EYL 215: nova215, Compact automation station

The nova215 compact automation station can be connected with various outlying units, so-called field modules. In conjunction with the required number of field modules, it forms a unit, as necessary for monitoring, optimising, regulating and controlling HVAC technical systems.
It has a total of 44 inputs and 16 outputs. The short cycle time enables it to perform even very fast control tasks. It has communication capability and can be networked without any further provisions having to be made. The unit is programmed (parameterised) using a PC with EY3600 CASE software and the FBD Editor in accordance with IEC 1131-3.

Accessories	
EYT 240	Control panel nova240
0501113002	nova215 and nova225 microprograms with nova240 languages: German, French, English, Polish, Slovenian, Hungarian, Romanian, Russian, Czech, Turkish
0367842002	Connecting cable: nova AS to nova240, 1,5 m (4,9 ft)
0367842003	Connecting cable: nova AS to nova240, 2,9 m (9,5 ft)
0367842004	Connecting cable: nova AS to nova240, $6,0 \mathrm{~m}$ (19,7 ft)
0367862001	novaNet connecting cable: novaNet 290/291 to AS, 1,50 m (4,9 ft)
0367862002	novaNet connecting cable: novaNet 290/291 to AS, $2,90 \mathrm{~m}$ (9,5 ft)
0367862003	novaNet connecting cable: novaNet 290/291 to AS, $6,0 \mathrm{~m}$ (19,7 ft)
0367883002	$5 \times$ EPROM (empty; USER-EPROM)
0367888001	$5 \times$ EPROM (4 Mbit; empty)

Engineering notes

Using two top-hat rails (EN 50022), the nova215 automation station can be fitted in a panel.
The EYL 215 F001 station requires a power supply of $230 \mathrm{~V} \sim$ and the EYL 215 F005 requires $24 \mathrm{~V} \sim$ (USA: power source class 2).
The earthing terminals are connected to ground (PE) and to the housing.
The plant devices are connected via spring-type terminals; the following conditions must be observed:-

Cable size:
Analog inputs:
Analog outputs:
Counters:
novaLink:
novaNet:
min. $0,8 \mathrm{~mm}^{2}$ (AWG 18), max. $2,5 \mathrm{~mm}^{2}$ (AWG 13), adhering to the norms $<10 \mathrm{~V}=$
no extraneous voltage
potential-free contacts, opto-coupler, transistor (open collector)
100 m max. ($5 \mathrm{nF} / 7,5 \Omega$) twisted and shielded, both ends to earth with twisted cable

The nova215 automation station has a fast operating program (microprogram) which: reads all inputs every processes the parameterised modules; updates the outputs; and effects communication with other stations or visualisation PCs.
The station is programmed (the so-called user data) via the novaNet. The data are stored in a batterybacked memory. The battery's serviceable life is at least ten years.
The data can be saved permanently by means of the USER-EPROM.
Every station needs an AS address; this is set via coding switches.

Inputs and outputs

Temperature measurement
Number of inputs 6
Type of inputs Ni1000 (without coding)
Pt1000 (software coding)
Measuring ranges:

Ni1000	$-50 \ldots+150^{\circ} \mathrm{C}\left(-58 \ldots+302^{\circ} \mathrm{F}\right)$
Pt1000	$-100 \ldots+500^{\circ} \mathrm{C}\left(-148 \ldots+932^{\circ} \mathrm{F}\right)$

The Ni/Pt inputs, which do not need calibrating, already take the resistance of the cable into account and can be used for Ni1000 and Pt1000.
Linear-correction factors a and $b: \quad(Y=a X+b)$

Slope a
Zero-point shift b

$$
\begin{aligned}
& (Y=a X+b) \\
& \text { No entry is needed here. A proportional factor, which gives the } \\
& \text { result in }{ }^{\circ} \mathrm{C} \text {, can be called up direct from the microprogram. } \\
& \text { No calibration is needed here. A line resistance of } 2 \Omega \text { is included } \\
& \text { and has been compensated for. If the line resistance } R \text { is greater } \\
& \text { (deviation }>2 \Omega):- \\
& b=-0,18 \times(R-2 \Omega) \text { in room-temperature range or } \\
& b=-0,16 \times(R-2 \Omega) \text { at approx. } 100^{\circ} \mathrm{C}
\end{aligned}
$$

