

Digitaler Servoverstärker Serie digifas[®] 7100

Ausgabe	Bemerkung				
12 / 94	Erstausgabe, gültig ab Softwarestand 4L21/4B30				
11 / 95	Displaybeschreibung erweitert, Softwarestand 5L80/5A77, Anhang erweitert, Text überarbeitet, -IL-				
07 / 96	Korrekturen, Softwarestand 6L10/6A10				
10 / 96	orrekturen, Erweiterungen, Softwarestand 6L40/6A40				
01 / 98	Seidel Servo Drives GmbH, neues Typenschild, ROD/SSI und -G- Standard				

Technische Änderungen, die der Verbesserung der Geräte dienen, vorbehalten!

Gedruckt in der BRD 01/98

Mat.Nr.: 82190

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung der Firma Seidel reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

<u>Ir</u>	nhaltsverzeichnis	Zeichnung	Seite
	Inhaltsverzeichnis		A
	Sicherheitshinweise		C
	Richtlinien und Normen		D
	(6 - Konformität		D
ı	Allgemeines		
•	I.1 Über dieses Handbuch		I_1
	I.2 Bestimmungsgemäße Verwendung der Servoverstärker		
	I.3 In diesem Handbuch verwendete Kürzel		
	I.4 Typenschild		
	I.5 Gerätebeschreibung		
	I.5.1 Die digitalen Servoverstärker der Familie digifas [®] 7100		I-3
	I.5.2 Digitales Servoverstärkerkonzept		I-4
	I.5.3 Betrieb direkt am 400V-Netz		
	I.6 Blockschaltbild		
	I.7 Frontansicht digifas® 71037116 mit Bedienelementen und Anschlüssen		
	I.8 Frontansicht digifas [®] 71337150 mit Bedienelementen und Anschlüssen		
	I.9 Technische Daten der Serie digifas [®] 7100		
	I.9.1 Zulässige Umgebungsbedingungen, Belüftung, Einbaulage		
	I.9.2 Leiterquerschnitte		
	I.9.3 Absicherung		
	I.9.4 LED-Anzeigen		
	I.10 Masse-System. I.11 Ballastschaltung		
	•		1-10
Ш			
	II.1 Wichtige Hinweise		
	II.2 Installation		
	II.2.1 (€ - gerechter Anschluß digifas [®] 71037116, Übersichtsplan		
	II.2.2 Anschlußplan Standardgerät digifas® 71037116	A.4.012.1/2	II-5
	II.2.3 ((- gerechter Anschluß digifas [®] 7133 / 7150, Übersichtsplan		
	II.2.5 Anschlußbeispiel Mehrachsensystem		
	II.2.6 Steckerbelegungen digifas® 71037116		
	II.2.7 Stecker-/Klemmenbelegung digifas [®] 71337150		
	II.2.8 Hinweise zur Anschlußtechnik		
	II.2.8.1 Handhabung der Schirmanschlußklemmen		
	II.2.8.2 Anschluß des SubD9-Steckers		
	II.2.8.3 Handhabung geschirmter Leitungen für Klemmen		
	II.3 Inbetriebnahme		
	II.4 Parameterbeschreibung		II-16
	II.4.1 Allgemeines		II-16
	II.4.2 Stromregler		II-17
	II.4.3 Drehzahlregler		II-17
	II.4.4 Servicefunktionen		
	II.4.5 Istwertanzeigen		
	II.5 Fehlermeldungen, BTB-Meldung		II-18

Inhaltsverzeichnis Zeichnung Seite

Ш	St	euereingänge und -ausgänge	
	III.1	Eingangs-Funktionen	
		1.1 Analoge Eingänge	
		1.2 Digitale Steuereingänge	
		Ausgangs-Funktionen	
		2.1 Analoge Ausgänge	
		2.2 Digitale Ausgänge	
	III.	2.3 Bremse (Option -G-)	III-3
I۷	Sc	chnittstellen und Optionen	
	IV.1	Inkrementalgeber-Interface (nur bei Geräten ohne CONNECT-Baugruppe) A 4 011 3/4.	IV-1
	IV.2	SSI-Interface, Option -ROD/SSI- (nur bei Geräten ohne CONNECT-Baugruppe) A.4.01.1.3/5	IV-2
	IV.3	PC-Schnittstelle	IV-3
	IV.4	Tastenbedienung / LC-Display, Option -DISP	IV-4
	IV.	.4.1 Tastenbeschreibung / Bedienung	IV-4
	IV.	.4.2 Menüaufbau und Bedienung	IV-5
	IV.5	Steuerbare Drehmomentbegrenzung, Option -IL	IV-6
	IV.	.5.1 Allgemeines, technische Daten	IV-6
	IV.	.5.2 Wichtige Hinweise	IV-7
		.5.3 Inbetriebnahme	
		.5.4 Position der Stecker und Bedienelemente	
	IV.	.5.5 Anschlußbild Option -IL	IV-9
٧	Zε	eichnungen	
	V.1	Resolverkabel für Motorserie 6SM	
	V.2	Analoge Ein- und Ausgangskreise	V-2
	V.3	Digitale Ein- und Ausgangskreise	
	V.4	Montageebenen und Abmessungen digifas® 71037116	
	V.5	Einbausituation im Schaltschrank digifas® 71037116	
	V.6	Montageebenen und Abmessungen digifas® 71337150	
	V.7	Einbausituation im Schaltschrank digifas® 71337150	
	V.8	Netzfilter 1EF06 und Serie 3EFxx - A.4.011.4/26	
	V.9	Netzdrossel 3L0,5-60 A.4.012.4/29	
	V.10	Ballastwiderstand BAR860	
		Externe Netzteile 5V DC für Versorgung der Positionsausgabe	
		Externes Netzteil 24V DC für Versorgung eines Servoverstärkers	
	V.13	Externes Netzteil 24V DC für Versorgung von bis zu 7 ServoverstärkernA.4.012.4/33	. V-13
V	Ar	nhang	
	VI.1	Lieferumfang, Transport, Lagerung, Wartung, Entsorgung	
		(€ - relevante Systemkomponenten digifas [®] 71037116	1/1/2
	VI.2		
	VI.3	(€ - relevante Systemkomponenten digifas [®] 7133 / 7150	VI-4
	VI.3 VI.4	C ← relevante Systemkomponenten digifas [®] 7133 / 7150	VI-4 VI-6
	VI.3 VI.4 VI.5	(€ - relevante Systemkomponenten digifas [®] 7133 / 7150. -A.4.012.1/9. Beseitigung von Störungen.	VI-4 VI-6 VI-8
	VI.3 VI.4 VI.5 VI.6	C ← relevante Systemkomponenten digifas [®] 7133 / 7150	VI-4 VI-6 VI-8

Sicherheitshinweise

Warnsymbole: Beachten Sie unbedingt die wichtigen Hinweise im Text, die mit folgenden Symbolen gekennzeichnet sind:

Gefährdung durch Elektrizität und ihre Wirkung

Allgemeine Warnung Allgemeine Hinweise

Nur qualifiziertes Fachpersonal darf Arbeiten wie Transport, Installation, Inbetriebnahme und Instandhaltung ausführen. Qualifiziertes Fachpersonal sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen. Das Fachpersonal muß folgende Normen bzw. Richtlinien kennen und beachten:

IEC 364 bzw. CENELEC HD 384 oder DIN VDE 0100 IEC-Report 664 oder DIN VDE 0110 nationale Unfallverhütungsvorschriften oder VBG 4

- Lesen Sie vor der Installation und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben des Servoverstärkers kann zu Personen- oder Sachschäden führen. Halten Sie die technischen Daten und die Angaben zu den Anschlußbedingungen (Typenschild und Dokumentation) unbedingt ein.
- Die Servoverstärker enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker berühren. Vermeiden Sie den Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststoffolien etc.). Legen Sie den Servoverstärker auf eine leitfähige Unterlage.
- Öffnen Sie die Geräte nicht. Halten Sie während des Betriebes alle Abdeckungen und Schaltschranktüren geschlossen. Es besteht die Gefahr von Tod oder schweren gesundheitlichen oder materiellen Schäden.
- Während des Betriebes können Servoverstärker ihrer Schutzart entsprechend spannungsführende, blanke Teile und heiße Oberflächen besitzen. Steuer- und Leistungsanschlüsse können Spannung führen, auch wenn sich der Motor nicht dreht.
- Lösen Sie die elektrischen Anschlüsse der Servoverstärker nie unter Spannung. In ungünstigen Fällen können Lichtbögen entstehen und Personen und Kontakte schädigen.
- Warten Sie nach dem Trennen der Servoverstärker den von Versorgungsspannungen mindestens zwei Minuten. bevor spannungsführende Geräteteile (z.B. Kontakte, Gewindebolzen) berühren oder Anschlüsse lösen. Kondensatoren führen bis zu zwei Minuten nach Abschalten der Versorgungsspannungen gefährliche Spannungen. Messen Sie zur Sicherheit die Spannung im Zwischenkreis und warten Sie, bis die Spannung unter 40V abgesunken ist.

Richtlinien und Normen

Servoverstärker sind Komponenten, die zum Einbau in elektrische Anlagen/Maschinen bestimmt sind.

Bei Einbau in Maschinen/Anlagen ist die Aufnahme des bestimmungsgemäßen Betriebes des Servoverstärkers solange untersagt, bis festgestellt wurde, daß die Maschine/Anlage den Bestimmungen der EG-Maschinenrichtlinie 89/392/EWG und der EG-EMV-Richtlinie (89/336/EWG) entspricht. Beachten Sie auch EN 60204 und EN 292.

Zur Niederspannungsrichtlinie 73/23/EWG werden die harmonisierten Normen der Reihe EN 50178 in Verbindung mit EN 60439-1, EN 60146 und EN 60204 für die Servoverstärker angewendet.

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte der Anlage/Maschine liegt in der Verantwortung des Herstellers der Anlage/Maschine. Hinweise für die EMV-gerechte Installation - wie Schirmung, Erdung, Anordnung von Filtern, Handling von Steckern und Verlegung der Leitungen - finden Sie in dieser Dokumentation.

(E - Konformität

Ab dem 1. Januar 1996 ist bei Lieferungen von Servoverstärkern innerhalb der europäischen Gemeinschaft die Einhaltung der EG-EMV-Richtlinie 89/336/EWG zwingend vorgeschrieben.

Die Servoverstärker der Serie digifas[®] 7100 wurden in einem definierten Aufbau mit den in Kapitel VI.2 / VI.3 beschriebenen Systemkomponenten in einem autorisierten Prüflabor geprüft.

Abweichungen vom in der Dokumentation beschriebenen Aufbau und Installation bedeutet, daß Sie selbst neue Messungen veranlassen müssen, um der Gesetzeslage zu entsprechen.

Wir garantieren nur bei Verwendung der in Kapitel VI genannten Komponenten und Einhaltung der Installationsvorschriften dieser Dokumentation (Kapitel II.2) die Konformität der Servoverstärker zu folgenden Normen im Industriebereich:

EG-EMV-Richtlinie 89/336/EWG EG-Niederspannungs-Richtlinie 73/23/EWG

I Allgemeines

I.1 Über dieses Handbuch

Dieses Handbuch ist ein Bestandteil der Gesamt-Dokumentation der digitalen Servoverstärker-Familie digifas[®] 7100. Es beschreibt die Montage, Installation und Inbetriebnahme des Standardgerätes der Familie, d.h. der Servoverstärker-Variante **ohne** CONNECT-Baugruppe. Sie finden hier auch Hinweise zu Transport, Lagerung, Wartung und Entsorgung der Geräte.

Sonstige Bestandteile der Gesamtdokumentation der Familie digifas[®] 7100:

— Installations-/Bedienungsanleitung der PC-Bediener-Software:

BS7200 für Familie digifas[®] 7100 Best.Nr.: 82164

— Installations-/Bedienungsanleitungen für digitale Anbindung an Automatisierungssysteme:

BIT CONNECT für Serie digifas® 7100-SPS Best.Nr.: 82167

PROFIBUS CONNECT für Serie digifas® 7100-L2/DP Best.Nr.: 82168

PULSE CONNECT für Serie digifas® 7100-STEP Best.Nr.: 82166

CAN CONNECT für Serie digifas® 7100-CAN Best.Nr.: 82165

Wir legen bei Auslieferung der Servoverstärker alle erforderlichen Dokumentationen für die jeweilige Gerätevariante bei.

Dieses Handbuch richtet sich mit folgenden Anforderungen an Fachpersonal:

Transport : nur durch Personal mit Kenntnissen in der

Behandlung elektrostatisch gefährdeter

Bauelemente.

Installation : nur durch Fachleute mit elektrotechnischer

Ausbildung

Inbetriebnahme : nur durch Fachleute mit weitreichenden

Kenntnissen in den Bereichen Elektrotechnik / Antriebstechnik

I.2 Bestimmungsgemäße Verwendung der Servoverstärker

Verwenden Sie Servoverstärker der Familie digifas[®] 7100 **nur** am dreiphasigen, geerdeten 400V Industrie-Netz und für den Betrieb eines Synchron-Servomotors der Serie 6SM.

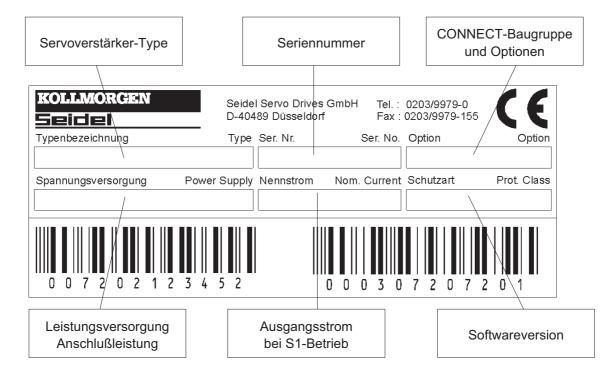
Sie dürfen die Servoverstärker **nur** im geschlossenen Schaltschrank unter Berücksichtigung der in Kapitel I.9.1 definierten Umgebungsbedingungen betreiben.

Die Servoverstärker der Familie digifas[®] 7100 sind **ausschließlich** dazu bestimmt, bürstenlose Synchron-Servomotoren der Serie 6SM drehzahl- und/oder drehmomentgeregelt anzutreiben. Die Servoverstärker werden als Komponenten in elektrische Anlagen oder Maschinen eingebaut und dürfen nur als integrierte Komponente der Anlage in Betrieb genommen werden.

Wir garantieren nur bei Verwendung der in Kapitel VI genannten Systemkomponenten und Einhaltung der Installationsvorschriften dieser Dokumentation (Kapitel II.2) die Konformität der Servoverstärker zu folgenden Normen im Industriebereich:

EG-EMV-Richtlinie 89/336/EWG

EG-Niederspannungs-Richtlinie 73/23/EWG


I.3 In diesem Handbuch verwendete Kürzel

In der Tabelle unten werden die in diesem Handbuch verwendeten Abkürzungen erklärt.

Kürzel	Bedeutung	Kürzel	Bedeutung
AGND	Analoge Masse	PELV	Schutzkleinspannung
BTB	Betriebsbereit	PGND	Masse des verwendeten Interfaces
CE	European Community	PSTOP	Endschaltereingang Drehrichtung rechts
CLK	Clock (Taktsignal)	PWM	Pulsweitenmodulation
DGND	Digitale Masse	RAM	Speicherbaustein
DIN	Deutsches Institut für Normung	R _{Ballast}	Ballastwiderstand
EEPROM	Elektrisch löschbarer Festspeicher	RB _{ext}	Externer Ballastwiderstand
EMV	Elektromagnetische Verträglichkeit	RBint	Interner Ballastwiderstand
EN Europäische Norm		RES	Resolver
ESD	Entladung statischer Elektrizität	SPS	Speicherprogrammierbare Steuerung
IDC	analoger Strommonitor		Statisches RAM
IEC	International Electrotechnical Commission	SSI	Synchron-Serielles-Interface
IGBT	Insulated Gate Bipolar Transistor	sw	Sollwert
ISO	International Standardization Organization	V AC	Wechselspannung
INC	Inkremental Interface	V DC	Gleichspannung
LED	Leuchtdiode	VDE	Verein deutscher Elektrotechniker
NI	Nullimpuls	VTA	analoger Drehzahlmonitor
NSTOP	Endschaltereingang Drehrichtung links	XGND	Masse der Versorgungsspannung

I.4 Typenschild

Das unten abgebildete Typenschild ist auf dem Servoverstärker angebracht. In die einzelnen Felder sind die unten beschriebenen Informationen eingedruckt.

I.5 Gerätebeschreibung

I.5.1 Die digitalen Servoverstärker der Familie digifas[®] 7100

Die digitalen Servoverstärker der Familie digifas[®] 7100 bieten wir in verschiedenen Varianten an :

Standardausführung

Serie digifas[®] 7100

mit analogem Drehzahl-Sollwert-Eingang, inkrementeller Positionsausgabe. Direkt ansteurbare Motorhaltebremse.

In dieser Standardausführung ist **keine Lageregelung** im Servoverstärker möglich. Diese Aufgabe muß vom Automatisierungsgerät übernommen werden.

Optionen*: -DISP-, -IL-

Variante BIT CONNECT

Serie digifas® 7100-SPS

SPS-Interface, Anschluß an eine einfache Steuerung über 10 E/A-Leitungen, Abfahren von im Servoverstärker gespeicherten Fahrsätzen, 7 Stromvarianten, digitale Sollwertvorgabe vom Automatisierungsgerät, **Lageregelung** im Servoverstärker. Direkt ansteurbare Motorhaltebremse.

Variante PULSE CONNECT Serie digifas[®] 7100-STEP

Puls-Richtungs-Interface, Anschluß an eine Schrittmotor-Steuerung oder als Slave-Regler an einen digifas[®] 7100 Master-Regler mit inkrementeller Positionsausgabe, 7 Stromvarianten, digitale Sollwertvorgabe vom Automatisierungsgerät, **Lageregelung** (Folgeregelung) im Servoverstärker. Direkt ansteurbare Motorhaltebremse.

Variante PROFIBUS CONNECT Serie digifas[®] 7100-L2/DP

Anschluß an PROFIBUS-DP (SINEC-L2-DP), 7 Stromvarianten, digitale Sollwertvorgabe vom Automatisierungsgerät, **Lageregelung** im Servoverstärker. Direkt ansteurbare Motorhaltebremse.

Variante CAN CONNECT, Serie digifas[®] 7100-CAN

Anschluß an CAN BUS, 7 Stromvarianten, Digitale Sollwertvorgabe vom Automatisierungsgerät, **Lageregelung** im Servoverstärker. Direkt ansteurbare Motorhaltebremse.

Nähere Erklärungen zu den CONNECT-Varianten finden Sie in der entsprechenden Installations- / Bedienungsanleitung für die CONNECT-Baugruppe.

