RBXM MODULE

AS5037.001 - "INC.AXI. - 4ch" - 4-channel INCREMENTAL READ OUT BOARD

Jumpers

A two-position jumper is installed: RESET and HOLD.
If the jumper is on RESET position, in case of system misbehaviour (WATCH DOG NOT-OK) all the outputs are set to their start condition (outputs disabled $=0$ Volt).
If the jumper is on HOLD position, or it is not installed, in case of system mishehaviour (WATCH DOG NOT-OK) all the outputs are left in their current state.

Input / Output Words.
The Input/Output word address for each board (CPU excluded) depends on its position inside the rack. Addresses are here referred to as "BASE" + a number representing the board internal offset. To find the value of "BASE" refer to the RHW.CFG configuration file generated by the operating system during the autoconfiguration session and stored in the flash card. This file contains the address of the I/O words for each board installed in your rack. The value of "BASE" is the value of the first Input or Output word in the board.

Number of Input Words: 12
Numerb of Output Words: 8
"Bit 0 " is the least significant bit in the word, "Bit 15" is the most significant bit in the word.

Input Word ("BASE" + 0):	Counter 1 real position (16 Bits)
Input Word ("BASE" + 1):	Counter 2 real position (16 Bits)
Input Word ("BASE" + 2):	Counter 3 real position (16 Bits)
Input Word ("BASE" + 3):	Counter 4 real position (16 Bits)
Input Word ("BASE" + 4):	Zero position for counter 1 (16 Bits) (significant only when a zero cycle has been successfully terminated)
Input Word ("BASE" + 5):	Zero position for counter 2 (16 Bits) (significant only when a zero cycle has been successfully terminated)
Input Word ("BASE" + 6):	Zero position for counter 3 (16 Bits) (significant only when a zero cycle has been successfully terminated)
Input Word ("BASE" + 7):	Zero position for counter 4 (16 Bits) (significant only when a zero cycle has been successfully terminated)

ROBOX S.P.A. - Castelletto s. Ticino (NO) Italy

Input Word ("BASE" + 8): Counter 1 state
Bit 0: $\quad 1=$ zero micro in High State

Bit 1: $\quad 1$ = zero cycle running
Bit 2: $\quad 1=$ zero cycle successfully terminated
Bit 3: $\quad 1=$ zero cycle alarm (state of the zero micro non consistent with the required 0 cycle)
Bit 4: $0=$ encoder alarm
Bit 5: $\quad 0=$ short circuit alarm on encoder supply
Bit 6: state of channel A
Bit 7: state of channel B
Bit 8: state of zer channel
Bit 9..15: non significant
N.B.: After reading this address, the existing alarms are reset, provided that the alarm condition has been eliminated.

Input Word ("BASE" + 9): State of counter 2
for the bit meaning, see the previous input word.

Input Word ("BASE" + 10): State of counter 3
for the bit meaning, see the previous input word.

Input Word ("BASE" + 11): State of counter 4 for the bit meaning, see the previous input word.

ROBOX S.P.A. - Castelletto s. Ticino (NO) Italy

Output Word ("BASE" + 0): Analog output 1

Output Word ("BASE" + 1): Analog output 2

Output Word ("BASE" + 2): Analog output 3

Output Word ("BASE" + 3): Analog output 4

At the system reset all the analog channels are set to 0 corresponding to a 0 Volt DC
The correspondence between the decimal value written in the Output Words and their analog value is as follows:

-2048	-->	-10 Volt DC
0	-->	0 Volt DC
2047	-->	+10 Volt DC

Output Word ("BASE" + 4): Request for zero cycle for encoder channel 1
Data $=0$ Hex --> no request for zero cycle
Data $=8$ Hex --> request for zero cycle on zero channel
Data $=$ A Hex --> request of zero cycle on the zero channel, after the zero micro transition from close to open
Data $=\quad$ B Hex --> request of zero cycle on the zero channel, after the zero micro transition from open to close
Data $=\quad$ C Hex --> request for 0 cycle on the transition of the zero micro from closed to open
Data $=\quad \mathrm{D}$ Hex $-->$ request for 0 cycle on the transition of the zero micro from open to closed
To terminate the procedure relevant to the zero cycle for channel 1 , the user will write " 0 " in this Output Word. This can be done also if the zero cycle is still running.

Output Word ("BASE" + 5): Request for Zero cycle for Encoder channel 2
Meaning as the previous Output Word

Output Word ("BASE" + 6): Request for Zero cycle for Encoder channel 3
Meaning as the previous Output Word

Output Word ("BASE" + 7): Request for Zero cycle for Encoder channel 4
Meaning as the previous Output Word

At the system reset output words 5, 6, 7 and 8 are set to value 0 Hex

Enclosure: IU5037.001

	Rev.n.	Descr.	Dis.	Disegno	Inc.axi. 4 ch board for RBXM USER'S Instruction	Dis.	R. Colombo	D.N.		37.	.001
ROBOX SpA ITALY Via Sempione 82	Data		ver.	Foglio	FRONT PANEL LED MEANING SPECIFICATIONS	Ver.	d.d. monache	Data		1/2	009
$\begin{aligned} & \text { Castelletto } \begin{array}{l} \mathrm{T} . \\ 28053 \text { (NO) } \end{array} \\ & \hline \end{aligned}$			App.			App.	A. TERUGGI	FN	1	Di	4

u0

Male D-Type Connector - 9 Pins