The sensors are connected using the two-wire method; the connecting leads can be up to 55 m (AWG 18 max. 180 ft) long if $0,8 \mathrm{~mm}^{2}$, or 170 m (AWG 15 max. 558 ft) if $1,5 \mathrm{~mm}^{2}$. The measuring voltage is pulsed in order to prevent the sensor from warming up.
While the inputs are intended for Ni1000 sensors, they can also be used with Pt1000 sensors. The linearisation guarantees error of a mere $0,06{ }^{\circ} \mathrm{C}$.
The measuring method is chosen via the software.
The Ni1000 measuring value is strictly linear and is better than $\pm 0,06^{\circ} \mathrm{C}\left(\pm 0,1^{\circ} \mathrm{F}\right)$ from $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The linearisation for Pt1000 guarantees negligible error between -50 and $+100^{\circ} \mathrm{C}\left(-58 \ldots 212^{\circ} \mathrm{F}\right)$.
For the full measuring range of the Pt1000, the following table applies:-

Temperature		Absolute difference	
$-100^{\circ} \mathrm{C}$	$\left(-148^{\circ} \mathrm{F}\right)$	$-0,05^{\circ} \mathrm{C}$	$\left(-0,09^{\circ} \mathrm{F}\right)$
$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\left(-58 \ldots 212^{\circ} \mathrm{F}\right)$	$< \pm 0,02^{\circ} \mathrm{C}$	$\left(\pm 0,04^{\circ} \mathrm{F}\right)$
$+150^{\circ} \mathrm{C}$	$\left(302^{\circ} \mathrm{F}\right)$	$+0,05^{\circ} \mathrm{C}$	$\left(+0,09^{\circ} \mathrm{F}\right)$
$200^{\circ} \mathrm{C}$	$\left(392^{\circ} \mathrm{F}\right)$	$+0,11^{\circ} \mathrm{C}$	$\left(+0,2^{\circ} \mathrm{F}\right)$
$300^{\circ} \mathrm{C}$	$\left(572^{\circ} \mathrm{F}\right)$	$+0,29^{\circ} \mathrm{C}$	$\left(+0,52^{\circ} \mathrm{F}\right)$
$400^{\circ} \mathrm{C}$	$\left(752^{\circ} \mathrm{F}\right)$	$+0,10^{\circ} \mathrm{C}$	$\left(+0,18^{\circ} \mathrm{F}\right)$
$500^{\circ} \mathrm{C}$	$\left(932^{\circ} \mathrm{F}\right)$	$-0,31^{\circ} \mathrm{C}$	$\left(-0,56^{\circ} \mathrm{F}\right)$

Measurement of UIIIR

Number of Inputs 4
Type of inputs
Voltage 0 (2)... $10 \mathrm{~V}, 0(0,2) \ldots 1 \mathrm{~V}$
Current 0 (4)... 20 mA
Potentiometer $500 \Omega .2 \mathrm{k} \Omega$

Linear-correction factors a and b :
$(Y=a X+b)$
The linearity can be adapted very accurately for every input.
Settings for a standardised signal (0...1)

Linear-correction factors		Inputs
a	b	
1	0	$0 \ldots 10 \mathrm{~V}$
10	0	$0 \ldots 1 \mathrm{~V}$
1	0	$0 \ldots 20 \mathrm{~mA}$
20	0	$0 \ldots 1 \mathrm{~mA}$
1,25	$-0,25$	$2 \ldots .10 \mathrm{~V}$
1,25	$-0,25$	$4 \ldots 20 \mathrm{~mA}$
12,5	$-0,25$	$0.2 \ldots 1 \mathrm{~V}$