* Optionen : -DISP- LC-Display und 3-Tastenbedienung, siehe Kapitel IV.4
-IL- Steuerbare Drehmomentbegrenzung, externes Zusatzgerät, siehe Kapitel IV.5

I.5.2 Digitales Servoverstärkerkonzept

Bedienung und Parametrierung

Standard : über parallele Schnittstelle eines Personal Computers (PC) mit

der speziellen Bedienersoftware BS7200

Optional : über Dreitastenbedienung direkt am Servoverstärker und

LCD-Anzeige nur bei Geräten ohne CONNECT-Baugruppe

Leistungsteil

Netzversorgung : B6-Gleichrichterbrücke direkt am dreiphasigen 400V-Netz

Endstufe : IGBT-Modul mit potentialfreier Strommessung

Ballastschaltung : mit elektronischer Überwachung und internem Ballastwiderstand

Externer Ballastwiderstand bei Bedarf (zur Parametrierung des

Servoverstärkers bitten wir um Rücksprache)

Digitale Funktionen

Strom- und Drehzahlregelung

Verarbeitung der 14-BIT Resolverauswertung

Positionsausgabe (inkrementell oder SSI) bei analoger Sollwertvorgabe

 Kommunikation mit den verschiedenen Interfacemodulen und Lageregelung, falls ein Interface-Modul eingebaut ist

Komfort-Funktionen

einstellbare Sollwert-Rampen, Endschalter-Funktion, analoge Monitorausgänge

I.5.3 Betrieb direkt am 400V-Netz

Leistungsversorgung — Direkt aus dem geerdeten, dreiphasigen 400V-Netz ohne

Transformator, Netzfilter Serie 3EF-xx, Netzdrossel bei digifas[®] 7133/7150

— Absicherung mit Phasenausfall-Überwachung durch den Anwender

— einphasige Einspeisung (nur für Leistungen < 0,5kW) z.B. für

Inbetriebnahme oder Einrichtbetrieb möglich

Hilfsspannung 25V DC — Potentialgetrennt aus einem externen 24V DC-Netzteil

mit Trenntransformator, Netzfilter 1EF-06

Integrierte Sicherheit — Elektrisch sichere Trennung nach EN 50178

zwischen Netz- bzw. Motor-Anschluß und der Signalelektronik

durchentsprechende Kriechwege und vollständige

Potentialtrennung

— Sanfteinschaltung, Überspannungs-Erkennung, Kurzschlußschutz

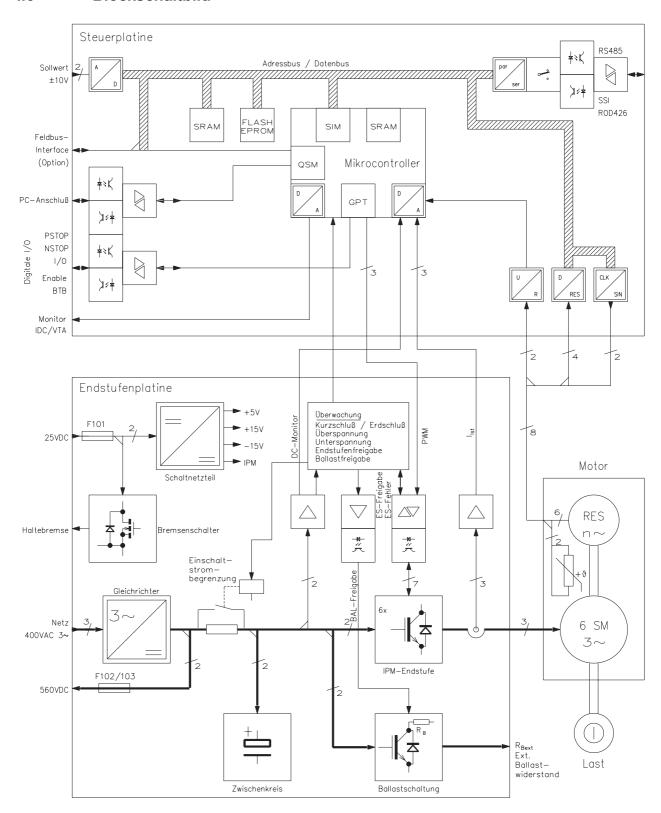
— Temperaturüberwachung von Servoverstärker und Motor

(bei Verwendung von Motoren der Serie 6SM mit unseren fertig

konfektionierten Kabeln)

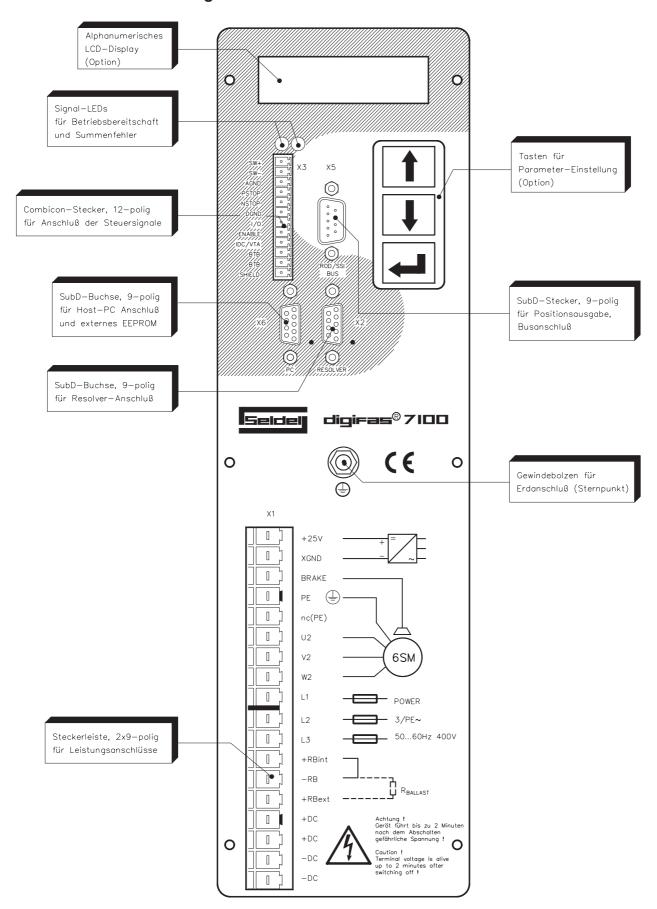
Zusätzliche Entstör-Maßnahmen

Netzfilter (siehe Kapitel V.8)

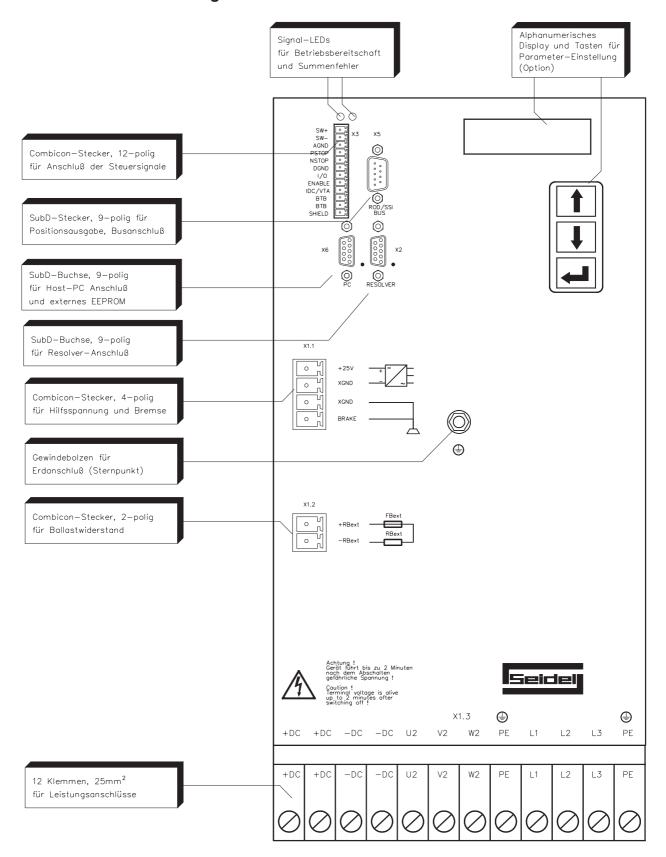

Netzdrossel (siehe Kapitel V.9)

Bei Applikationsproblemen bitten wir um Rücksprache.

.



I.6 Blockschaltbild



I.7 Frontansicht digifas[®] 7103...7116 mit Bedienelementen und Anschlüssen

I.8 Frontansicht digifas[®] 7133...7150 mit Bedienelementen und Anschlüssen

I.9 Technische Daten der Serie digifas[®] 7100

		digifas®								
Nenndaten		DIM	7103	7105	7108	7112	7116	7133	7150	
Nenn-Anschlußspannur	ng	V~		3 x 80	-400 / :	5060H	∃z +max	. 10%		
Nenn-Anschlußleistung	für S1-Be t rieb	kVA	1,8	3	4,5	7	7 (9)*	19	30	
Nenn-Zwischenkreisgle	ichspannung	V=				560				
Nenn-Ausgangsstrom (Effektivwert, ± 3%)	Arms	3	5	8	12	16	33	50	
Spitzen-Ausgangsstrom		Arms	6	10	16	24	32	66	100	
Obere Einschaltschwell		V				720			l	
Abschaltschwelle Ballas		V				680				
Impulsleistung Ballasts		kW		6,9			0,4	3	4,5	
Dauerleistung Ballastsc		W			200		-, .			
Dauerleistung Ballastsc		kW	2				4			
Ballastwiderstand exter		Ω	75 50			50	15			
Abschaltschwelle bei Ül		V		7.0		750			10	
Formfaktor des Ausgan		V				730				
(bei Nenndaten und Mir	•	_				1.01				
Mindestinduktivität des		mH	15	8	5	3,5	2,5	1,5	0,8	
Bandbreite des unterlag	-	kHz	15			1	2,0	1,0	0,0	
Taktfrequenz der Endst		kHz				8,33				
Restspannungsabfall be		V								
Ruheverlustleistung, Er		W		5					25	
		VV		Τ	15				25	
Verlustleistung bei Nen Verlustleistung ohne Ba	•	W	50	70	100	140	180	365	540	
	iliast-veriustieisturig									
Eingänge	. A fl =	V				140				
Sollwert, fest eingestellt, Auflösung 14bit						±10				
Gleichtaktspannung max.						±10				
Eingangswiderstand						20				
Eingangsdrift max.			K ±30							
Digitale Steuereingänge)	V				1236	;			
		mA				7				
Hilfsspannungsversorgung, potentialgetrennt			1836							
ohne Bremse		Α	1							
Hilfsspannungsversorg	ung, potentialgetrennt	V	24 ± 10%							
mit Bremse		Α	3 8				8			
max. Ausgangsstrom B	remse	Α	2 7							
Anschlüsse										
Steuersignale		Mini C	ombico	n 3,81 /	12 poli	g , 1,5m	ım²			
			Power Combicon 7,62 / Klemmen							
Leistungssignale		2 x 9-polig, 2,5mm ² 25mm ²								
Resolver			SubD 9pol. (Buchse)							
PC-Schnittstelle			SubD 9pol. (Buchse)							
Positionsausgabe (ROI	D/SSI)		9pol. (S							
digifas [®] -STEP PULSE CONNECT			Interface: Mini Combicon 3,81 / 12 polig , 1,5mm ²							
digifas®-SPS BIT CONNECT			Interface: Mini Combicon 3,81 / 12 polig , 1,5mm ²							
8	ROFIBUS CONNECT	Interfa		SubD 9			. 3	. ,		
	AN CONNECT	Interfa		SubD 9						
Mechanik		25.10			(2)					
Gewicht		kg			7,9			1	6,5	
		y			., , –			<u> </u>	-,-	
Abmessungen (HxBxT)	Montageebene 1	mm		340)x105x3	341		390x1	95x31	

^{*} Einachsanwendung : im S1-Betrieb 7kVA, im S3-Betrieb 9 kVA Mehrachsanwendung (Zwischenkreis gekoppelt) : im S1-Betrieb 9 kVA

I.9.1 Zulässige Umgebungsbedingungen, Belüftung, Einbaulage

Lagertemperatur,-feuchtigkeit,-dauer	siehe Kapitel VI.1				
Transporttemperatur,-feuchtigkeit	siehe Kapitel VI.1				
Toleranz Versorgungsspannungen					
Leistungsversorgung	min 3x80V AC / max 3x400V AC + 10%				
Hilfsspannung ohne Bremse	min 18V DC / max 36V DC				
Hilfsspannung mit Bremse	24V DC ± 10%				
Positionsinterface	5V DC ± 5%				
Umgebungstemperatur im Betrieb	0+45°C bei Nenndaten				
Onigebungstemperatur im Betrieb	+45+55°C mit Leistungsrücknahme 2,5% / °C				
Luftfeuchtigkeit im Betrieb	rel. Luftfeuchte 85%, nicht betauend				
Aufstellhöhe	bis 1000m über NN ohne Einschränkung				
Austennone	10002500m über NN mit Leistungsrückn. 1,5%/100m				
Verschmutzungsgrad	Verschmutzungsgrad 2 nach EN60204/prEN50178				
Schutzart	IP 20				
Einbaulage	generell vertikal. Beachten Sie Kapitel V.5 und V.7				
Belüftung digifas [®] 7103/7105	Elektronik und Kühlkörper freie Konvektion				
digifas [®] 71087150	Elektronik freie Konvektion, Kühlkörper durch eingebauten Lüf-				
uigilas / 100/ 150	ter				
\wedge	Sorgen Sie im geschlossenen Schaltschrank				
<u> </u>	für ausreichende erzwungene Umluft.				

I.9.2 Leiterquerschnitte

Wir empfehlen im Rahmen der VDE 0113 für Einachssysteme folgende Leiterquerschnitte :

	· · · · · · · · · · · · · · · · · · ·	3	
AC-Anschluß, DC-Zwischenkreis, Motorleitungen	digifas [®] 7103/7105 digifas [®] 7108/7112/7116 digifas [®] 7133		abgeschirmt, auf Anfrage max. 100m
_	digifas [®] 7150	: 16 mm ²	_
Resolver, Thermoschutz-Motor	0,25 mm² paarw. verseilt, g	jeschirmt, au	f Anfrage max.100m
Analoger Sollwert, Monitor-Signale, AGND	0,25 mm ² , paarweise vers	seilt, abgesch	nirmt
Steuersignale, BTB, DGND	0,5 mm ²		
Haltebremse (Motor)	min. 0,75 mm ² , abgeschirn	nt, Spannung	gsverlust beachten
+25 V / XGND	1,5 mm ² , abgeschirmt, Spa	ınnungsverlu	st beachten

Bei Mehrachssystemen beachten Sie bitte die speziellen Betriebsbedingungen Ihrer Anlage (bei Unsicherheiten bitten wir um Rücksprache).

I.9.3 Absicherung

		digifas [®] 71037108	digifas [®] 71127116	digifas [®] 71337150		
A.C. Financiauna		externer Leistungsschalter für Anlagenschutz, Charakteristik				
AC-Einspeisung		C oder D (Motor oder Trafo), eingestellt auf Verstärker-Nennstro				
Hilfsspannung 25V	(F101)	intern 3,15 AT	intern 3,15 AT	intern 8 AT		
DC-Zwischenkreis	(F102,F103)	intern 16 AFF	intern 16 AFF	intern 50 AFF		
Ballastwiderstand	intern	intern elektronisch	intern elektronisch	_		
Ballastwiderstand	extern	extern 5 AF	extern 6 AF	extern 16 AF		

I.9.4 LED-Anzeigen

	Grüne Leuchtdiode (LED)	Gerät betriebsbereit / Versorgungsspannung vorhanden
Data Lavalitationa	Data Lauahtdiada	BTB-Relais abgefallen, grüne LED leuchtet nicht,
	Rote Leuchtdiode	Fehlermeldung (siehe Kapitel II.5 u. V.3), Klartextmeldung

Kapitel I Allgemeines Seite I - 9

I.10 Masse-System

Es existieren folgende Masse(GND)-Systeme:

AGND — Bezug für analoge Ein-/Ausgänge, interne Analog-Masse DGND — Bezug für digitale Ein-/Ausgänge, optisch entkoppelt

XGND — Bezug für externe 25V Hilfsspannung, optisch und induktiv entkoppelt
 PGND — Bezug für externe Versorgung der Positions-Interfaces, optisch entkoppelt

GND — interne Elektronik-Masse (auch EGND), verbunden mit AGND

I.11 Ballastschaltung

Beim Bremsen des Motors wird Energie zum Servoverstärker zurückgespeist. Diese Energie wird im Ballastwiderstand in Wärme umgewandelt. Der Ballastwiderstand wird von der Ballastschaltung zugeschaltet. Die maximale Ballastleistung wird bestimmt vom eingesetzten Ballastwiderstand und der softwaremäßig eingestellten Ballastleistung.

Bei der Berechnung der erforderlichen Ballastleistung für Ihre Anlage fhilft Ihnen unsere Applikationsabteilung.

Funktionsbeschreibung:

1.- Einzelverstärker, nicht gekoppelt über den Zwischenkreis (DC+, DC-)

Die Schaltung beginnt bei einer Zwischenkreisspannung von 720V anzusprechen. Ist die vom Motor rückgespeiste Leistung höher als die eingestellte Ballastleistung, meldet der Servoverstärker den Status "Ballastleistung" überschritten, die Ballastschaltung schaltet sich ab.

Bei der nächsten internen Prüfung der Zwischenkreisspannung (Sekundenbruchteile später) wird eine Überspannung erkannt und der Regler wird mit der Fehlermeldung "Überspannung" abgeschaltet (siehe Kapitel II.5).

2.- Mehrere Servoverstärker gekoppelt über den Zwischenkreis (DC+, DC-)

Die in den Zwischenkreis rückgespeiste Energie aller angeschlossenen Motoren wird von allen angeschlossenen Ballastschaltungen verarbeitet. Hierbei schaltet sich der Servoverstärker mit der toleranzbedingt niedrigsten Ballast-Einschaltspannung zuerst ein.

Ist die Rückspeiseleistung kleiner als die Ballastleistung dieses Servoverstärkers, steigt die Zwischenkreisspannung nicht weiter an und kein anderer Servoverstärker schaltet sich ein.

Reicht die Ballastleistung nicht aus, meldet der Servoverstärker den Status "Ballastleistung" überschritten. Die Zwischenkreisspannung steigt weiter an und die Ballastschaltung mit der nächst höheren Einschaltspannung schaltet sich zu usw. Ist die Rückspeiseleistung größer als alle Ballastleistungen zusammen, melden alle Servoverstärker "Ballastleistung" überschritten. Der Servoverstärker mit der toleranzbedingt niedrigsten Überspannungsschwelle wird mit der Fehlermeldung "Überspannung" abschalten und damit über den BTB-Kontakt die gesamte Anlage abschalten.

Ballastwiderstand intern: digifas[®] 7103...7116 : 200W (Auslieferungszustand)

digifas[®] 7133...7150 : nicht vorhanden

Ballastwiderstand extern: digifas[®] 7103...7108 : min. 75 Ω , max. 2000W

digifas[®] 7112...7116 : min. 50Ω, max. 2000W digifas[®] 7133...7150 : min. 15Ω, max. 4000W

Bei digifas[®] 7103...7116 müssen Sie die Brücke +R_{Bint} ⇔ -R_B entfernen, wenn Sie einen externen Ballastwiderstand verwenden wollen.

II Installation / Inbetriebnahme

II.1 Wichtige Hinweise

Prüfen Sie die Zuordnung von Servoverstärker und Motor. Vergleichen Sie Nennspannung und Nennstrom der Geräte. Führen Sie die Verdrahtung nach dem Anschlußbild in Kapitel II.2.2 bzw. II.2.4 aus. Bei Geräten mit CONNECT-Baugruppen verwenden Sie für die Schnittstelle zusätzlich das Anschlußbild im entsprechenden CONNECT-Bedienerhandbuch.

Stellen Sie sicher, daß die maximal zulässige Nennspannung an den Anschlüssen L1, L2, L3 bzw. +DC, —DC auch im ungünstigsten Fall um nicht mehr als 10% überschritten wird (siehe EN 60204-1 Abschn 4.3.1). Eine zu hohe Spannung an diesen Anschlüssen kann zu Zerstörung der Ballastschaltung und des Servoverstärkers führen. Verwenden Sie den digifas[®] - Servoverstärker nur am dreiphasigen 400V-Netz für den Betrieb eines Synchron-Servomotors der Serie 6SM.

Die Absicherung der AC-seitigen Einspeisung und der 25V-Versorgung erfolgt durch den Anwender. Bei unbemerktem Ausfall einer Netzphase kann es zur Überlastung und eventuell Zerstörung des Netzgleichrichters kommen. Wir empfehlen einen Leistungsschalter mit Phasenausfall-Überwachung (siehe Kapitel I.9.3).

Achten Sie auf einwandfreie Erdung von Servoverstärker, Netzfilter und Motor.

Verlegen Sie Leistungs und Steuerkabeln getrennt. Wir empfehlen einen Abstand > 20 cm. Dadurch wird die vom EMV-Gesetz geforderte Störfestigkeit verbessert. Bei Verwendung eines Motorleistungskabels mit integrierten Bremssteueradern müssen die Bremssteueradern abgeschirmt sein. Legen Sie den Schirm beidseitig auf (siehe Kapitel II.2.1 ff).

Verlegen Sie sämtliche starkstromführenden Leitungen in ausreichendem Querschnitt nach EN 60204. Eine tabellarische Zusammenfassung der empfohlenen Querschnitte finden Sie in Kapitel I.9.2.

Schleifen Sie den BTB-Kontakt in den Sicherheitskreis der Anlage ein. Nur so stellen Sie eine Überwachung der Servoverstärker sicher.

Legen Sie Abschirmungen großflächig (niederohmig) auf, möglichst über metallisierte Steckergehäuse (siehe Kapitel II.2.1 ff). Hinweise zur Anschlußtechnik finden Sie in Kapitel II.2.8 .

