PDS 92.621

en Product Data Sheet

ür Lebensräume mit Zukunft

EYS121: nova106, Function card for Ni1000/Pt1000 temperature measurement

The function card measures eight temperature values using Ni1000 (EN 43760) or Pt1000 (EN 60751) sensors. The null balancing and the curve linearisation are done in the software as standard.

Application for measuring temperature in the ranges:

- -50 to +150 °C (Ni1000)
- -100 to +500 °C (Pt1000)

Products

Туре	Description	Weight (kg)
EYS121F001	Function card for temperature measurement (Ni1000/Pt1000)	0.12

Technical data

Electrical supply		
Power supply	from rack	
Max. current	12 mA	
Power loss, max.	approx. 0.1 W	

Inputs / Outputs

Number of inputs	8
Type of inputs	Ni1000 (EN 43760) or
	Pt1000 (EN 60751)
Range	
Ni1000	–50…150 °C
Pt1000	–100…500 °C
Accuracy	
Ni1000 (linearity)	± 0.06 °C
Pt1000	see table
Max. output current of the inputs	1 mA with respect to earth pulset

Engineering notes

 The Ni/Pt inputs require no calibration, already take the cable resistance into account and can be used for both Ni1000 and Pt1000.

Temperature inputs

Linear-correction factors a and b	(Y = a X + b)
Slope a	No entry is needed here. A proportional factor, which gives the result in °C, can be called up direct from the microprogram.
Zero-point shift b	No calibration is needed here. A line resis- tance of 2 Ω is included and has been com- pensated for. If the line resistance R is greater (deviation > 2 Ω): • b = -0.18 × (R - 2 Ω) in room-temperature range or • b = -0.16 × (R - 2 Ω) at approx. 100 °C

• The sensors are connected using the two-wire method; the connecting leads can be up to 55 m long if 0.8 mm², or 170 m if 1.5 mm². The measuring voltage is pulsed in order to prevent the sensor from warming up.

Permitted ambient conditions

Operating temperature	045 °C
Storage and transport temperature	–2570 °C
Humidity	1090% rh no condensation
Trainiarty	10

Standards, guidelines and directives

CE conformity as per	
EMC Directive 2004/108/EC	EN 61000-6-1/EN 61000-6-2
	EN 61000-6-3/EN 61000-6-4

Additional information

Fitting instructions	MV 505536
Wiring diagram	A04585

- Though the inputs are designed for Ni1000 sensors, they can also be used for Pt1000. The type of measurement can be configured via the software.
- The Ni1000 measuring value is strictly linear and is better than \pm 0.06 °C from –50 °C to +150 °C.
- The linearisation for Pt1000 guarantees negligible error between -50 and +150 °C.
- For the full range using Pt1000 sensors, the following table applies:

Measuring accuracy

Temperatur	Absolute difference
–100 °C	–0.05 °C
–50 °C bis +100 °C	< ± 0.02 °C
+150 °C	+0.05 °C
200 °C	+0.11 °C
300 °C	+0.29 °C
400 °C	–0.10 °C
500 °C	–0.31 °C

Wiring diagram

In cases where the industry standard (EN 61000-6-2) has to be met, the power cables should be no longer than 30 m.

Wiring detail

2/2