Input limit values:
Measurement of voltage $< \pm 50 \mathrm{~V}$
Measurement of current $<50 \mathrm{~mA}$
Loading of reference outputs $<10 \mathrm{~mA}$
Return line for all signals: earth
Accuracy:
$\mathrm{U}= \pm 0,1 \%(\pm 0,01 \mathrm{~V})$
$\mathrm{I}= \pm 0,1 \%(\pm 0,02 \mathrm{~mA})$
$R= \pm 0,5 \%(\pm 0,05 \mathrm{~V})$
Resolution:
$\mathrm{U}=5 \mathrm{mV}$
Measuring the voltage (U)
The voltage is measured between one of the input terminals for voltage (marked with a 'U') and an earth terminal. The signal must be potential-free. The two measurements $0(0,2) \ldots 1 \mathrm{~V}$ and 0 (2)...10 V are selected via the software.
The maximum voltage without damage being incurred is $< \pm 50 \mathrm{~V}$. The visible range, however, is limited to 10 V . The internal resistance R_{i} of the input (load) is $60 \mathrm{k} \Omega$ in this case.

Measuring the current (I)
There are special terminals (marked with an 'I') available for measuring the current. The current signal must also be potential-free. The maximum input current must be limited to 50 mA . The internal resistance R_{i} is 100Ω.

Measuring the resistance (R)
The potentiometer is connected to terminals U , earth and +1 V . The +1 V reference voltage is pulsed. If all eight measuring inputs are used, the reference outputs must be doubly occupied. In order not to overload the reference outputs, the lowest potentiometer value should not be less than 500Ω, even through parallel switching in the event of double occupation. The reference output is protected against short circuits, but can destroy the potentiometer by the short-circuit current. The potentiometer's upper value of $2 \mathrm{k} \Omega$ is prescribed in order to guarantee stable measurements free of interference.

Pulse metering

Number of inputs
Type of inputs

Input frequency
Max. output current of the inputs
De-bounce time
Max. permissible input resistance
Protected against extraneous voltage

2
potential-free contacts opto-coupler transistor (open collector)
$<15 \mathrm{~Hz}$
1,2 mA with respect to earth
20 ms
$1 \mathrm{k} \Omega$ (including cable)
up to $24 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$

Potential-free contacts, opto-couplers or transistors with open collectors can be connected to the meter inputs. The maximum pulse frequency is 15 Hz .
A de-bounce time of 20 ms is envisaged so that the switching contacts are correctly received. The pulse is received on the falling flank and can remain present indefinitely. The automation station's internal counter value is interrogated every cycle and stored in DW 2 as a dual partial sum. The summation to form the counter value is done by the software after 30s at the latest via the station's processor in DW 6. Through using the FP format, the counter value can be a maximum of $2,147 \times 10^{9}$. With the FP format, it is possible to show counter values up to $67,108,864$ with a resolution of 1 . Any counter overflow can be curbed by resetting using the 'C_Preset' function module.

Digital inputs

with $2 \times$ novaLink174 2×16 inputs
The nova215 AS processes 32 items of digital information. The monitored inputs are connected via novaLink to the AS.

Digital outputs
with $3 \times$ novaLink164 3 channels à $4 \times 0-1$
with $3 \times$ novaLink165 3 channels à $2 \times 0-I-I I$
The optical indicator for the (exclusively pseudo) feedback signal is situated on the novaLink164/ novaLink165 field module. The switches for manual operations and the DIL switches for pre-setting the priority levels can also be found there.

Analog outputs

with $1 \times$ novaLink170 1 channels à $4 \times 0 \ldots 10 \mathrm{~V}, 20 \mathrm{~mA}$ max. or $2 \times 0 \ldots 10 \mathrm{~V}$ and $2 \times 0 \ldots 20 \mathrm{~mA}$.
The nova215 allows 4 analog positioning values to be issued. The novaLink170 field module has manual operating elements, with which the user can manually set the analog values and carry out the pre-setting of the priority values.

The nova215 automation station has no indicator elements apart from the operating indicators. The status of all digital inputs and outputs is shown on the field modules. There is a control panel (the EYT 240 F001) available.