Sorgen Sie für ausreichende gefilterte Kaltluftzufuhr von unten im Schaltschrank. Beachten Sie hierzu Kapitel I.9.1 .

Veränderung der Servoverstärker-Einstellung mit Hilfe der Bedienersoftware sind gestattet. Weitere Eingriffe führen zum Verlust des Gewährleistungsanspruchs.

Vorsicht

Lösen Sie die elektrischen Anschlüsse der Servoverstärker nie unter Spannung. In ungünstigen Fällen könnte es zu Zerstörungen der Elektronik kommen. Restladungen in den Kondensatoren können auch bis zu 120 Sekunden nach Abschalten der Netzspannung gefährliche Werte aufweisen. Messen Sie die Spannung im Zwischenkreis und warten Sie, bis die Spannung unter 40V abgesunken ist. Steuer- und Leistungsanschlüsse können Spannung führen, auch wenn sich der Motor nicht dreht.

II.2 Installation

Nur Fachleute mit elektrotechnischer Ausbildung dürfen den Servoverstärker installieren.

Das Vorgehen bei einer Installation wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein.

Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

Achtung!

Schützen Sie die Servoverstärker vor unzulässiger Beanspruchung.

Insbesondere dürfen bei Transport und Handhabung keine Bauelemente verbogen und / oder Isolationsabstände verändert werden.

Vermeiden Sie die Berührung elektronischer Bauelemente und Kontakte.

Vorsicht!

Installieren und verdrahten Sie die Geräte immer im spannungsfreien

Zustand, d.h. weder die Leistungsversorgung noch die 25 V Hilfsspannung noch die Betriebsspannung eines anderen anzuschließenden

Gerätes darf eingeschaltet sein.

Sorgen Sie für eine sichere Freischaltung des Schaltschrankes (Sperre, Warnschilder etc.). Erst bei der Inbetriebnahme werden die einzelnen Spannungen eingeschaltet.

Hinweis!

Das Masse-Zeichen And, das Sie in allen Anschlußplänen finden, deutet an, daß Sie für eine möglichst großflächige, elektrisch leitende Verbindung zwischen dem gekennzeichneten Gerät und der Montageplatte in

Ihrem Schaltschrank sorgen müssen. Diese Verbindung soll die Ableitung von HF-Störungen ermöglichen und ist nicht zu verwechseln mit dem PE-Zeichen $\frac{1}{2}$ (Schutzmaßnahme nach EN 60204) .

Verwenden Sie folgende Anschlußpläne:

— EMV-gerechte Abschirmung und Erdung : Kapitel II.2.1 / II.2.3

Geräte ohne CONNECT-Baugruppe

Leistungs- und Steueranschlüsse : Kapitel II.2.2 / II.2.4

Geräte mit CONNECT-Baugruppe

Leistungsanschlüsse : Kapitel II.2.2 / II.2.4
Steueranschlüsse : Anschlußplan im
CONNECT-Handbuch

— Mehrachssystemen : Beispiel in Kapitel II.2.5

Die folgenden Hinweise sollen Ihnen helfen, bei der Installation in einer sinnvollen Reihenfolge vorzugehen ohne etwas Wichtiges zu vergessen.

Einbauort

Im geschlossenen Schaltschrank. Beachten Sie Kapitel I.9.1.

Der Einbauort muß frei von leitfähigen und aggressiven Stoffen sein.

- Einbausituation im Schaltschrank:

digifas[®] 7103...7116 siehe Kapitel V.5 digifas[®] 7133...7150 siehe Kapitel V.7

Belüftung

Stellen Sie die ungehinderte Belüftung der Servoverstärker sicher und beachten Sie die zulässige Umgebungstemperatur, siehe Kapitel I.9.1. Beachten Sie die erforderlichen Freiräume ober- und unterhalb der Servoverstärker, siehe Kapitel V.5 bzw. V.7.

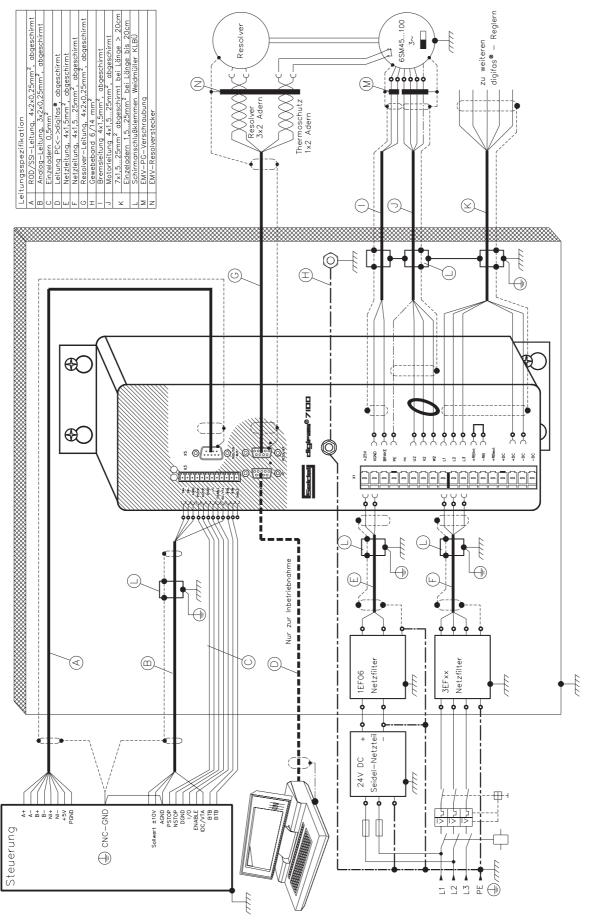
Montage

Wählen Sie die Montageebene je nach Betriebsbedingungen, Maßzeichnungen siehe Kapitel V.4 bis V.7. Montieren Sie Servoverstärker, Netzteile, Netzdrossel und Netzfilter nahe beieinander auf der leitenden, **geerdeten** Montageplatte im Schaltschrank. Die Netzdrossel (als einziges Gerät) sollte **keinen** großflächigen Kontakt mit der Montageplatte haben.

Leitungswahl

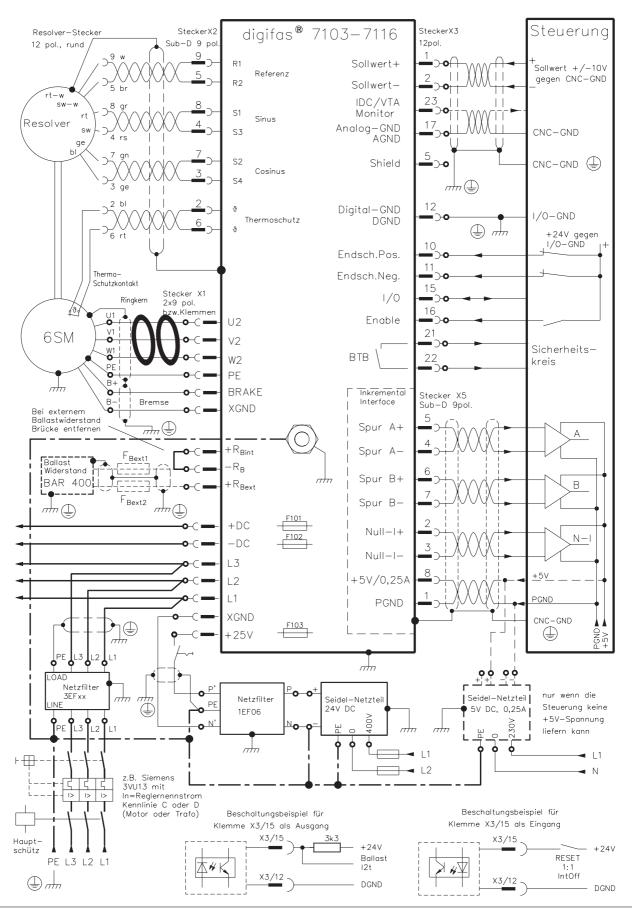
Wählen Sie Leitungen gemäß EN 60204 aus, siehe Kapitel I.9.2

Erdung Abschirmung EMV-gerechte Abschirmung und Erdung siehe Kapitel II.2.1 / II.2.3 Erden Sie Montageplatte, Motorgehäuse, Netzfilter und CNC-GND der Steuerung (siehe Kapitel II.2.1 ff).

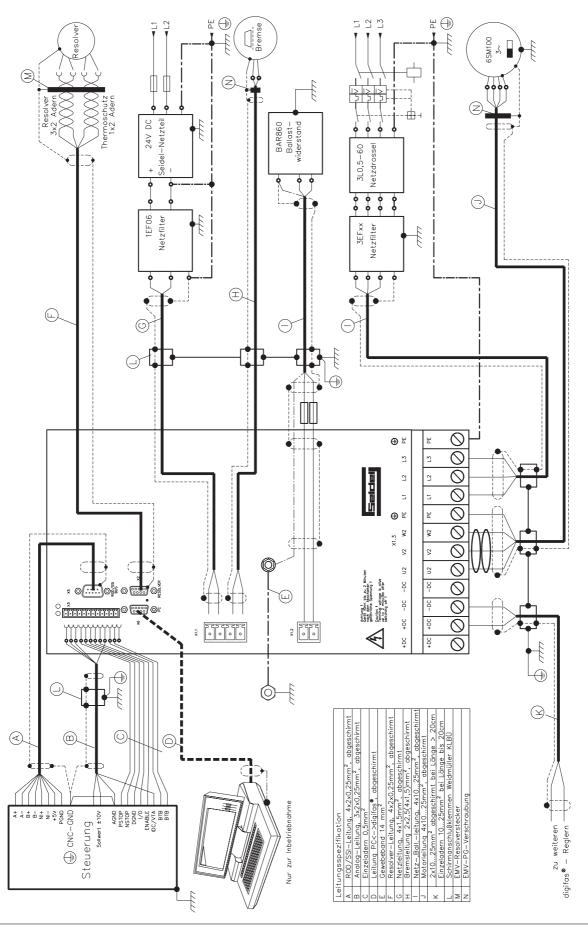

Hinweise zur Anschlußtechnik finden Sie in Kapitel II.2.8

Verdrahtung

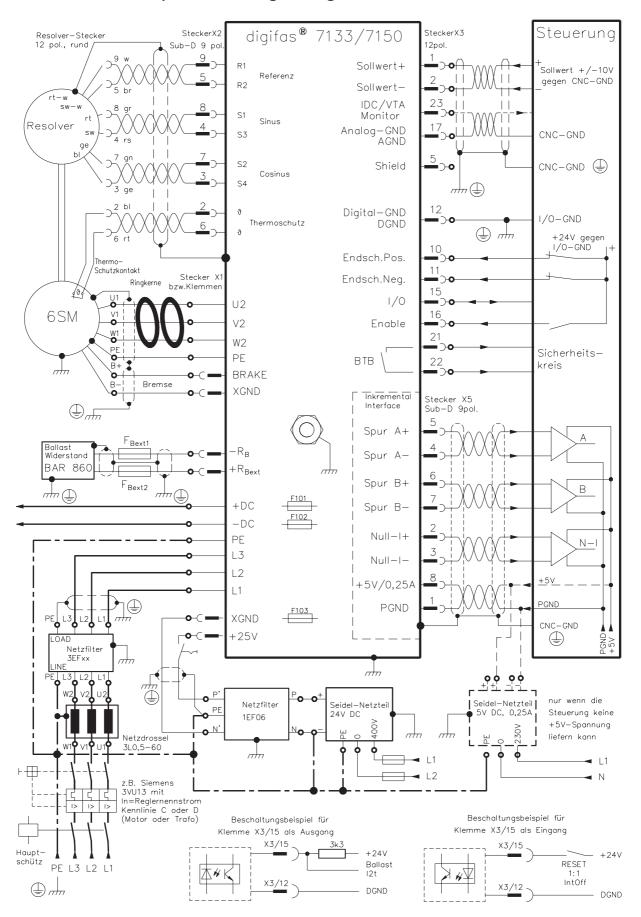
- Leistungs- und Steuerkabel getrennt verlegen
- BTB-Kontakt in den Sicherheitskreis der Anlage einschleifen
- Digitale Steuereingänge des Servoverstärkers anschließen
- Sofern benötigt, analogen Sollwerteingang und AGND anschließen
- Resolver anschließen
- ROD/SSI- bzw. CONNECT-Baugruppe anschließen (siehe entsprechende Bedienungsanleitung)
- Motorleitungen anschließen, Ringkerne nahe am Servoverstärker,
 Abschirmungen beidseitig auf Schirmklemmen bzw. EMV-Stecker
- Motor-Haltebremse anschließen falls gewünscht Abschirmung beidseitig auf PE legen
- Externen Ballastwiderstand anschließen (digifas[®] 7133/7150 immer, digifas[®] 7103...7116 wahlweise) mit Absicherung
- Hilfsspannung anschließen (maximal zulässige Spannungswerte siehe Kapitel I.9.1, Seidel-Netzfilter 1EF06 verwenden)
- Leistungsspannung anschließen (maximal zulässige Spannungswerte siehe Kapitel I.9.1, Seidel-Netzfilter 3EFxx verwenden, Netzdrossel bei digifas[®] 7133/7150))
- PC anschließen (siehe IV.3). Bei vorhandener Option -DISPbraucht kein PC angeschlossen zu werden.
- End-Überprüfen der ausgeführten Verdrahtung anhand der verwendeten Anschlußpläne

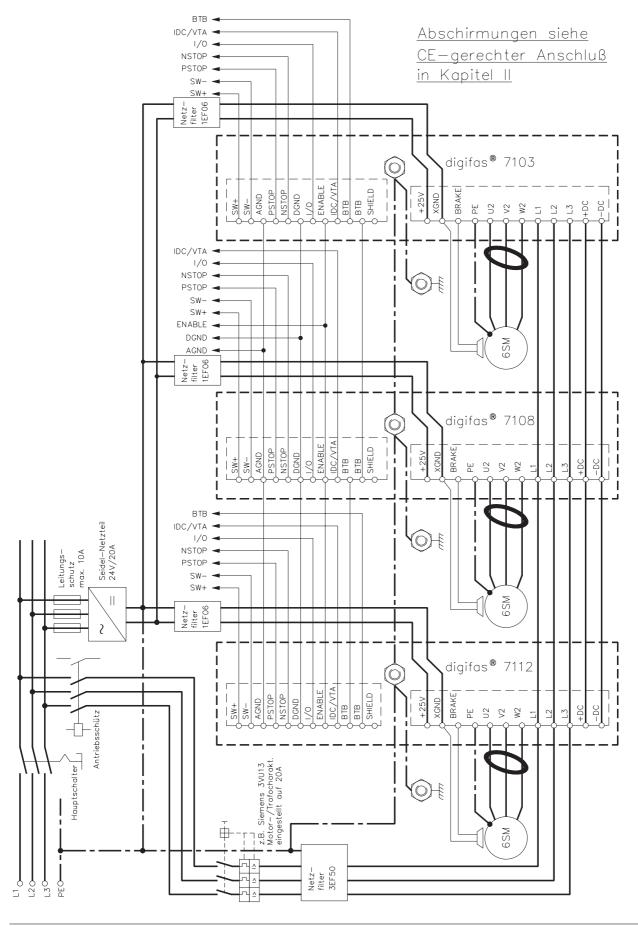

Überprüfung

II.2.1 **(€** - gerechter Anschluß digifas[®] 7103...7116, Übersichtsplan

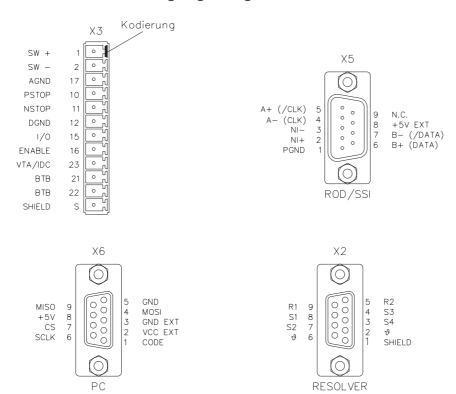


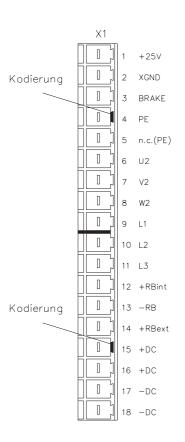
II.2.2 Anschlußplan Standardgerät digifas[®] 7103...7116

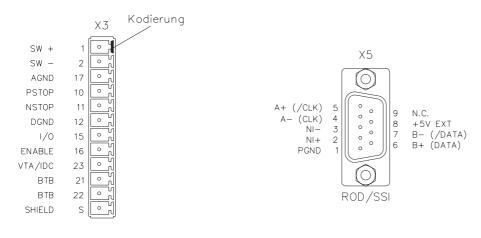


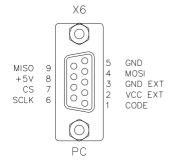


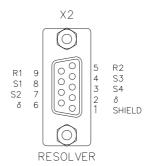
II.2.4 Anschlußplan Standardgerät digifas[®] 7133 / 7150

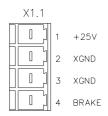



II.2.5 Anschlußbeispiel Mehrachsensystem

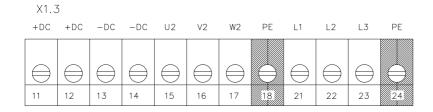

II.2.6 Steckerbelegungen digifas[®] 7103...7116

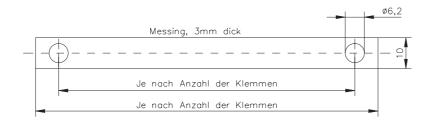


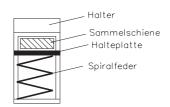




II.2.7 Stecker-/Klemmenbelegung digifas[®] 7133...7150

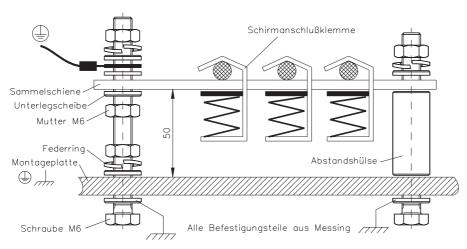


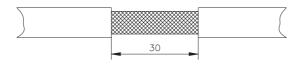




II.2.8 Hinweise zur Anschlußtechnik

II.2.8.1 Handhabung der Schirmanschlußklemmen

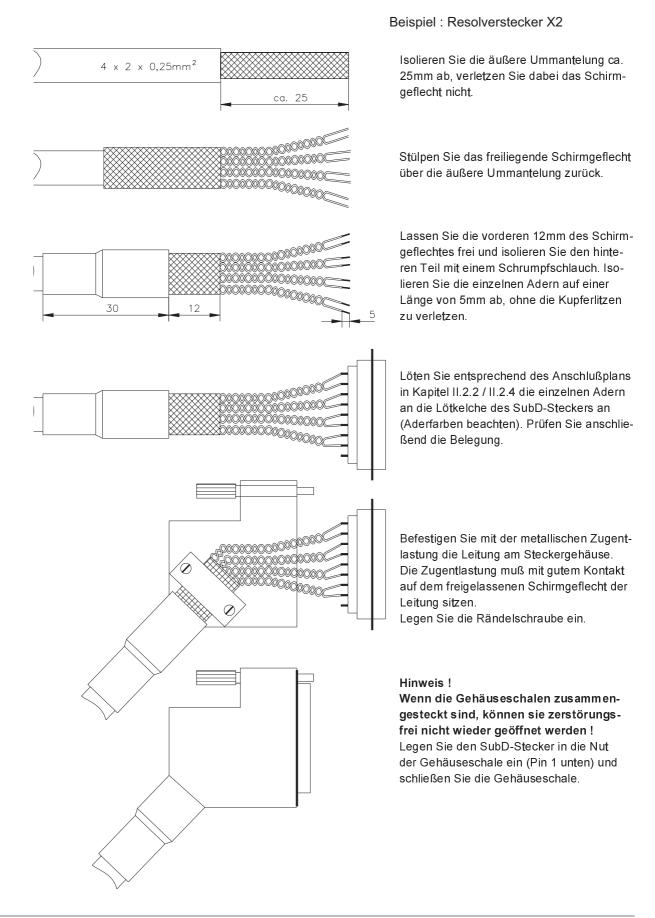



Vorsicht!

Halters.

