36

٧

Verlustleistung, 451
Verlustleistungen
Control Unit Adapter, 451
Control Units, 451
Netzdrosseln und Netzfilter, 452
Power Modules, 453
Sensor Modules, 451
Verschmutzungsgrad, 35

Siemens AG Industry Sector Drive Technologies Motion Control Systems Postfach 3180 91050 ERLANGEN DEUTSCHLAND Änderungen vorbehalten © Siemens AG 2006 - 2014