The operations indicator on the nova215 (EYL 225 F001) has three LEDs: the green LED (at the top) when on continuously indicates that there is a power supply, while the two yellow LEDs are for telegram traffic in both directions on the novaNet line. In stand-alone mode (without novaNet), the Receive LED remains unlit, and the Send LED flashes rapidly.
The nova240 control panel (manual operating unit) can be connected via the RJ-45 socket.
The nova215 automation station has an operating program which reads in all inputs, processes the parameterised modules, updates the outputs and carries out communication with other stations or visualisation PCs.
A real-time clock for the time programmes is also integrated in the automation stations.
A lithium battery ensures that the user data (FBD data), time programmes and historical data (HDB) are retained in the SRAM in the event of a power failure. The real-time clock also runs off this lithium battery.
The battery makes it possible to retain the data and run the real-time clock for at least 10 years without power having to be applied.
Date and time are set ex works.
When power is restored, the automation station checks the consistency of the data and starts communication.
The user programmes can be loaded from any point in the novaNet. The data stay in the batterybacked SRAM even in the event of a power failure. In addition, the data can be stored captive in a user EPROM.
Therefore, the level of protection against loss of data is very high.
Every station needs an AS address ($0 . . .28671$), which is set via coding switches.

Putting into operation

When connecting the power supply, the earthing lead must be connected to the screw terminal provided (protection class I).
When working on these units, the power supply must be disconnected.

The appropriate field modules can be connected via terminals 37 to 40 and 102 to 109. The novaLink channels of the digital outputs must be encoded in accordance with the relevant unit (novaLink164 or novaLink165) as shown below.

Off	Off	On						
	\square				Off		On	
107	\square		novaLink channel	Terminals		MFA		MFA
$\underset{(4 \times 0-1)}{\operatorname{EYY}} 16$	S5	$\begin{aligned} & \text { EYY } 165 \\ & (2 \times 0-\mathrm{III}) \\ & \text { B07414a } \end{aligned}$	1	102/103	novaLink164	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	novaLink165	$\begin{gathered} 32 \\ 33 \\ - \\ - \end{gathered}$
					Off		On	
			novaLink channel	Terminals		MFA		MFA
			2	104/105	novaLink164	$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	novaLink165	36 37 - -
					Off		On	
			novaLink channel	Terminals		MFA		MFA
			3	106/107	novaLink164	$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \end{aligned}$	novaLink165	40 41 -

Before being linked to the novaNet, each AS must be given a clear (unique) address. This station number is binary-encoded via the block of DIL switches.
The following example is intended as an explanation of the binary encoding: AS number 10,255.

The AS address, which is set by means of the 16 DIL switches, is given a binary code anywhere between 0 and 28671 (for the AS). The last switch is for setting the parity, which refers to the station number and not to the four other switches (Reset, B, C and D) situated below. The parity should be set so that the number of switches in the 'on' position, including parity, is even.

If the station has not already got an EPROM with the parameterised user data, they must be transmitted to the station. Communication is performed via the novaNet bus and the corresponding terminals or the RJ-11 connector. Programming can be done in parallel to the data traffic, though this may lengthen the response time of the other network subscribers. For this reason, the station can be separated from the novaNet for the duration of the data transfer and the 'parameterising' PC can be connected locally. After the data transfer has been completed, the data are immediately active. The station can then be re-connected to the network and is ready for operation.
You are strongly advised to save the user data in an EPROM as well. Apart from enhancing data security, it facilitates fault-finding. The EPROM can be loaded with any normal programming device and employed in the station.

nova215

Before opening, the station, disconnect the power supply! Protective measures to prevent electrostatic discharges must be taken before performing any work on the unit. Afterwards, the station must be reset by means of the reset switch.

Reset:

The reset switch should be set to 'ON' for approx. $1 / 2 \mathrm{~s}$, causing the station to load the user data from the EPROM and to start operation under defined conditions.

If the reset switch is left in the ON position, the station remains in the reset mode and cannot function correctly.

Relationship between MFAs and terminals

Dimension drawing

Fitting to top-hat rail
Top-hat rail EN50022-35×7,5
(DIN -3F 35mm)
or EN50022-35×15

Wiring diagram

In cases where the industry standard (EN 61000-6-2) has to be met, the power cables for the digital/analogue inputs (DI/AI) and the novaLink power cable should be no longer than 30 m .