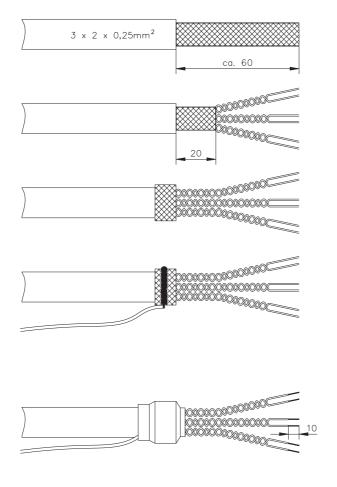
Verletzungsgefahr durch die Federkraft der Spiralfeder. Verwenden Sie eine Zange. Drücken Sie zusammen mit der Halteplatte die Spiralfeder zusammen und schieben Sie die Sammelschiene in die Aussparung des Schneiden Sie von einer Messingschiene (10x3mm Querschnitt) eine Sammelschiene mit der benötigten Länge ab und bohren Sie die angegebenen Löcher. Alle benötigten Schirmanschlußklemmen müssen zwischen die Bohrlöcher passen.

Montieren Sie die Sammelschiene mit den aufgesteckten Schirmanschlußklemmen auf die Montageplatte. Verwenden Sie entweder metallische Abstandshülsen oder Schrauben mit Muttern und Zubehör, um den Abstand von 50mm einzuhalten. Erden Sie die Sammelschiene über eine Einzelader mit mindestens 2,5mm² Querschnitt.



Entfernen Sie die äußere Ummantelung der Leitung auf einer Länge von etwa 30mm ohne das Schirmgeflecht zu beschädigen. Drücken Sie die Schirmanschlußklemme hoch und führen Sie die Leitung über der Sammelschiene in die Schirmanschlußklemme ein.

Achten Sie auf sicheren Kontakt zwischen Klemme und Schirmgeflecht.



II.2.8.2 Anschluß des SubD9-Steckers

II.2.8.3 Handhabung geschirmter Leitungen für Klemmen

Beispiel: Analogleitung

Isolieren Sie die äußere Ummantelung ca. 60mm ab, verletzen Sie dabei das Schirmgeflecht nicht.

Schneiden Sie das Schirmgeflecht bis auf eine Läge von ca. 20mm ab.

Stülpen Sie das freiliegende Schirmgeflecht über die äußere Ummantelung zurück.

Schirmanschluß über Litze:

Einzelader (z.B.H05V-K 1mm²) lang abisolieren. Abisolierte Litze um das Schirmgeflecht wickeln und vorsichtig mit dem Schirmgeflecht verlöten, ohne daß die Kunststoffummantelung zu heiß wird. Schirmanschlußklemme:

Arbeitsgang entfälllt, siehe Kapitel II.2.8.1

Isolieren Sie die einzelnen Adern auf einer Länge von 10mm ab, ohne die Kupferlitzen zu verletzen. Versehen Sie die Aderenden mit Aderendhülsen. Isolieren Sie das Schirmgeflecht mit einem Schrumpfschlauch.

Handhaben Sie alle Leitungen, die an Klemmen angeschlossen werden, wie oben beschrieben.

II.3 Inbetriebnahme

Nur Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik / Antriebstechnik dürfen den Servoverstärker in Betrieb nehmen.

Das Vorgehen bei einer Inbetriebnahme wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein.

Nehmen Sie bei Mehrachs-Systemen jeden Servoverstärker einzeln in Betrieb.

Vorsicht!

Prüfen Sie, ob alle spannungsführenden Anschlußteile gegen Berührung sicher geschützt sind. Es treten lebensgefährliche Spannungen bis zu 750V auf.

Lösen Sie die elektrischen Anschlüsse der Servoverstärker nie unter Spannung. Restladungen in Kondensatoren können bis zu 120 Sekunden nach Abschalten der Netzspannung gefährliche Werte aufweisen.

Die Kühlkörpertemperatur am Verstärker kann im Betrieb 80°C erreichen. Prüfen (messen) Sie die Temperatur des Kühlkörpers. Warten Sie, bis der Kühlkörper auf 40°C abgekühlt ist, bevor Sie ihn berühren.

Achtung!

Wenn der Servoverstärker länger als 1 Jahr gelagert wurde, müssen die Zwischenkreis-Kondensatoren neu formiert werden.

Lösen Sie hierzu alle elektrischen Anschlüsse.

Versorgen Sie den Servoverstärker etwa 30min einphasig mit 230V AC an den Klemmen L1 / L2. Dadurch werden die Kondensatoren neu formiert.

Weiterführende Informationen zur Inbetriebnahme:

Das Anpassen von Parametern und die Auswirkungen auf das Regelverhalten wird in der Bedienungsanleitung für die Bedienersoftware BS7200 beschrieben.

Die Inbetriebnahme der CONNECT-Baugruppen wird in der jeweils zugehörigen Bedienungsanleitung beschrieben.

Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

Die folgenden Hinweise sollen Ihnen helfen, bei der Inbetriebnahme in einer sinnvollen Reihenfolge ohne Gefährdung von Personen oder Maschine vorzugehen.

Installation prüfen

siehe Kapitel II.2. Servoverstärker spannungsfrei schalten.

Enable Signal sperren

0V an Klemme X3/16

25V-Hilfsspannung einschalten

24V DC an Klemme X1/1 und Masse an Klemme X1/2 Nach dem Initialisierungsvorgang (ca 0,5s) leuchtet die grüne LED (siehe Kapitel I.9.4)

Bei vorhandener Option -DISP- kann der folgende Schritt entfallen.

PC einschalten Bedienersoftware starten Siehe Bedienungsanleitung Bedienersoftware BS7200. Die im SRAM des Servoverstärkers gespeicherten Parameter werden in den PC übernommen.

angezeigte
Parameter prüfen
und eventuell
korrigieren

Vorsicht!

Prüfen Sie besonders die nachfolgend beschriebenen Parameter. Wenn Sie diese Eckwerte nicht beachten, können Komponenten der Anlage beschädigt oder zerstört werden.

Motor-Polzahl Resolver-Polpaarzahl

Resolver-Polpaarzahl I_{RMS}

IPEAK Enddrehzahl Ballastleistung : muß mit dem Motor übereinstimmen (Handbuch 6SM-Motoren)

: muß mit dem Motor übereinstimmen (Handbuch 6SM-Motoren)

: maximal der Stillstandsstrom I₀ des Motors (Typenschild)

: maximal der 4-fache Stillstandsstrom I₀ des Motors : maximal die Nenndrehzahl des Motors (Typenschild)

: maximal die Leistung des Ballastwiderstandes

Schutzeinrichtungen prüfen

Vorsicht!

Stellen Sie sicher, daß auch bei ungewollter Bewegung des Antriebs keine maschinelle oder personelle Gefährdung eintreten kann.

Leistungsversorgung einschalten

Über EIN/AUS-Taster der Schützsteuerung

Sollwert 0V anlegen

ohne CONNECT-Baugruppe an Klemmen X3/1-2, mit CONNECT-Baugruppe Funktion "konst.Drehzahl" mit n = 0min⁻¹

Enable

24V DC an Klemme X3/16, Motor steht mit Stillstandsdrehmoment

Sollwert

ohne eingebaute CONNECT-Baugruppe :

- analoger Sollwert, empfohlen 0,5V an Klemmen X3/1-2

mit eingebauter CONNECT-Baugruppe :

 Funktion "REVERSIERBETRIEB" im Menü "SERVICE" ausführen mit den vorgegebenen Defaultwerten (reversieren mit 100 U/min, Richtungswechsel alle 0,5s)

Wenn der Motor schwingt, muß im Menü "Drehzahlregler" der Parameter Kp verkleinert werden - Motor ist gefährdet!

Drehzahl- und Stromregler, siehe Bedienungsanleitung BS7200

Optimierung
CONNECT-

Baugruppe in Betrieb nehmen

siehe entsprechende CONNECT-Bedienungsanleitung

II.4 Parameterbeschreibung

Die Parameter sind kurz beschrieben. Genauere Erklärung in der Bedienungsanleitung BS7200.

II.4.1 Allgemeines

Motorpolzahl [-]

Die Stromsollwertvorgabe kann zum Betrieb von 2- bis 12-poligen Motoren eingestellt werden. Änderung nur möglich bei inaktivem Enable-Signal.

Sprache [-]

Als Bedienersprache sind Deutsch, Englisch und Französich anwählbar.

Res-Polzahl [-]

Umschaltung Resolver-Polzahl zum Betrieb von 2/4/6-poligen Resolverausführungen. Änderung nur möglich bei inaktivem Enable-Signal.

I/O [-]

Bestimmt die Funktion der I/O Klemme X3/15, siehe Kapitel III.1.2 und III.2.2.

Ballast-Widerstand [-]

Umschaltung zwischen internem und externem Ballastwiderstand.

Ballast-Leistung [W]

Einstellung der externen Ballastleistung.

Bremse [-]

Die Motorhaltebremse kann vom Servoverstärker bedient werden.

NI-Offset [Inkrement]

Nur bei Interface-Einstellung ROD zugänglich. Bestimmt die Lage des Nullimpulses innerhalb einer Umdrehung. Eingabe bezogen auf Nulldurchgang des Resolvers und die eingestellte Auflösung.

ROD/SSI [-]

Auswahl des Interfacetyps oder Abschalten des Interfaces.

ROD-Code [-]

Nur bei Interface-Einstellung ROD zugänglich. Bestimmt, ob dezimal oder binär ausgegeben wird.

Auflösung [Inkr./Umdr.]

Nur bei Interface-Einstellung ROD zugänglich. Bestimmt die Anzahl Inkremente pro Umdrehung, die ausgegeben werden.

SSI-Code [-]

Nur bei Interface-Einstellung SSI zugänglich. Bestimmt, ob binär oder im GRAY-Format ausgegeben wird.

SSI-Takt [kHz]

Nur bei Interface-Einstellung SSI zugänglich. Bestimmt die SSI-Taktrate und den Ruhepegel der Taktleitung. Einstellung : 200, 1500, 200inv, 1500inv

II.4.2 Stromregler

Irms, Effektivstrom [A]

Stellt den gewünschten effektiven Ausgangsstrom ein.

Ipeak, Spitzenstrom [A]

Stellt den gewünschten Spitzen-Ausgangsstrom je nach Erfordernis ein.

I²t-Schwelle, Meldeschwelle [%]

Überwachung des tatsächlich abgeforderten Effektivstroms.

Kp, P-Verstärkung [-]

Legt die proportionale Verstärkung des Stromreglers fest.

Tn, I-Nachstellzeit [ms]

Legt die Integral-Zeitkonstante bzw. Nachstellzeit des Stromreglers fest.

II.4.3 Drehzahlregler

K_p, P-Verstärkung [-]

Legt die proportionale Verstärkung (andere Bezeichnung auch AC-Gain) fest.

T_n, I-Nachstellzeit [ms]

Legt die Integral-Zeitkonstante bzw. Nachstellzeit fest.

PID-T2, zweite Zeitkonstante [ms]

Beeinflußt die P-Verstärkung bei mittleren Frequenzen.

SW-Offset [mV]

Dient der Kompensation der Offsets von CNC-Steuerung und des Analog-Eingangs.

SW-Rampe + [ms]

Verzögert die Anstiegsgeschwindigkeit der Sollwertvorgabe beim Beschleunigen

SW-Rampe — [ms]

Verzögert die Abfallgeschwindigkeit der Sollwertvorgabe beim Bremsen

Enddrehzahl [min⁻¹]

Legt die Normierung des Drehzahlistwertes fest.

DC-Monitor [-]

Wählt die Ausgabe von IDC- oder VTA-Monitor auf Klemme X3/23

Endschalter, Stop [-]

Die Endschaltereingänge können einzeln oder zusammen aktiviert oder deaktiviert werden. Die Stop-Funktion ermöglicht den geregelten, driftfreien Stillstand mit Stillstandsdrehmoment

Einsatz Phi, Phasenverschiebung [min⁻¹]

Kompensation der induktiven Phasenverschiebung zwischen Motorstrom und Motorspannung

Endwert Phi, Phasenverschiebung [°elektr.]

Zwischen Einsatzdrehzahl und Enddrehzahl wird die Phasenverschiebung linear bis zum Endwert Phi gesteigert.

T-Tacho, Tacho-Zeitkonstante [ms]

Beeinflußt durch Tiefpaß-Verhalten die Drehzahl-Rückführung.

Gleichlaufkorr., Gleichlaufkorrektur [-]

Verbessert die Rundlaufeigenschaften bei Antriebsaufgaben mit konstanter Drehzahl.

II.4.4 Servicefunktionen

Die Servicefunktionen sind Hilfsfunktionen zur Optimierung der Regelparameter.

Konstante Drehzahl

Fahren mit konstanter Drehzahl. Der analoge Sollwerteingang ist außer Funktion.

Konstanter Strom

Fahren mit konstantem Strom, Stromregelung. Eingestellt wird der Scheinstrom (kombinierter Blind- und Wirkanteil). Der analoge Sollwerteingang ist außer Funktion.

Reversierbetrieb

Fahren im Reversierbetrieb. Der analoge Sollwerteingang ist außer Funktion.

II.4.5 Istwertanzeigen

Umgebungstemperatur

Die Innentemperatur wird im Servoverstärker gemessen und hier in °C angezeigt.

Kühlkörper-Temperatur

Die Temperatur des Kühlkörpers wird im Servoverstärker gemessen und hier in °C angezeigt.

Zwischenkreisspannung

Die vom Servoverstärker erzeugte Zwischenkreisspannung wird gemessen und in V angezeigt.

l²t

Die aktuelle, effektive Belastung wird in % vom eingestellten Effektivstrom angezeigt.

Ballastleistung

Die aktuelle Ballastleistung wird gemessen und in W angezeigt.

Drehzah

Angezeigt wird die aktuelle Drehzahl des Motors in min-1

Stromistwert

Angezeigt wird der aktuell ausgegebene Effektivstrom (Wirkanteil) in A

Drehwinkel

Angezeigt wird der aktuelle Drehwinkel des Rotors (nur bei n < 20 min⁻¹) in °mech und counts bezogen auf den mechanischen Nullpunkt des Meßsystems.

Betriebsdauer

Betriebsstundenzähler des Servoverstärkers.

II.5 Fehlermeldungen, BTB-Meldung

Alle Fehlermeldungen werden über die rote Summenfehler-LED in der Frontplatte gemeldet und am Bildschirm bzw. LC-Display angezeigt.

Alle Fehler führen zum Abfallen des BTB-Kontaktes und Abschalten der Endstufe.

Unterspannung Zwischenkreis : Grenzwert vom Hersteller auf 65V eingestellt
 Überspannung Zwischenkreis : Grenzwert vom Hersteller auf 750V eingestellt

— Fehler Endstufe : Fehler in der Leistungsendstufe

Netz-BTB : Fehlen von mindestens 2 Phasen der Einspeisung

— Fehler Hilfsspannung : interne Hilfsspannung nicht in Ordnung

Kühlkörpertemperatur zu hoch : Grenzwert vom Hersteller auf 80°C eingestellt

Innentemperatur zu hoch : Grenzwert vom Hersteller eingestellt : 7103...7116 : 65°C, 7133/7150 : 70°C

— Motortemperatur zu hoch : Grenzwert vom Hersteller auf 145°C eingestellt

Fehler Bremse : KurzschlußResolverfehler : Kabelbruch o.ä.

III Steuereingänge und -ausgänge

III.1 Eingangs-Funktionen

III.1.1 Analoge Eingänge

Sollwerteingang SW

Der Servoverstärker besitzt einen rückwirkungsfreien Differenzeingang für einen analogen Sollwert. Er ist eingestellt für eine Differenz-Eingangsspannung von max. \pm 10 V, Auflösung 1mV. Bezugsmasse : AGND, Klemme X3/17.

Eine positive Spannung an Klemme X3/1 gegen Klemme X3/2 ergibt Rechtsdrehung der Motorwelle (Ansicht auf die Welle). Der Gleichtakt-Spannungsbereich (wichtig zur Vermeidung von Erdschleifen) beträgt zusätzlich \pm 10 V, Eingangswiderstand : 20 k Ω .

III.1.2 Digitale Steuereingänge

Alle Eingänge sind über Optokoppler **potentialfrei** gekoppelt, Bezugsmasse ist **Digital**-GND (DGND, Klemme X3/12). Die Logik ist für +24V/7mA ausgelegt (**SPS-kompatibel**), H-Pegel von +12...30V / 7mA.

Eingang Freigabe E

Sie geben die Servoverstärkerendstufe mit dem Freigabe- (Enable-) Signal frei (Klemme X3/16, Eingang 24V, **H-aktiv**). Im gesperrten Zustand wird der angeschlossene Motor drehmomentfrei.

Eingänge PSTOP / NSTOP (Endschalter)

Endschalter positiv/negativ (**PSTOP / NSTOP**, Klemmen X3/10 und 11), **H-Pegel im Normalbetrieb** (leitungsbruchsicher). Ein L-Signal (offen) sperrt die zugehörige Drehrichtung, **die Rampen-Funktion bleibt wirksam**. Bei gesperrten Eingängen wird der I-Anteil des Drehzahlreglers ebenfalls unwirksam, so daß eine mechanische Absteckung (Anschlag) zulässig ist. Diese Funktion müssen Sie freigeben (Parameter ENDSCHALTER auf EIN).

Wenn Sie den Parameter ENDSCHALTER auf STOP stellen, erreichen Sie einen geregelten, driftfreien Stillstand des Motors mit Stillstandsdrehmoment M₀ bei gesperrten Endschalter-Eingängen (I-Anteil wirksam).

Programmierbarer Eingang I/0

Sie können über den Parameter I/O die Klemme X3/15 (I/O) für folgende Eingangs-Funktionen programmieren (Anschlußbeispiel siehe Kapitel II.2.2 bzw. II.2.4):

— RESET : Hardwarereset Servoverstärker (High aktiv)

1:1REGEL : Servoverstärker arbeitet als reiner Stromregler (High aktiv)
 INT. OFF : Abschaltung des Integralanteils des Drehzahlreglers (High aktiv)

Bezugsmasse: DGND (Klemme X3/12)

Achtung!

Sie dürfen die Klemme X3/15 nicht als Ausgang programmieren, wenn sie als Eingang beschaltet ist!

III.2 Ausgangs-Funktionen

III.2.1 Analoge Ausgänge

DC-Monitor: Ankerstrom-Sollwert- IDC und Tacho-Monitor-Ausgang VTA

Der Ausgang IDC/VTA (Klemme X3/23) liefert je nach Einstellung des Parameters DC-MONITOR entweder den Strom-Sollwert (IDC) oder eine Tachospannung (VTA).

Vorwahl IDC

Der IDC-Monitor liefert \pm 10V für \pm **Gerätespitzenstrom** (Sinus-Effektivwert) gegen AGND. Ausgegeben wird der nicht phasenbezogene Stromistwert, der dem abgegebenen **Motor-Drehmoment** angenähert **proportional** ist. Ausgangswiderstand : 2,2k Ω , Auflösung : 8bit.

Vorwahl VTA

Der Ausgang liefert ±10V bei der eingestellten Enddrehzahl gegen AGND.

Ausgangswiderstand : $2,2k\Omega$, Auflösung : 8bit.

III.2.2 Digitale Ausgänge

Betriebsbereit-Kontakt BTB

Betriebsbereitschaft (**BTB**, Klemmen X3/21 und 22, max. Spannung 24V DC / 42V AC) wird über einen **potentialfreien** Relaiskontakt (**100V/0,5A DC**) gemeldet.

Der Kontakt ist **geschlossen** bei betriebsbereitem Servoverstärker, die Meldung wird vom Enable-Signal und von der l²t-Begrenzung **nicht** beeinflußt.

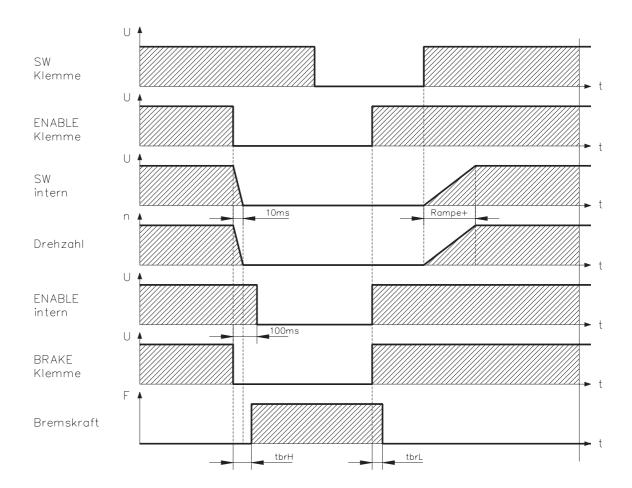
Programmierbarer Ausgang I/0

Sie können über den Parameter I/O die Klemme X3/15 (I/O) für folgende Ausgangs-Funktionen programmieren (Anschlußbeispiel siehe Kapitel II.2.2 bzw. II.2.4):

— **I2T** : Meldung des Erreichens der eingestellten I²t-Schwelle (High Pegel)

— BALLAST : Meldung des Überschreitens der eingestellten Ballastgrenze (High Pegel)

Bezugsmasse: DGND (Klemme X3/12)


Achtung!

Sie dürfen die Klemme X3/15 nicht als Eingang programmieren, wenn sie als Ausgang beschaltet ist!

III.2.3 Bremse

Eine 24V Haltebremse im Motor kann direkt vom Servoverstärker angesteuert werden. Die Bremsfunktion müssen Sie über den Parameter BRAKE freigeben: Einstellung MIT. Im unten dargestellten Diagramm sehen Sie den zeitlichen und funktionellen Zusammenhang zwischen ENABLE-Signal, Drehzahlsollwert, Drehzahl und Bremskraft.

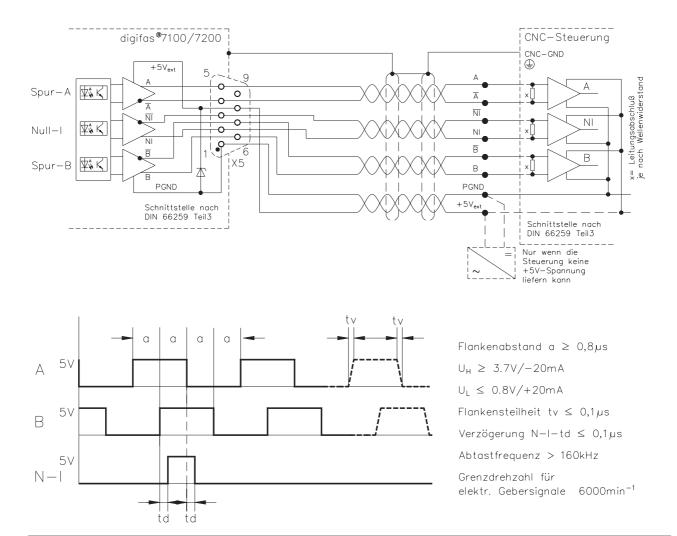
Während der internen ENABLE-Verzögerungszeit von 100ms wird der Drehzahlsollwert des Servoverstärkers intern mit einer Rampe von 10ms auf 0V gefahren.

Die Anstiegs- und Abfallzeiten der im Motor eingebauten Haltebremse sind für die einzelnen Motortypen der Motorserie 6SM unterschiedlich (siehe Handbuch der Motorserie 6SM).

Diese Seite wurde bewußt leer gelassen.

IV Schnittstellen und Optionen

IV.1 Inkrementalgeber-Interface (nur bei Geräten ohne CONNECT-Baugruppe)


Bei Servoverstärkern ohne CONNECT-Baugruppe (Standardgeräte) gehört das Inkrementalgeber-Interface zum Lieferumfang. Stellen Sie den Parameter ROD/SSI mit der Bedienersoftware BS7200 auf ROD ein.

Aus der zyklisch-absoluten 14bit-Information des Resolver-Digital-Converters wird im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information werden Inkrementalgeber-kompatible Impulse erzeugt. Am SubD-Stecker X5 werden Impulse in zwei um 90° elektrisch versetzten Signalen A und B und ein Nullimpuls ausgegeben. Sie können zwischen 500, 512, 1000 und 1024 Impulsen pro Umdrehung wählen (Parameter AUFLÖSUNG).

Sie können die Lage des Nullimpulses innerhalb einer mechanischen Umdrehung einstellen und speichern (Parameter NI-OFFSET). Aufgrund der Kompatibilität zu handelsüblichen Impulsgebern können Sie den Nullimpuls nur bei A=B=1 setzen.

Die Versorgung der Treiber erfolgt durch eine externe Spannung (GND: X5.1 und +5V: X5.8). **PGND muß immer mit der Steuerung verbunden sein.**

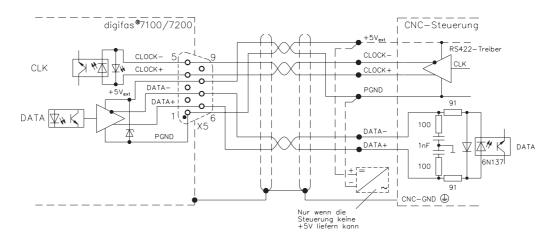
Anschluß- und Signalbeschreibung Inkrementalgeber-Interface :

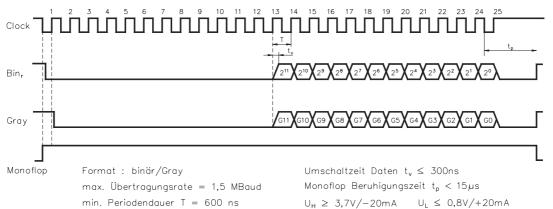
IV.2 SSI-Interface (nur bei Geräten ohne CONNECT-Baugruppe)

Bei Servoverstärkern ohne CONNECT-Baugruppe (Standardgeräte) gehört das SSI-Interface zum Lieferumfang. Stellen Sie den Parameter ROD/SSI mit der Bedienersoftware BS7200 auf SSI ein.

Die Signalfolge kann im **Gray**format (Standard) oder im **Binär**format ausgegeben werden, stellen Sie den Parameter SSI-CODE mit der Bedienersoftware BS7200 ein.

Versorgung Sie die Schnittstelle durch eine externe Spannung (GND : X5.1 und +5V : X5.8). **PGND muß immer mit der Steuerung verbunden sein.**


Von der Steuerung wird mit einer Taktfrequenz von max. 1,5 MHz synchron ein serielles Signal ausgelesen. Sie können den Servoverstärker an die Taktfrequenz Ihrer SSI-Auswertung mit dem Parameter SSI-TAKT anpassen (200 kHz bzw. 1,5MHz und invertiert).


Aus der zyklisch-absoluten 14bit-Information des Resolver-Digital-Converters wird nun im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information wird eine zum Datenformat handelsüblicher SSI-Absolutgeber kompatible Positionsausgabe erzeugt. Am SubD-Stecker X5 wird diese synchron-serielle, zyklisch-absolute 12-bit-Information ausgegeben.

Es werden 24 Bit übertragen, die oberen 12 Bit sind fest auf NULL gesetzt, die unteren 12 Bit beinhalten die Positionsangabe. Das Interface muß wie ein Multiturn-Geber eingelesen werden, liefert jedoch ein gültiges Singleturn-Datum.

Anschluß- und Signalbeschreibung SSI-Interface:

Die Zählrichtung des SSI-Interface ist mit Blick auf die Motorachse bei Rechtsdrehung aufwärtszählend eingestellt.

IV.3 PC-Schnittstelle

Das Einstellen der Betriebs-, Lageregelungs- und Fahrsatzparameter können Sie mit der Bedienersoftware BS7200 auf einem handelsüblichen Personal Computer (PC) erledigen. Die PC-Schnittstelle (X6) des Servoverstärkers wird über eine 9-polige Spezialleitung mit einer parallelen oder seriellen Schnittstelle des PC verbunden.

Ziehen und Stecken nur bei abgeschalteten Versorgungsspannungen.

Die Schnittstelle im Servoverstärker ist über Optokoppler galvanisch getrennt.

Anschluß an eine parallele Schnittstelle :

Verwenden Sie unsere 9-polige Spezialleitung.

Anschluß an eine serielle Schnittstelle

Verwenden Sie nur unsere serielle Spezialleitung mit Netzteil.

Minimale Anforderungen an den PC:

Prozessor : 80386 oder höher
Clock : 16 MHz oder höher
Betriebssystem : MS-DOS (3.3 oder höher)

Grafikkarte : VGA

Monitor : s/w oder color

Laufwerk : Diskettenlaufwerk 3,5", Festplatte (Laufwerksbuchstabe C:) Arbeitsspeicher : mindestens 1MB, im Arbeitsspeicher (640 kB) müssen

mindestens 400kByte unsegmentiert zur Verfügung stehen.

Schnittstelle : eine freie Schnittstelle (LPT1:, LPT2:, COM1: oder COM2:)

LPT1:Adresse 378_H COM1: Adresse 3F8_H LPT2:Adresse 278_H COM2: Adresse 2F8_H

Systemeinstellung: Buffers: mindestens 30 (config.sys) Files: mindestens 30

Stacks: 0,0 oder nicht festlegen

Umgebung: Umgebungsgröße (/E:xxxx) des Kommandointer-

preters definieren, Größe mindestens 1024 Byte.

Die korrekte Syntax lautet:

shell=command.com /E:1024

eventuell mit Pfadangabe von command.com

Weitere Hinweise und eine Darstellung der Spezialleitungen finden Sie im Handbuch Bedienersoftware BS7200.

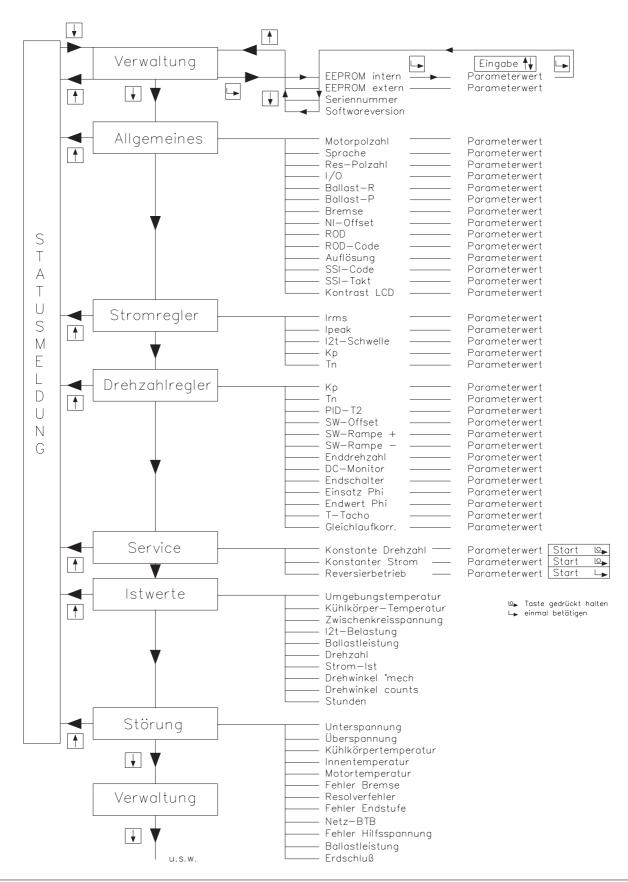
Tastenbedienung / LC-Display, Option -DISP-IV.4

IV.4.1

Nur möglich bei Geräten ohne CONNECT-Baugruppe.

Der Servoverstärker kann auch bei eingebauter Option -DISP- mit Hilfe eines PC über die Bediensoftware BS7200 parametriert werden. Die Option -DISP- wird hierbei gesperrt.

Nachdem Sie die Versorgungsspannung eingeschaltet haben, erscheint im Display die Statusmeldung des Servoverstärkers. Der blinkende Stern zeigt die Funktionstüchtigkeit des Mikroprozessors an. In der zweiten Zeile wird der Reglertyp eingeblendet.


Mit der eingebauten Option -DISP- kann der Verstärker über digitale Tasteneingabe mit

Bedienerführung durch eine Flüssigkristall-Klartextanzeige mit 2x16 Zeichen bedient werden. Die Bedienung des Servoverstärkers erfolgt über 3 Tasten : Tastenbeschreibung / Bedienung Die obere Taste |↑ | ist vergleichbar mit den ESCAPE- und Cursor-up-Tasten eines Personal-Computers. Wenn Sie sich innerhalb der Menü-Struktur bewegen, erreichen Sie mit dieser Taste die nächsthöhere Menüebene. Bei numerischen Eingaben erhöhen Sie bei einmaligem, kurzen Betätigen der Taste den aktuellen Wert um 1; wenn Sie die Taste gedrückt halten, wird der Wert zunächst langsam, dann schnell hochgezählt bis zum erlaubten Maximum. Die mittlere Taste ↓ hat die Funktion der Cursor-Down-Taste auf einem Personal-Computer. Sie bewegen sich in der Menüebene nach unten, wobei Sie vom letzten Menüpunkt wieder zum ersten springen. Bei numerischen Eingaben verringern Sie bei einmaligem, kurzen Betätigen der Taste den aktuellen Wert um 1; wenn Sie die Taste gedrückt halten, wird der Wert zunächst langsam, dann schnell heruntergezählt bis zum erlaubten Minimum. Die untere Taste 🗇 ist in ihrer Funktion vergleichbar mit der ENTER-Taste eines Personal-Computers. Mit der Betätigung dieser Taste wechseln Sie in den angewählten Menüpunkt. Wird ein Parameter angezeigt, starten Sie mit dieser Taste den Eingabemodus. Nach erfolgter Einstellung des Parameters übernehmen Sie per Tastendruck den Wert in den Speicher. Bewegen im Menü Aus der Statusmeldung heraus erreichen Sie mit der $|\downarrow|$ -Taste den ersten Punkt der Menüebene. Mit der | ↑ | -Taste verlassen Sie die Menüebene und erhalten wieder die Statusmel-Zu jedem Menüpunkt erreichen Sie mit der 🗇 -Taste den ersten einstellbaren Parameter und blättern mit der ↓ -Taste durch die Parameterliste. Mit der ↑ -Taste springen Sie wieder in die Menüebene. Den nächsten Menüpunkt erreichen Sie mit der ↓ -Taste. Ändern von Parameterwerten Bei angezeigtem Parameter erreichen Sie mit der | 🔟 -Taste den Eingabemodus. Der Parameterwert erscheint mit einem Unterstrich. Mit den Tasten | ↑ | oder | ↓ | verändern Sie den Wert. Mit der | | -Taste wird der geänderte Wert in den Speicher übernommen, Servicefunktionen

Die Servicefunktionen "KONSTANTE DREHZAHL" und "KONSTANTER STROM" sind aktiv, solange Sie nach Eingabe des zugehörigen Parameterwertes die | 🔟 - Taste gedrückt halten. Die Servicefunktion "REVERSIERBETRIEB" wird aktiv sobald Sie sich im Eingabemodus dieser Servicefunktion befinden. Sie können nun bei laufendem Reversierbetrieb den Servoverstärker optimieren (alle online einstellbaren Parameter), solange Sie die Menüebene nicht verlassen. Sobald Sie die Menü-Ebene verlassen und die Statusmeldung angezeigt bekommen, wird der Reversierbetrieb automatisch beendet.

IV.4.2 Menüaufbau und Bedienung

IV.5 Steuerbare Drehmomentbegrenzung, Option -IL-

Nur möglich bei Geräten ohne CONNECT-Baugruppe.

IV.5.1 Allgemeines, technische Daten

Mit der Option -IL- können Sie das Drehmoment des am digifas[®] angeschlossenen Motors mit Hilfe einer Steuergleichspannung auf einen beliebigen Wert unterhalb des Impulsdrehmoments begrenzen. Dies geschieht über die Beeinflussung des Stromsollwertes mit einem externen, analogen Drehzahlregelkreis.

Die Elektronik ist in einem eigenen Gehäuse untergebracht.

Montage : — auf Hutschiene EN 50022-35 oder C-Schiene in unmittelbarer

Nähe des Servoverstärkers

Abmessungen : — H x B x T(ohne Hutschiene) : 111 x 145 x 90

Anschlüsse : — zwei 8-polige Combicon-Steckverbinder für Steuersignale,

Sollwerte und Hilfsspannungen

— Sub-D-Buchse 9-pol. für vom digifas® erzeugten Impulsgebersignale

— Sub-D-Stecker 9-pol. für Weitergabe der Impulsgebersignale an

übergeordnete Steuerungen

Eingänge : — 2 Differenzverstärker für 2 Drehzahl-Sollwerte ±10V = ±Enddrehzahl

SW1 fest, SW2 mit P302 abschwächbar, beide SW werden addiert

— 1 Differenzverstärker für Stromgrenzwert 0...10V

— Hilfsspannungsversorgung +25V DC/ 210 mA, XGND

- Enable über Optokoppler, DGND

— Impulsgebersignale vom digifas[®], PGND

Ausgänge : — Strom-Sollwert ±10V, AGND

- Hilfsspannung +10V DC/ 5mA, AGND

Impulsgebersignale für die Steuerung über Optokoppler, PGND

Potentiometer: — P302 : Abschwächer Sollwert 2 0...100%

— P303 : Offset (Drehzahldrift) ±10mV
 — P304 : Drehzahl-Feinabgleich ±12%
 — P305 : AC-Gain (P-Verstärkung) 3...∞

Lötbrücke LB1 : — offen : Enddrehzahl 3000 U/min (Standard)

— geschlossen : Enddrehzahl 6000 U/min

Leuchtdioden : — Anzeige des logischen Zustandes der Impulsgebersignale

Sicherung : — F1, 630 mAF, Absicherung der Hilfsspannungsversorgung

IV.5.2 Wichtige Hinweise

Schließen Sie das Gerät entsprechend dem Anschlußplan in Kapitel IV.5.5 an.

Das Gerät wird über die auch am Servoverstärker anliegende Hilfsspannung (Klemmen +25V, XGND) versorgt. Diese ist intern galvanisch mit der Analog-Masse (AGND) verbunden. Der positive Pol ist intern abgesichert. Beide Pole sind über HF-Drosseln entkoppelt.

Wenn Sie die Impulsgebersignale in der Steuerung weiterverwenden wollen, müssen Sie die Treiberschaltung auf der Optionskarte mit einer 5V-Spannung versorgen (siehe Kapitel IV.5.5).

Der analoge Drehzahlregler ist für 1024 Impulse / Umdrehung normiert. Sie können den Drehzahlregler mit der Lötbrücke LB1 auf eine Enddrehzahl von 3000 U/min (LB1 offen) oder 6000 U/min (LB1 geschlossen) einstellen.

Schließen Sie Hardware-Endschalter an die übergeordneten Steuerung an und verknüpfen Sie die Signale über eine UND-Funktion. Brücken Sie die Servoverstärker-Eingänge PSTOP und NSTOP (siehe Kapitel IV.5.5) . Schließen Sie den Ausgang der UND-Funktion an die gebrückten Eingänge PSTOP/NSTOP an.

Um aus einem betätigten Endschalter wieder herauszufahren, muß die Steuerung einen Drehzahlsollwert ausgeben, dessen Vorzeichen für das Herausfahren aus dem angefahrenen Endschalter richtig ist und dann den gebrückten Endschaltereingang mit 24V ansteuern.

Für den Fall einer Überlastung des Servoverstärkers bleibt die im Servoverstärker enthaltene Effektivstrombegrenzung (1²t) weiterhin wirksam.

Vorsicht!

Der Antrieb kann "durchgehen", falls die Impulsgebersignalleitung vom Servoverstärker zur IL-Baugruppe (z.B.durch mechanische Zerstörung des Kabels) unterbrochen wird. Berücksichtigen Sie dies in Ihrem Steuerungsprogramm.

Die folgende Tabelle zeigt den Zusammenhang zwischen angelegtem Stromgrenzwert I_{lim} und ausgegenem Stromsollwert I_{soll}:

Eingang Stromgrenzwert Ilim	negative Spannung	offen	0+10V
Ausgang Stromsollwert I _{soll}	0,3 % I _{peak}	0,3 % I _{peak}	0,3100 % I _{peak}

Bei nicht angesteuertem Enable-Eingang wird immer I_{SOII} = 0,3 % I_{peak} ausgegeben.

IV.5.3 Inbetriebnahme

Hilfe zur Inbetriebnahme erhalten Sie von unserer Abteilung Applikation.

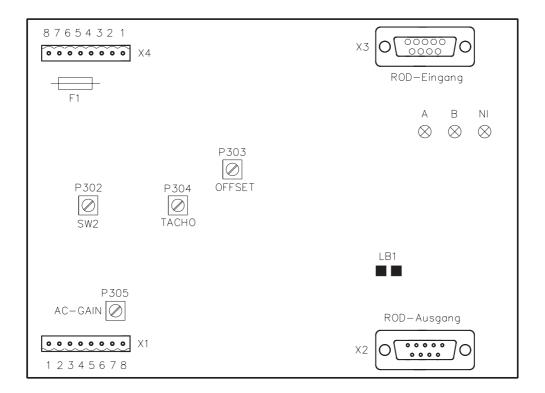
Vorbereitung

- Versorgungs-Spannungen abschalten
- Stecker X4 vom Servoverstärker abziehen
- LB1 (Enddrehzahl) pr

 üfen, eventuell umlöten
- Enable-Signal auf 0V
- Hilfsspannung 25V DC und PC einschalten, Bedienersoftware BS7200 starten

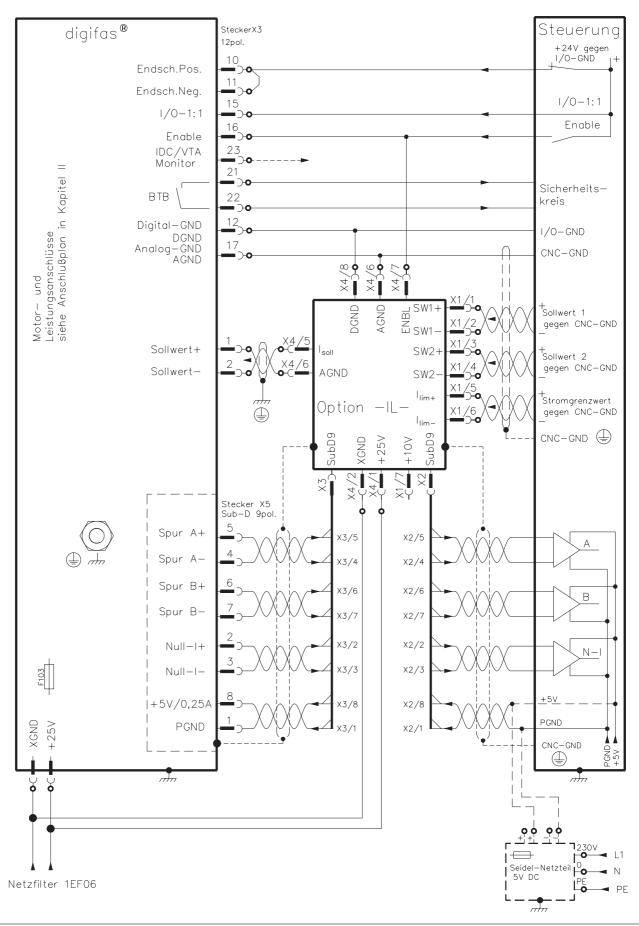
Parameter einstellen

- Parameter ROD-Auflösung auf 1024 Inkr/Umdr. einstellen
- Parameter Enddrehzahl an die Einstellung von LB1 anpassen
- Parameter I/O auf 1:1-Regelung einstellen
- Parameter Rampe+ auf 2ms einstellen
- Parameter Rampe- auf 2ms einstellen
- Parametersatz in EEPROM speichern
- Hilfsspannung 25V DC abschalten


Optimierung

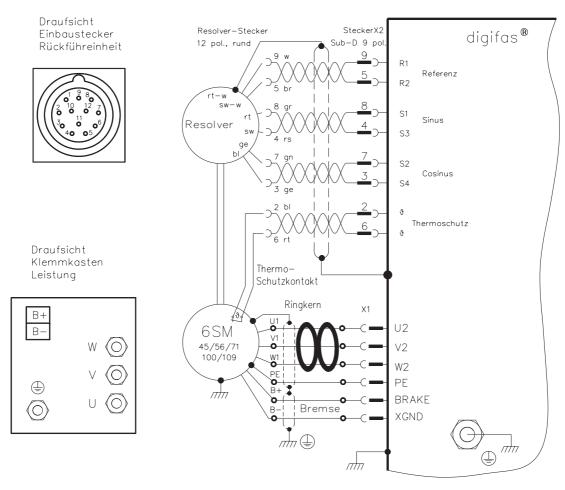
- Stecker X4 am Servoverstärker aufstecken, Spannungen einschalten
- Optimierung : Offset-Abgleich mit Potentiometer P303

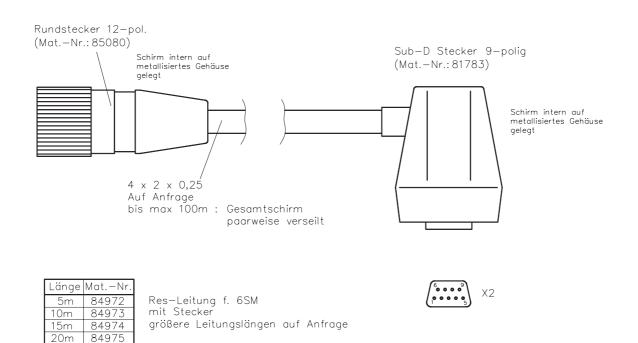
AC-Gain Einstellung mit Potentiometer P305


Gehen sie analog zur entsprechenden Beschreibung im Handbuch BS7200 vor.

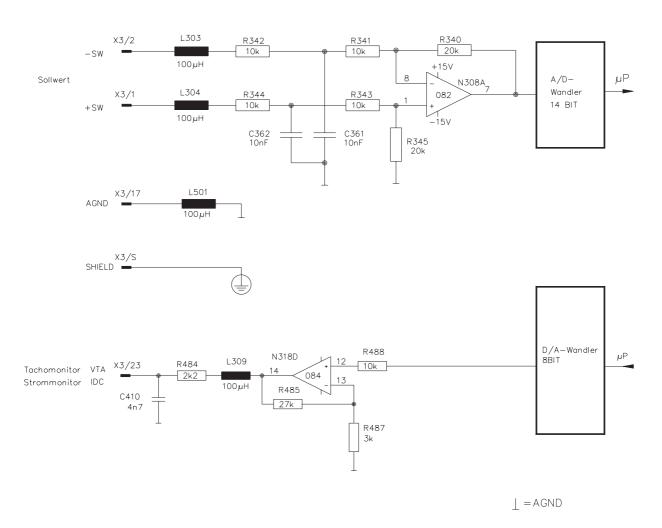
IV.5.4 Position der Stecker und Bedienelemente

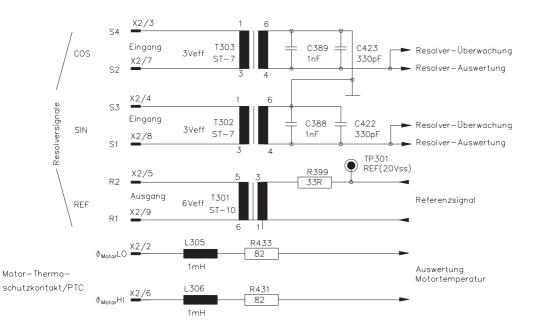
IV.5.5 Anschlußbild Option -IL-

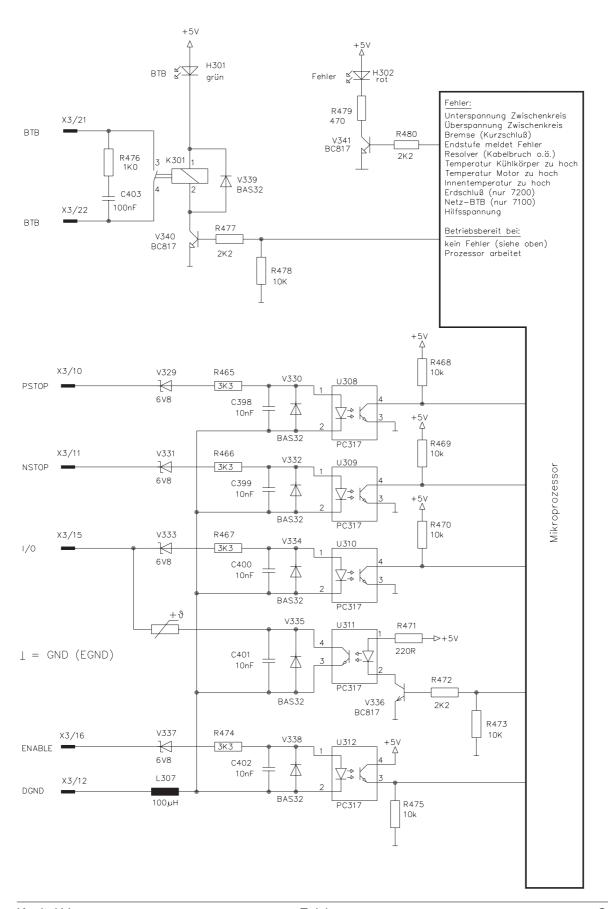


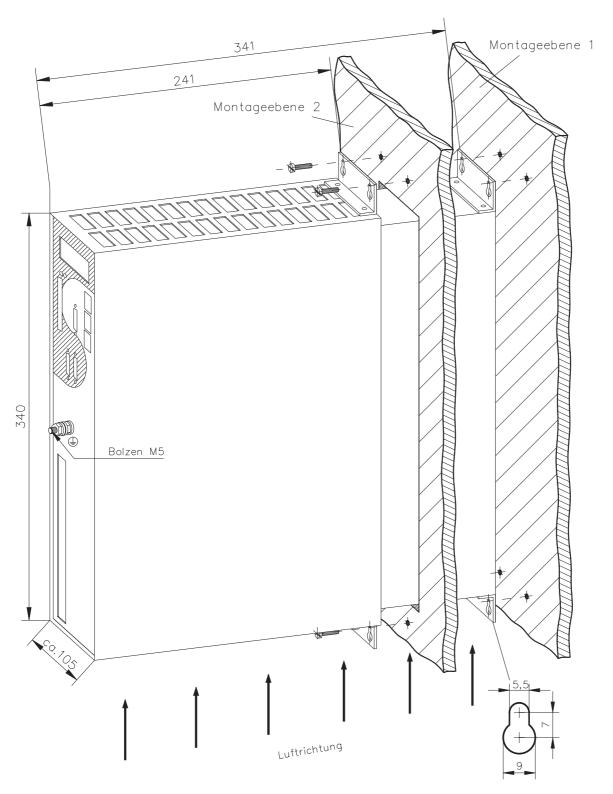

Diese Seite wurde bewußt leer gelassen.

V Zeichnungen

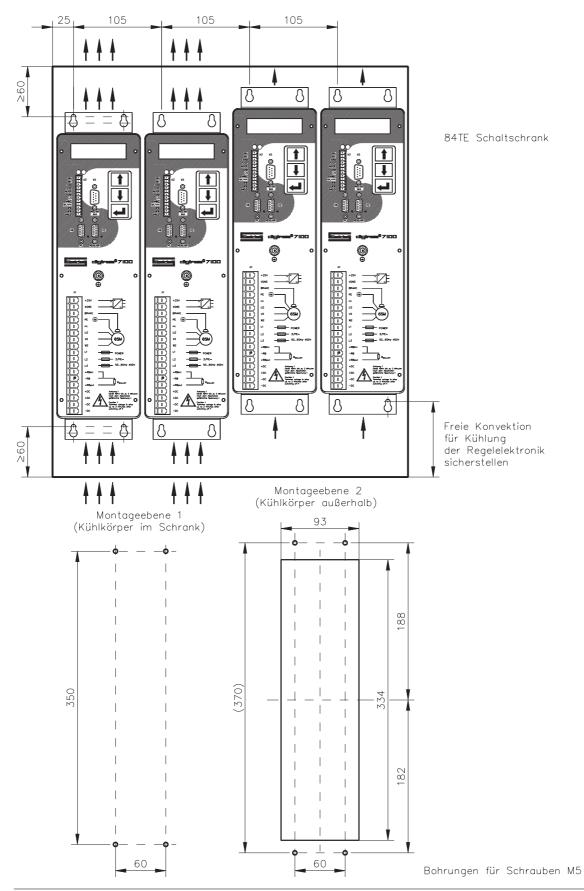

V.1 Resolverkabel für Motorserie 6SM



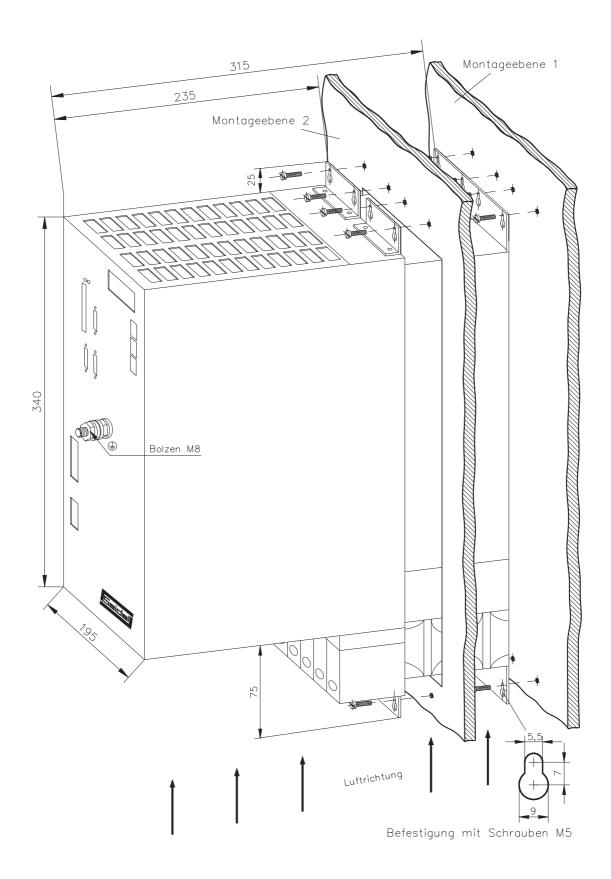

V.2 Analoge Ein- und Ausgangskreise



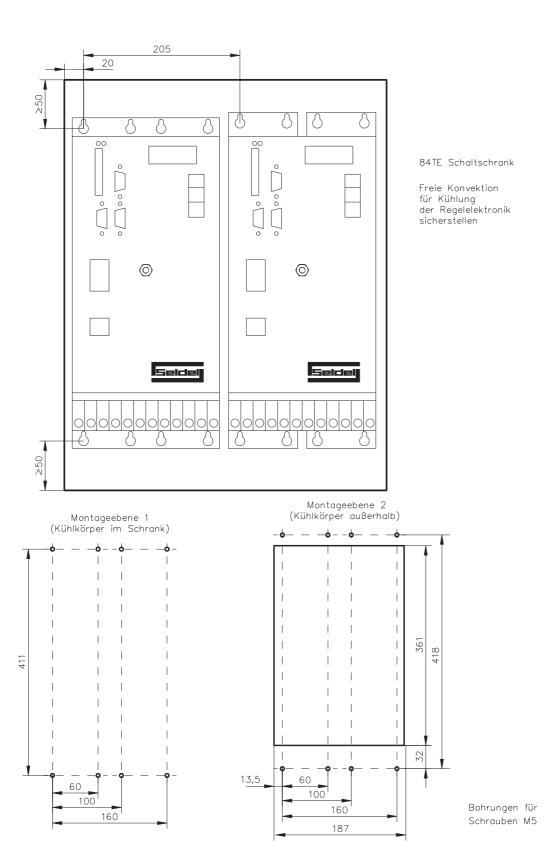
V.3 Digitale Ein- und Ausgangskreise


V.4 Montageebenen und Abmessungen digifas[®] 7103...7116

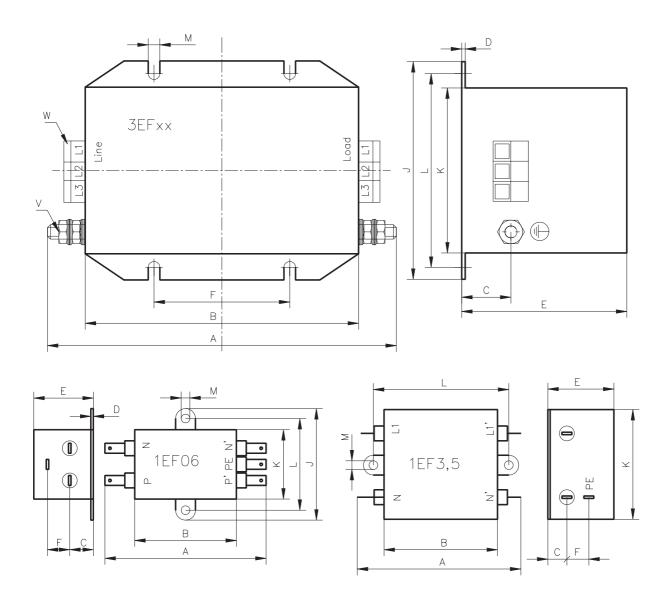
Befestigung mit Schrauben M5



V.5 Einbausituation im Schaltschrank digifas[®] 7103...7116

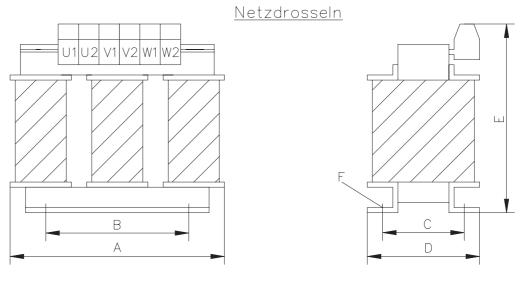


V.6 Montageebenen und Abmessungen digifas[®] 7133...7150



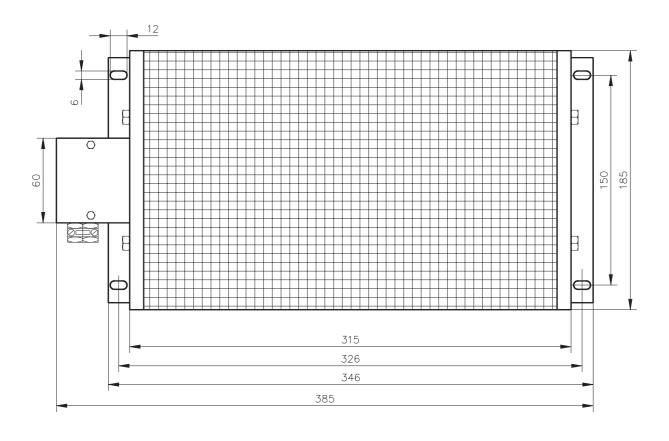
V.7 Einbausituation im Schaltschrank digifas[®] 7133...7150

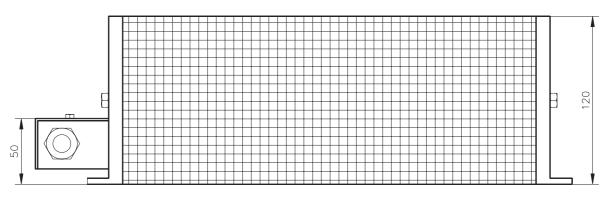
V.8 Netzfilter 1EF06 und Serie 3EFxx

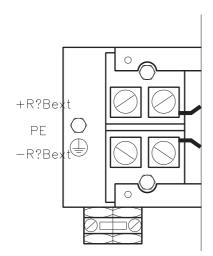


		1EF06	1EF3,5	3EF05	3EF08	3EF16	3EF50*	3EF80*
Nennspanr	nung	24V DC	230V AC		400	OV AC		
Nennstrom	n	6 A	3,5 A	5 A	8 A	16 A	50 A	80 A
А	/mm	65,5	98	190	220	240	250	427
В	/mm	41	75,9	150	180	200	200	350
С	/mm	9,6	12	17	17	17	17	70
D	/mm	0,5	-	0,75	0,75	0,75	0,75	1,13
Е	/mm	24,1	38,1	50	60	65	65	90
F	/mm	9,1	15,5	85	115	115	115	375
J	/mm	45	-	105	115	150	150	170
K	/mm	28	55,6	75	85	119,5	120	
L	/mm	37	87	90	100	135	135	130
М	/mm	3,5	5,3	6,5	6,5	6,5	6,5	15
V				М6	М6	М6	М6	M10
W	/mm²	Faston	Faston	4	4	4	10	50
Gewicht	/kg	0,065	0,3	1,1	1,8	1,8	3,1	9,5

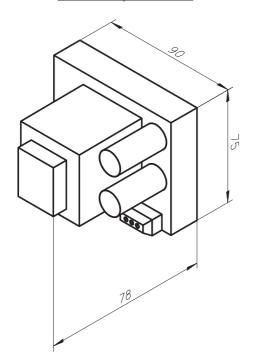
^{*} nur digifas® 7100

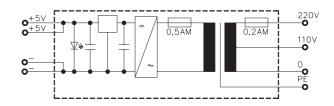

V.9 Netzdrossel 3L0,5-60



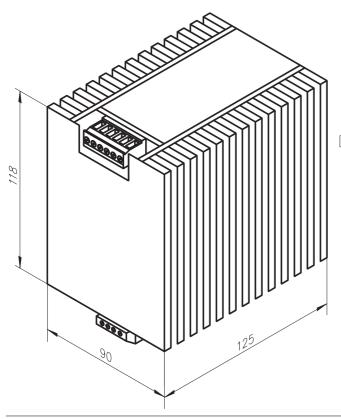

Drosseltype		Maße i	n mm					Gewicht
	Phase	А	В	С	D	Е	F	kp
3L-0,5-60	3	155	130	72	110	215	Ý8	7,2

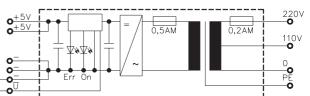
V.10 Ballastwiderstand BAR860





V.11 Externe Netzteile 5V DC für Versorgung der Positionsausgabe





Technische Daten
Eingangsspannung
Eingangsstrom
Frequenz
Primärsicherung
Ausgangsspannung
max. Ausgangsstrom
eff. Restwelligkeit
Ausgangssicherung
Prüfspannung
Temperaturbereich
Befestigungsart

Gewicht Best.Nr. 110/220V +10%, -15% 0,12/0,06 A 50/60 Hz 0,2 AM (5x20mm) 5 V DC ±2% 250 mA < 0,2% 0,5 AM (5x20mm) nach VDE 0550 -20...+60°C DIN-Schiene EN50022 senkrecht hängend 0,5 kg 83050

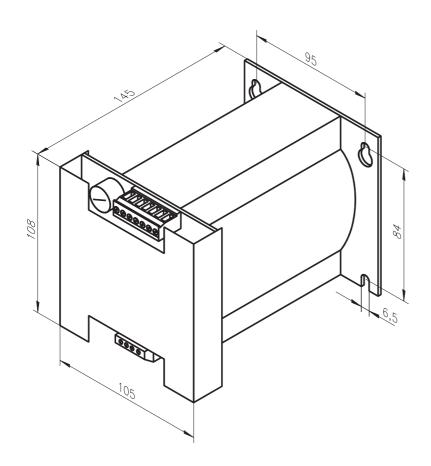
5V DC / 2A

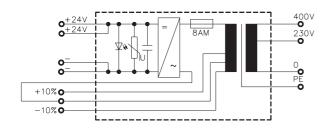
Technische Daten
Eingangsspannung
Eingangsstrom
Frequenz
Primärsicherung
Ausgangsspannung
max. Ausgangsstrom
eff. Restwelligkeit
Ausgangssicherung
Prüfspannung
Temperaturbereich
Befestigungsart

Gewicht Best.Nr. 110/220V +10%, -15% 1,1/0,6 A 50/60 Hz 1 AT (5x20mm)

5 V DC ±2% 2 A < 0,1%

4 AM (5x20mm) nach VDE 0550 -20...+60°C


DIN-Schiene EN50022 senkrecht hängend


2,5 kg 83033

V.12 Externes Netzteil 24V DC für Versorgung eines Servoverstärkers

24V DC / 5A

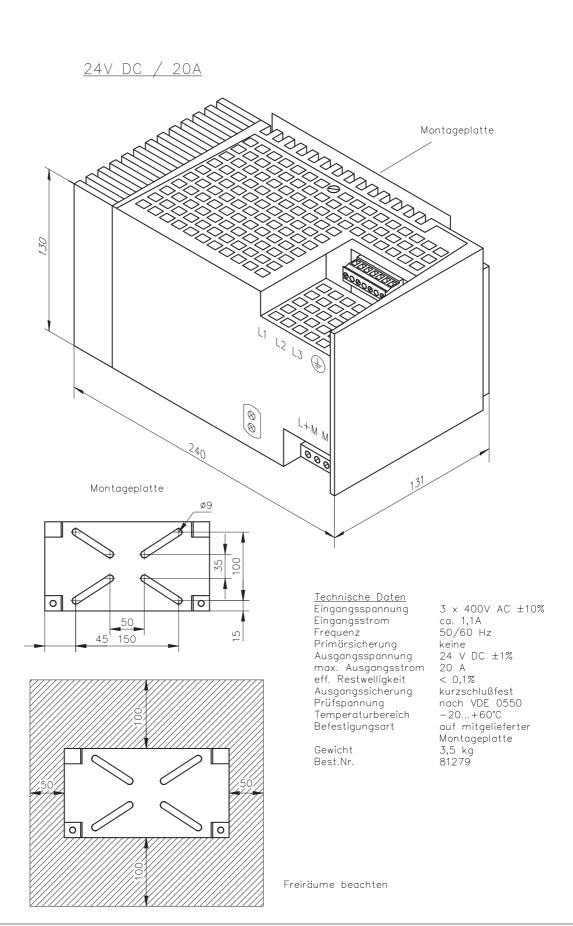
<u>Technische Daten</u> Eingangsspannung

230/400 V nach DIN IEC 38A (±5%) 0.8/0.45~A

Eingangsstrom Frequenz 50/60 Hz

24V DC, ±10% sekundär umklemmbar

Ausgangsspannung max. Ausgangsstrom eff. Restwelligkeit 5 A < 5%


8 AM (5x20mm) nach VDE 0551 -20...+60°C Ausgangssicherung Prüfspannung Temperaturbereich

Schlüsselloch—Aufhängung, schraubbar senkrecht hängend Befestigungsart

4 kg 83034 Gewicht Best.Nr.

V.13 Externes Netzteil 24V DC für Versorgung von bis zu 7 Servoverstärkern

Diese Seite wurde bewußt leer gelassen

VI Anhang

VI.1 Lieferumfang, Transport, Lagerung, Wartung, Entsorgung

Lieferumfang: — Servoverstärker der Serie digifas[®] 7100

- 3,5"-Diskette mit der Bediensoftware BS7200

- 2 Ringkerne

— Installations-/Inbetriebnahmehandbuch digifas® 7100

Bedienungsanleitung BS7200

— Installations-/Inbetriebnahmehandbuch der CONNECT-Baugruppe,

sofern eingebaut

Transport: — nur von qualifiziertem Personal

- nur in der recyclebaren Original-Verpackung des Herstellers

- vermeiden Sie harte Stöße

— Temperatur -25...+70°C, max. 20K / Stunde schwankend

— Luftfeuchtigkeit relative Feuchte max. 95% nicht kondensierend

— Die Servoverstärker enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker direkt berühren. Vermeiden Sie den Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststoffolien etc.). Legen Sie den Servoverstärker auf eine leitfähige Unterlage.

 überprüfen Sie bei beschädigter Verpackung das Gerät auf sichtbare Schäden. Informieren Sie den Transporteur und ggf. den Hersteller.

Lagerung:

- nur in der recyclebaren Originalverpackung des Herstellers
- Die Servoverstärker enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker direkt berühren. Vermeiden Sie den Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststoffolien etc.). Legen Sie den Servoverstärker auf eine leitfähige Unterlage.
- max. Stapelhöhe digifas[®] 7103...7116 : 10 Kartons digifas[®] 7133...7150 : 5 Kartons
- Lagertemperatur —25...+55°C, max. 20K/Stunde schwankend
 Luftfeuchtigkeit relative Feuchte max. 95% nicht kondensierend
- Lagerdauer < 1 Jahr ohne Einschränkung</p>

> 1 Jahr : Kondensatoren müssen vor der Inbetriebnahme des Servoverstärkers neu formiert werden. Lösen Sie dazu alle elektrischen Anschlüsse. Speisen Sie dann den Servoverstärker etwa 30min einphasig mit 230V AC an den Klemmen L1 / L2.

Wartung: — die Geräte sind wartungsfrei

— Öffnen der Geräte bedeutet den Verlust der Gewährleistung

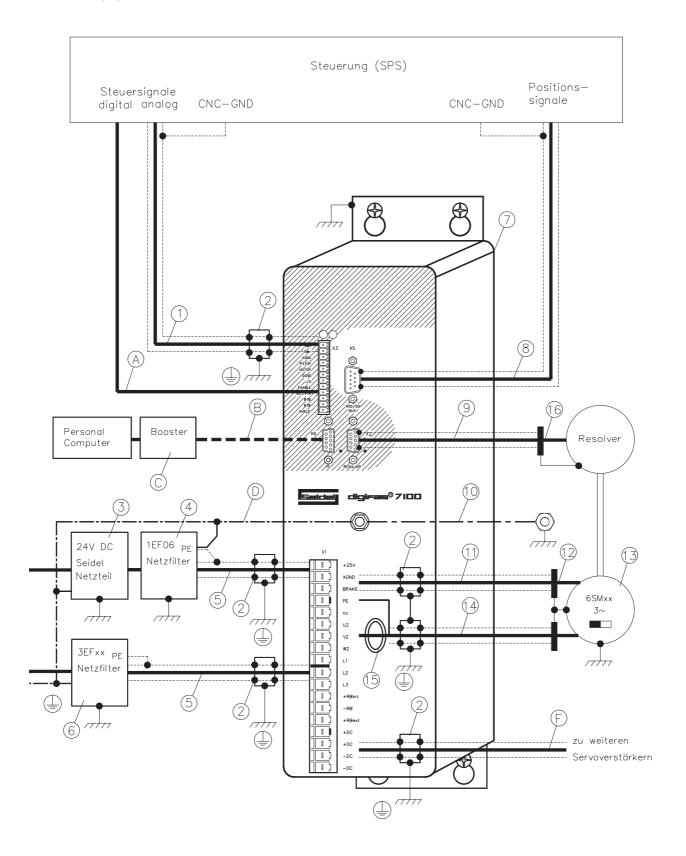
Reinigung: — bei Verschmutzung des Gehäuses : Reinigung mit Isopropanol o.ä.

nicht tauchen oder absprühen

— bei Verschmutzung im Gerät : Reinigung durch den Hersteller

— bei verschmutztem Lüftergitter : mit Pinsel (trocken) reinigen

Entsorgung: — Sie können den Servoverstärker über Schraubverbindungen in Hauptkom-


ponenten zerlegen (Aluminium-Kühlkörper, -Frontplatte, Stahl-Gehäuse-

schalen, Elektronikplatinen)

 Lassen Sie die Entsorgung von einem zertifizierten Entsorgungsunternehmen durchführen. Adressen können Sie bei uns erfragen.

Wir garantieren nur bei Verwendung der unten genannten System-Komponenten und Einhaltung der Installationsvorschriften dieser Dokumentation (Kapitel II.2) die Konformität der Servoverstärker zu folgenden Normen im Industriebereich:

- EG-EMV-Richtlinie 89/336/EWG
- EG-Niederspannungs-Richtlinie 73/23/EWG

Bei Abweichung von diesen Vorgaben müssen Sie mit eigenen Messungen die Einhaltung der Normen belegen.

Die u.a. Positionsnummern beziehen sich auf die Übersichtszeichnung auf der linken Seite.

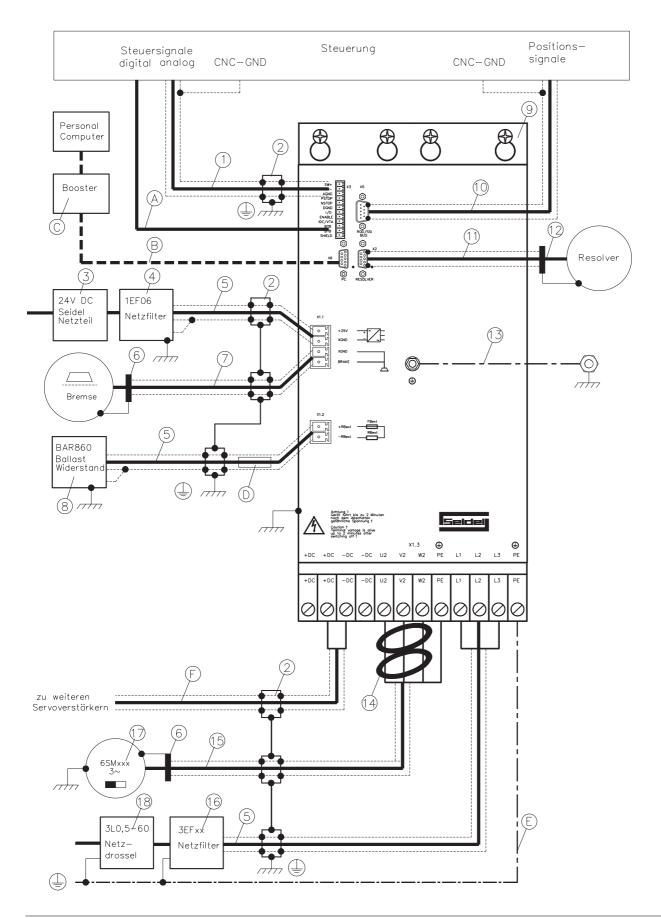
Dezeichhang	Beschreibung
Analog-Leitung	geschirmte, paarweise verseilt, 3x2x0,25mm²
Schirmanschlußklemme	n verschiedene Größen
Netzteil 24VDC/xA	Hilfsspannungsnetzteil
1EF-06	Netzfilter Fabrikat Seidel, einphasig
Netz-Leitung	geschirmt, 4x1,54mm ²
3EF-xx	Netzfilter Fabrikat Seidel, verschiedene Stromstärken
digifas [®] 71037116	Servoverstärker Fabrikat Seidel, diverse Variante
ROD/SSI-Leitung	geschirmt, paarweise verseilt, 4x2x0,25mm²
Resolver-Leitung	Fabrikat Seidel, fertig konfektioniert, schleppfähig
Gewebeband	Fabrikat Seidel fertig konfektioniert
Brems-Leitung	geschirmt, schleppfähig, 4x1,5mm²
EMV-PGxx	PG-Verschraubung, im Motorklemmkasten eingebaut
6SMxx	Synchron-Servomotor, verschiedene Baugrößen
Motorleitung	Fabrikat Seidel, schleppfähig, abgeschirmt, bei Querschnitt 1,5mm² mit integrierter Bremsleitung erhältlich
Ringkern	Ferritring, verschiedene Größen
EMV-Resolverstecker	Bestandteil des Seidel-Resolverkabels
	Schirmanschlußklemme Netzteil 24VDC/xA 1EF-06 Netz-Leitung 3EF-xx digifas® 71037116 ROD/SSI-Leitung Resolver-Leitung Gewebeband Brems-Leitung EMV-PGxx 6SMxx Motorleitung

x = variabler Wert

Wählen Sie aus unserer Preisliste. Stellen Sie sich Ihr maßgeschneidertes € -Servosystem aus unseren Einzelkomponenten zusammen.

Für Fragen steht Ihnen unsere Applikationsabteilung jederzeit zur Verfügung.

Die nachstehend genannten Komponenten haben bei Einachssystemen keine entscheidende Bedeutung für die Konformität mit den genannten Normen. Bei Mehrachssystemen muß die Position F je nach Leitungslänge jedoch auch abgeschirmt verlegt werden.


A — 11 x 0,5mm², Einzeladern
B — PC-Leitung Fabrikat Seidel
C — Leitungstreiber (Booster)
D — Erdleitung, 1,5...16mm²

F — Längen größer 20cm : geschirmte Leitung, 7x1,5...4mm²

Längen bis 20cm: 5 Einzeladern 1,5...4mm²

Wir garantieren nur bei Verwendung der unten genannten System-Komponenten und Einhaltung der Installationsvorschriften dieser Dokumentation (Kapitel II.2) die Konformität der Servoverstärker zu folgenden Normen im Industriebereich:

- EG-EMV-Richtlinie 89/336/EWG
- EG-Niederspannungs-Richtlinie 73/23/EWG

Bei Abweichung von diesen Vorgaben müssen Sie mit eigenen Messungen die Einhaltung der Normen belegen.

Die u.a. Positionsnummern beziehen sich auf die Übersichtszeichnung auf der linken Seite.

PosNr.	Bezeichnung	Beschreibung
1	Analog-Leitung	geschirmte, paarweise verseilt, 3x2x0,25mm²
2	Schirmanschlußklemme	en verschiedene Größen
3	Netzteil 24VDC/xA	Hilfsspannungsnetzteil
4	1EF-06	Netzfilter Fabrikat Seidel, einphasig
5	Netz-Leitung	geschirmt, 4x1,510mm²
6	EMV-PGxx	PG-Verschraubung, im Motorklemmkasten eingebaut
7	Brems-Leitung	geschirmt, schleppfähig, 4x1,5mm²
8	BAR860	Ballastwiderstand, Fabrikat Seidel
9	digifas [®] 7133/7150	Servoverstärker Fabrikat Seidel, diverse Varia
10	ROD/SSI-Leitung	geschirmt, paarweise verseilt, 4x2x0,25mm²
11	Resolver-Leitung	Fabrikat Seidel, fertig konfektioniert, schleppfä
12	EMV-Resolverstecker	Bestandteil des Seidel-Resolverkabels
13	Gewebeband	Fabrikat Seidel fertig konfektioniert
14	Ringkern	Ferritring, verschiedene Größen
15	Motorleitung	Fabrikat Seidel, schleppfähig, abgeschirmt
16	3EF-xx	Netzfilter Fabrikat Seidel, verschiedene Stromstärken
17	6SMxx	Synchron-Servomotor, verschiedene Baugröße
18	3L0,5-60	Netzdrossel

x = variabler Wert

Wählen Sie aus unserer Preisliste. Stellen Sie sich Ihr maßgeschneidertes (ϵ -Servosystem aus unseren Einzelkomponenten zusammen.

Für Fragen steht Ihnen unsere Applikationsabteilung jederzeit zur Verfügung.

Die nachstehend genannten Komponenten haben bei Einachssystemen keine entscheidende Bedeutung für die Konformität mit den genannten Normen. Bei Mehrachssystemen muß die Position F je nach Leitungslänge jedoch auch abgeschirmt verlegt werden.

A — 11 x 0,5mm², Einzeladern
 B — PC-Leitung Fabrikat Seidel
 C — Leitungstreiber (Booster)
 D — Sicherungen F_{Bext1} und F_{Bext2}
 E — Erdleitung, 1,5...16mm²

F — Längen größer 20cm: geschirmte Leitung, 7x10...25mm²

Längen bis 20cm : 5 Einzeladern 10...25mm²

VI.4 Beseitigung von Störungen

Verstehen Sie die folgende Tabelle als "Erste Hilfe"-Kasten. Abhängig von den Bedingungen in Ihrer Anlage können vielfältige Ursachen für die auftretende Störung verantwortlich sein.

Bei Mehrachssystemen können weitere versteckte Fehlerursachen vorliegen.

Unsere Applikationsabteilung hilft Ihnen bei Problemen weiter.

Fehler	mögliche Fehlerursachen	Maßnahmen zur Beseitigung der
I cilici	inogliche i emerarsachen	Fehlerursachen
	 falsche Leitung verwendet Leitung auf falschen Steckplatz am Servoverstärker oder PC gesteckt 	Seidel-PC-Leitung verwenden Leitung auf richtige Steckplätze am Servoverstärker und am PC stecken
Fehlermeldung Kommunikations- störung	 falsche PC-Schnittstelle gewählt PC-Treiberleistung nicht ausreichend Booster defekt Netzteil des Boosters defekt Netzspannung für Boosternetzteil nicht in Ordnung PC ist nicht geerdet 	 Bediensoftware korrekt aufrufen Booster verwenden Booster erneuern Netzteil erneuern Netzversorgung prüfen PC erden
Fehlermeldung Unterspannung	 nicht vorhandene bzw. zu kleine Netzspannung bei freigegebenem Servoverstärker 	 Servoverstärker erst freigeben (ENABLE), wenn die Netzspan- nung eingeschaltet ist
Fehlermeldung Übers pannung	Ballastleistung reicht nicht aus. Ballastleistungsgrenze wurde erreicht und der Ballastwiderstand abgeschaltet. Dadurch erreichte die Zwischenkreisspannung einen zu hohen Wert. Netzspannung zu hoch Kurz- / Erdschluß im Stromkreis des externen Ballastwiderstandes	Bremszeit RAMPE- verkürzen externer Ballastwiderstand mit höherer Leistung einsetzen und Parameter Ballastleistung anpassen Netztrafo einsetzen Kurz- / Erdschluß beseitigen
Fehlermeldung Netz-BTB	Reglerfreigabe lag an, obwohl keine Netzspannung vorhanden war. mindestens 2 Netzphasen fehlen Ladebegrenzung des Servoverstärkers ist defekt	Servoverstärker erst freigeben (ENABLE), wenn die Netzspan- nung eingeschaltet ist Netzversorgung prüfen Servoverstärker zur Reparatur an den Hersteller
Fehlermeldung Bremse	Kurzschluß in der Spannungszu- leitung der Motorhaltebremse defekte Motorhaltebremse	Kurzschluß beseitigen Motor tauschen
Fehlermeldung Endstufenfehler	 Motorleitung hat einen Kurz- oder Erdschluß Motor hat einen Kurz- oder Erdschluß Endstufenmodul ist überhitzt Defekt des Endstufenmoduls Kurz- / Erdschluß im Stromkreis des externen Ballastwiderstandes 	Kabel tauschen Motor tauschen Belüftung verbessern Servoverstärker zur Reparatur an den Hersteller Kurz- / Erdschluß beseitigen
Fehlermeldung V-Fault (Hilfsspannung)	Die im Servoverstärker erzeugte Hilfsspannung ist fehlerhaft	Servoverstärker zur Reparatur an den Hersteller

Fehler	mögliche Fehlerursachen	Maßnahmen zur Beseitigung der Fehlerursachen
Fehlermeldung Resolver	Resolverstecker ist nicht richtig aufgesteckt Resolverleitung ist unterbrochen, gequetscht o.ä. Falscher Resolvertyp	 Steckverbinder überprüfen Leitungen überprüfen Zweipoligen Resolver einsetzen
Fehlermeldung Kühlkörper- temperatur	Zulässige Kühlkörpertemperatur ist überschritten	Belüftung verbessern
Fehlermeldung Innentemperatur	Zulässige Innentemperatur ist über- schritten	Belüftung verbessern
Fehlermeldung Motortemperatur	Motorthermoschalter hat angesprochen Resolverstecker lose oder Resolver-leitung unterbrochen	 Abwarten bis Motor abgekühlt ist. Danach überprüfen, warum der Motor so heiß wird. Neue Resolverleitung einsetzen
Motor dreht nicht	 Servoverstärker nicht freigegeben Sollwertleitung unterbrochen Motorphasen vertauscht Bremse ist nicht gelöst Antrieb ist mechanisch blockiert Motorpolzahl nicht korrekt eingestellt falscher Resolvertyp 	 ENABLE-Signal anlegen Sollwertleitung prüfen Motorphasen korrekt auflegen Bremsenansteuerung prüfen Mechanik prüfen Parameter Motorpolzahl einstellen zweipoligen Resolver einsetzen
Motor geht durch	Motorphasen vertauscht bei Option -IL- ROD-Leitung defekt oder nicht richtig gesteckt	Motorphasen korrekt auflegen ROD/SSI-Leitung prüfen
Motor schwingt	Verstärkung zu hoch Abschirmung Resolverleitung unterbrochen AGND nicht verdrahtet	 Parameter Kp verkleinern Resolverleitung erneuern AGND mit CNC-GND verbinden

VI.5 Glossar

В	Ballastschaltung	wandelt überschüssige, vom Motor beim Bremsen rückgespeiste Energie über den Ballastwiderstand in Wärme um.
С	Clock	Taktsignal
	CONNECT-Baugruppen	im Servoverstärker eingebaute Baugruppen mit integrierter Lageregelung, die spezielle Interface- Varianten für den Anschluß an die übergeordnete Steuerung zur Verfügung stellen.
	counts	interne Zählimpulse, 1 Impuls=1/4096 umdr ⁻¹
D	Dauerleistung der Ballastschaltung	mittlere Leistung, die in der Ballastschaltung umgesetzt werden kann
	Disablen	Wegnahme des ENABLE-Signals (0V oder offen)
	Drehzahlregler	regelt die Differenz zwischen Drehzahlsollwert SW und Drehzahlistwert zu 0 aus. Ausgang : Stromsollwert
E	Eingangsdrift	Temperatur- und alterungsbedingte Veränderungen eines analogen Eingangs
	Enable	Freigabesignal für den Servoverstärker (+24V)
	Enddrehzahl	Maximalwert für die Drehzahlnormierung bei ±10V
	Endschalter	Begrenzungsschalter im Verfahrweg der Maschine; Ausführung als Öffner
	Erdschluß	Elektrisch leitende Verbindung zwischen einer Phase und PE
F	Fahrsatz	Datenpaket mit allen Lageregelungsparametern, die für einen Fahrauftrag erfoderlich sind, nur bei vorhandener CONNECT-Baugruppe
	Feldbusinterface	hier: CONNECT-Baugruppen CAN-CONNECT und PROFIBUS-CONNECT
	freie Konvektion	freie Luftbewegung zur Kühlung
G	Gleichtaktspannung	Störamplitude, die ein analoger Eingang (Differenzeingang) ausregeln kann
	GRAY-Format	spezielle Form der binären Zahlendarstellung
Н	Haltebremse	Bremse im Motor, die nur bei Motorstillstand eingesetzt werden darf
1	I ² t-Schwelle	Überwachung des tatsächlich abgeforderten Effektivstroms Irms
	Impulsleistung der Ballastschaltung	maximale Leistung, die in der Ballastschaltung umgesetzt werden kann
	Inkrementalgeber-Interface	Positionsmeldung über 2 um 90° versetzte Signale, keine absolute Positionsausgabe
	Interface	Schnittstelle
	lpeak, Spitzenstrom	Effektivwert des Impulsstroms
	Irms, Effektivstrom	Effektivwert des Dauerstroms
K	Kp, P-Verstärkung	proportionale Verstärkung eines Regelkreises
	Kurzschluß	hier: elektrisch leitende Verbindung zwischen zwei Phasen

L	Lageregler	regelt die Differenz zwischen Lagesollwert und Lageistwert zu 0 aus. Ausgang : Drehzahlsollwert
	LC-Display (LCD)	Flüssigkristall-Anzeige
	Leistungsschalter	Anlagenschutz mit Phasenausfallüberwachung
М	Maschine	Gesamtheit miteinander verbundener Teile oder Vorrichtungen, von denen mindestens eine beweglich ist
	Mehrachssysteme	Maschine mit mehreren autarken Antriebsachsen
	Monitorausgang	Ausgabe eines analogen Meßwertes
N	Netzfilter	externes Gerät zur Ableitung von Störungen auf den Leitungen der Leistungsversorgung nach PE
	Nullimpuls	wird von Inkrementalgebern einmal pro Umdrehung ausgegeben, dient der Nullung der Maschine
0	Optokoppler	optische Verbindung zwischen zwei elektrisch unabhängigen Systemen
Р	P-Regler	Regelkreis, der rein proportional arbeitet
	Phasenverschiebung	Kompensation der Nacheilung zwischen elektro- magnetischem und magnetischem Feld im Motor
	PID-Regler	Regelkreis mit proportionalem, integralen und differentiellen Verhalten
	PID-T2	Filterzeitkonstante für den Drehzahlreglerausgang
	Potentialtrennung	elektrisch entkoppelt
R	Reset	Neustart des Mikroprozessors
	Resolver-Digital-Converter	Umwandlung der analogen Resolversignale in digitale Informationen
	Reversierbetrieb	Betrieb mit periodischem Drehrichtungswechsel
	Ringkern	Ferritringe zur Störunterdrückung
S	Servoverstärker	Stellglied zur Regelung von Drehzahl und Drehmoment eines Servomotors
	SSI-Interface	Zyklisch absolute, serielle Positionsausgabe
	Stromregler	regelt die Differenz zwischen Stromsollwert und Stromistwert zu 0 aus. Ausgang : Leistungsausgangs-Spannung
	SW-Rampen	Begrenzung der Änderungsgeschwindigkeit des Drehzahlsollwertes SW
Т	T-Tacho, Tacho-Zeitkonstante	Filterzeitkonstante in der Drehzahlrückführung des Regelkreises
	Tachospannung	zum Drehzahl-Istwert proportionale Spannung
	Thermoschutzkontakt	in die Motorwicklung eingebauter temperaturempfindlicher Schalter
	Tn, I-Nachstellzeit	Intergral-Anteil des Regelkreises
Z	Zwischenkreis	gleichgerichtete und geglättete Leistungsspannung

VI.6 Parameterliste

Gruppe	Displaytext	Bemerkung	Dim	min	max	Default	aktueller Wert
Stromregler	I _{rms}	Effektivstrom	Α	0,1	I _{nenn}	0,5I _{nenn}	
	I _{peak}	Spitzenstrom	Α	0,2xI _{nenn}	2xI _{nenn}	Inenn	
	I ² t-Schwelle	Meldeschwelle	%	0	100	80	
	Кр	P-Verstärkung	-	0,1	8	1,5	
	Tn	I-Nachstellzeitkonst.	ms	0,1	10	0,6	
Drehzahlregler	Кр	P-Verstärkung	-	1	63	10	
	Tn	I-Nachstellzeitkonst	ms	0,1	1000	10(12)	
	PID-T2	2. Zeitkonstante	ms	0,2	25	2,0	
	SW-Offset	Kompensation	mV	-120	+120	0	
	SW-Rampe +	Rampe aufwärts	ms	2	6300	10	
	SW-Rampe -	Rampe abwärts	ms	2	6300	10	
	Enddrehzahl	Enddrehzahl Tacho	min ⁻¹	800	8000	3000	
	DC-Monitor	Auswahl IDC/VTA	-	TACHO/ STROM	S_fehl/ I-soll	ТАСНО	
	Endschalter	ein/aus/stop	-	aus/ein	stop	aus	
	Einsatz Phi	Phasen-Voreilung	min ⁻¹	0	0,8 x End- drehzahl	1500	
	Endwert Phi	Phasen-Voreilung	°elektr.	0	45	20	
	T-Tacho	Tacho-Zeitkonstante	ms	0,2	100	0,6	
	Gleichlaufkorr.	Gleichlaufkorrektur	-	aus	ein	aus	
Allgemeines	Motorpolzahl	Stufen ±2	-	2	12	6	
	Sprache	Bedienersprache	-	Deutsch	Engl./Franz.	Deutsch	
	Res.Polzahl	Stufen 2/4/6	-	2	6	2	
	I/O	Programmierbarer Ein-/Ausgang	-	div.	div.	RESET	
	Ballast-Widerst.	Widerstandswahl	-	intern	extern	intern (extern)	
	Ballast-Leistung	Ext. Ballastleistung	W	1	2000(4000)	200(860)	
	Bremse	Haltebremse aktiv	-	Ohne	Mit	Ohne	
	ROD/SSI	Positionsausgabe	-	ROD/SSI	aus	ROD	
	NI-Offset	Nullimpulslage ROD	Inkrement	0	Auflösung	0	
	ROD-Code	Ausgabeformat ROD	-	binär	dezimal	bin	
	Auflösung	Auflösung ROD	Inkr/Umdr	512/1024	500/1000	1024	
	SSI-Code	Ausgabeformat SSI	-	binär	Gray	bin	
	SSI-Takt	SSI-Taktrate	kHz	200/200	1500/1500	200	

111	:	Klammern	ا ما	d:=:r==®	7422	7450
vverte	Ш	Kiammern	bei	aigitas	7133	.7150

Kunde	Schrank-Nr.	Geräte-Nr.	
Ort,Datum	Unterschrift		

VI.7 Stichwortverzeichnis

	Text	Seite		Text . Se	eite
Α	Abschirmung	. 11-3, 11-4, 11-5, 11-6, 11-7		Lagertemperatur	VI-1
	Absicherung	· · · · · · · · · · · · · · · · · · ·		Lagerung	
	AGND			LC-Display	
	Analoge Ein- und Ausgangskreise			LED.	
	Anschlußplan digifas®			Leiterquerschnitte Lieferumfang	
	Anschlußtechnik			Luftfeuchtigkeit	
	Auflösung		М	Masse-System	
	Aufstellhöhe			Masse-Zeichen	
	Ausgang I/O			Mehrachsensystem	
	Ausgang IDC			Montage	
В	Ausgang VTA			Motorpolzahl	
В	Ballastleistung Ballastschaltung		N	Netzdrossel.	
	Ballastwiderstand			Netzfilter	
	Belüftung			NSTOP	
	Bestimmungsgemäße Verwendung	. I-1		Nullimpuls-Offset	
	Betriebsdauer		0	Option -DISP-	IV-4
	BIT CONNECT			Option -G-	
	Bremse			Option -IL-	
С	CAN CONNECT		_	Option -ROD/SSI-	
	CE-Anschlußplan		Р	Parameter PGND	
	CE-Systemkomponenten			PID-T2	
D	DC-Monitor			PROFIBUS CONNECT	
	DGND			PSTOP	
	digifas® -71xx			PULSE CONNECT	
	digifas® -71xx-CAN digifas® -71xx-L2/DP		R	RBext	
	digifas® -71xx-SPS			RBint Resolver	
	digifas® -71xx-STEP			Resolver-Polzahl	
	Digitale Ein- und Ausgangskreise	. V-3		Reversierbetrieb	
	Drehwinkel			ROD/SSI	
_	Drehzahl			ROD-Code	
E	Einbaulage		_	ROD-Interface	
	Eingang Freigabe (Enable)		S	Schutzart	
	Eingang I/O			Sicherheitshinweise Sollwert	
	Eingang NSTOP	. II-5, II-7, III-1		Sollwert-Offset	
	Eingang PSTOP			Sollwert-Rampe	
	Eingang SW			Sollwert-Rampe +	
	Einsatz Phi			Sprache Sprache	
	EMV Enddrehzahl	. 1-2, 11-1, 11-4, 11-0 . 11-17		SSI-Code	=
	Endschalter			SSI-Interface SSI-Takt	
	Endwert Phi.	. II-17		Standardausführung	
	Entsorgung			Stapelhöhe	
_	Erdung			Steckerbelegung	
F	Fehlermeldungen			Stromistwert	
G	Formierung GND		т	SW	
ı	1/0		1	Tastenbedienung Technische Daten	
·	12t			Tn-Drehzahl	
	I2t-Schwelle	. II-17		Tn-Strom	
	IDC			Transport	VI-1
	Inbetriebnahme			T-Tacho	
	Installation		U	Umgebungstemperatur	
	Irms		٧	Verschmutzungsgrad	
K	konstante Drehzahl			Verschmutzungsgrad Versorgungsspannung	
	konstanter Strom			VTA	
	Kp-Drehzahl		W	Wartung	
	Kp-Strom		Х	XGND	
	Kühlkörper-Temperatur		Z	Zwischenkreisspannung	
L	Lagerdauer	. VI-1			

Vertrieb und Service / Sales and Service / Agence et Services

Bundesrepublik Deutschland/ Germany/Allemagne

Seidel Servo Drives GmbH Verkaufsniederlassung Nord Heinrich-Albertz-Str. 40

D-29221 Celle

Tel.: +49(0)5141 - 98 10 40 Fax: +49(0)5141 - 98 10 41

Seidel Servo Drives GmbH Verkaufsniederlassung West Wacholderstr. 40-42

D-40489 Düsseldorf Tel.: +49(0)203 - 99 79 - 180

Fax: +49(0)203 - 99 79 - 118

Seidel Servo Drives GmbH Verkaufsniederlassung Süd-West

Bruchsaler Str. 3 D-76646 Bruchsal-Untergrombach

Tel.: +49(0)7257 - 9 23 07 Fax: +49(0)7257 - 9 23 08

Seidel Servo Drives GmbH Verkaufsniederlassung Süd-Ost

Landsbergerstr. 17 D-86947 Weil

Tel.: +49(0)8195 - 99 92 50 Fax: +49(0)8195 - 999233

Servo-Dyn Technik GmbH Münzgasse 10 D-01067 Dresden

Tel.: +49(0)351 - 49 05 793 Fax: +49(0)351 - 4905794 Dänemark/ Denmark/Danemark

DIGIMATIC Ormhöjgaardvej 12-14 DK-8700 Horsens

Tel.: +45 - 76 26 12 00 Fax: +45 - 76 26 12 12

Finnland/ Finland/Finlande

Drivematic OY Hevosenkenkä 4 FIN-28430 Pori

Tel.: +358 - 2 - 61 00 33 11 Fax: +358 - 2 - 61 00 33 50

Frankreich/ France/France

Seidel Servo Drives GmbH Parc technologique St. Jacques 2 rue Pierre et Marie Curie F-54320 Maxéville

Tel.: +33(0)3 83 95 44 80 Fax: +33(0)383954481

Großbritannien/ Great Britain/Royaume-Uni

Kollmorgen PO Box 147, KEIGHLEY West Yorkshire, BD21 3XE Tel: +44(0)1535-607688 Fax: +44(0)15 35 - 68 05 20 Heason Technologies Group Claremont Lodge

Fontwell Avenue Eastergate Chichester PO20 6RY

Tel.: +44(0)12 43 - 54 54 00 Fax: +44(0)1243-544590

Italien/ Italy/Italie

M.C.A. s.r.l Via f. Turati 21 I-20016 Pero (Mi)

Tel.: +39(0)02 - 33 91 04 50 Fax: +39(0)02 - 33 90 85 8

Niederlande/ Netherlands/Pays-Bas

Dynamic Drives

Jan van der Heydenstraat 24a

NL-2665 JA Bleiswijk Tel.: +31(0)10 - 52 15 490 Tel.: +31(0)10 - 52 15 490 Fax: +31(0)10 - 52 18 994

Schweden/ Sweden/Suéde

SDTAB

SE-25467 Helsingborg Tel.: +46(0)42 - 380 800 Fax: +46(0)42 - 380 813 Stockholm

SE-12030 Stockholm Tel.: +46(0)8 - 640 77 30 Fax: +46(0)8 - 641 09 15

Göteborg

SE-42671 Västra Frölunda Tel.: +46(0)31 - 69 62 60 Fax: +46(0)31 - 696269

Schweiz/ Switzerland/Suisse

Seidel Servo Drives GmbH Eggbühlstr. 14 CH-8050 Zürich

Tel.: +41(0)1 - 300 29 65 Fax: +41(0)1 - 3002966

Spanien/ Spain/Espagne

Comercial BROTOMATIC, S.L. San Miguel de Acha, 2 Pab.3 E-01010 Vitoria

Tel.: +34 945 - 24 94 11 Fax: +34 945 - 22 78 32

Systempartner / System partners / Partenaires du systÉme

Bundesrepublik Deutschland/ Germany/Allemagne

Werner P. Hermes Ingenieurbüro Turmstr. 23 40750 Langenfeld Tel.: +49(0)212 - 65 10 55 Fax: +49(0)212 - 651057

Elektronische Antriebstechnik Hanferstraße 23 79108 Freiburg Tel: +49(0)761 - 13 03 50

Fax: +49(0)761 - 1303555

IBK Ingenieurbüro Keßler GmbH Dachtmisser Str. 10 21394 Kirchgellersen Tel: +49(0)4135 - 1288 Fax: +49(0)4135 - 1433

Großbritannien/ Great Britain/Royaume-Uni

Motor Technology Ltd. Unit 1 Chadkirk Industrial Estate Otterspool Road Romiley, Stockport GB-Cheshire SK6 3LE Tel.: +44(0)161 - 42 73 641

Fax: +44(0)161 - 42 71 306

Schweiz/Switzerland/Suisse

Bobry Servo Electronic AG Zentralstr. 6 CH-6030 Ebikon

Tel.: +41(0)41-440-77 22 Fax: +41(0)41 - 440 - 69 43

Postanschrift

Postfach 34 01 61

D-40440 Düsseldorf

Niederlande/ Netherlands/Pays-Bas

Kiwiet Ingenieurbüro Helenaveenseweg 35 NL-5985 NK Panningen (Grashoek) Tel.: +31(0)77 - 30 76 661 Fax: +31(0)77 - 30 76 646

Italien/Italy/Italie

Servo Tecnica Viale Lombardia 20 I-20095 Cusano Milanino (MI) Tel.: +39(0)02 - 66 42 01 Fax: +39(0)02 - 66401020

Australien/Australia/Australie

FCR Motion Technology PTY. Ltd. 23 Mac Arthurs Road Altona North, 3025 Melbourne/Australia Tel.: +61 393 99 15 11

Fax: +61 393 99 14 31

Seidel Servo Drives GmbH

Hausanschrift Wacholderstr. 40-42 D - 40489 Düsseldorf Tel.: +49(0)203 - 99 79 - 0 Fax: +49(0)203 - 99 79 - 155

Internet: http://www.seidelservodrives.de

Kollmorgen

201 Rock Road Radford, VA 24141 Tel.: +1 540 - 639 - 24 95 Fax: +1 540 - 731 - 08 47

Internet: http://www.kollmorgen.com