

Inline-Buskoppler für Ethernet mit digitalen Ein- und Ausgängen

R911328678 Ausgabe 03

Datenblatt R-IL ETH BK DI8 DO4 2TX-PAC

Ethernet Anschaltung 8 digitale Eingänge 24 V DC 4 digitale Ausgänge 24 V DC, 500 mA modular erweiterbar mit Inline-Klemmen 06/2020

1 Beschreibung

Der Buskoppler mit integrierten I/Os ist zum Einsatz innerhalb eines Modbus/TCP (UDP)-Netzwerks vorgesehen und stellt das Bindeglied zum Inline-I/O-System dar.

An den Buskoppler können Sie bis zu 61 Inline-Teilnehmer anreihen.

Der Buskoppler unterstützt maximal 16 PCP-Teilnehmer.

Merkmale

- 2 Ethernet-Ports (mit integriertem Switch)
- Autonegotiation
- Autocrossing
- Übertragungsrate 10 MBit/s und 100 MBit/s
- 8 digitale Eingänge, 4 digitale Ausgänge (On-Board)
- Datenaustausch über OPC-Server möglich
- Software-Schnittstellen für den Zugriff über TCP/ IP: Device Driver Interface (DDI), High Level Language Fieldbus Interface (HFI)
- Web-based Management

Dieses Datenblatt ist nur gültig in Verbindung mit der Anwendungsbeschreibung "Die Automatisierungsklemmen der Produktfamilie Inline" (DOK-

CONTRL-ILSYSINS***-AW..-DE-P, MNR R911317017).

Stellen Sie sicher, dass Sie immer mit der aktuellen Dokumentation arbeiten.

Diese steht unter der Adresse www.boschrexroth.com/electrics zum Download bereit.

2	Innaitsverzeichnis Beschreibung	4
0		
2	Inhaltsverzeichnis	
3	Bestelldaten	3
4	Technische Daten	3
5	Internes Prinzipschaltbild	7
6	IT-Security	8
7	Anschluss Ethernet, Versorgung, Aktoren und Sensoren	8
8	Anschlussbeispiel	9
9	Lokale Diagnose- und Statusanzeigen	. 10
10	Reset-Taster	. 12
11	Inbetriebnahme	. 12
12	Anlaufverhalten des Buskopplers	. 13
13	Überwachung	. 16
14	Modbus-Protokolle und -Register	. 18
15	Sonderregister	. 24
16	DDI: Device Driver Interface	. 28
17	HFI: High Level Language Fieldbus Interface	. 32
18	WBM: Web-based Management	. 32
19	Update der Firmware	. 32
20	Prozessdatenzugriff über XML	. 32
21	SNMP - Simple Network Management Protokoll	. 34

3 Bestelldaten

Beschreibung	Тур	MNR	VPE
Inline-Buskoppler für Ethernet mit acht digitalen Eingän-	R-IL ETH BK DI8 DO4 2TX-	R911171726	1
gen und vier digitalen Ausgängen, komplett mit Zubehör	PAC		
(Inline-Stecker, Beschriftungsfelder und Abschlussplatte)			

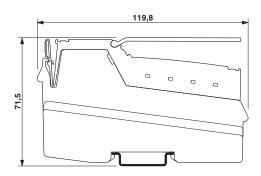
Dokumentation	Тур	MNR	VPE
Anwendungsbeschreibung Die Automatisierungsklemmen der Produktfamilie Inline	DOK-CONTRL-ILSYSINS***- AWDE-P	R911317017	1
Projektierungsbeschreibung Security-Leitfaden	DOK-IWORKS-SECU- RITY***-PRDE-P	R911342561	1

Weitere Bestelldaten

Weitere Bestelldaten (Zubehör) finden Sie im Produktkatalog unter der Adresse www.boschrexroth.com/electrics.

4 Technische Daten

Abmessungen (Nennmaße in mm)


Zulässige Luftfeuchtigkeit (Betrieb)

Luftdruck (Lagerung/Transport)

Luftdruck (Betrieb)

Schutzart Schutzklasse

Zulässige Luftfeuchtigkeit (Lagerung/Transport)

Breite	80 mm
Höhe	119,8 mm
Tiefe	71,5 mm
Hinweis zu Maßangaben	Maßangaben mit Steckern
Allgemeine Daten	
Farbe	grau
Gewicht	375 g (mit Steckern)
Umgebungstemperatur (Betrieb)	-25 °C 55 °C
Umgebungstemperatur (Lagerung/Transport)	

10 % ... 95 % (keine Betauung)

10 % ... 95 % (keine Betauung)

70 kPa ... 106 kPa (bis zu 3000 m üNN)

70 kPa ... 106 kPa (bis zu 3000 m üNN)

III (IEC 61140, EN 61140, VDE 0140-1)

Stromaufnahme

Leitungslänge

Anschlussdaten: Inline-Anschlussstecker			
	7 of decree white		
Anschlussart	Zugfederanschluss		
Leiterquerschnitt starr / flexibel	0,2 mm ² 1,5 mm ² / 0,2 mm ² 1,5 mm ²		
Leiterquerschnitt [AWG]	24 16		
Abisolierlänge	8 mm		
Schnittstelle: Modbus/TCP (UDP)			
Anzahl	2		
Anschlussart	RJ45-Buchse		
Hinweis zur Anschlussart	Autonegotiation und Autocrossing		
Übertragungsgeschwindigkeit	10/100 MBit/s		
Übertragungsphysik	Ethernet in RJ45-Twisted-Pair		
Schnittstelle: Inline-Lokalbus			
Anschlussart	Inline-Datenrangierer		
Übertragungsgeschwindigkeit	500 kBit/s		
Systemgrenzen des Buskopplers			
Anzahl der anschließbaren Lokalbus-Teilnehmer	max. 61 (On-Board-I/Os sind zwei Teilnehmer)		
Anzahl der Teilnehmer mit Parameterkanal	max. 16		
Beachten Sie bei der Projektierung einer Inline-Station die Logikstromaufnahme jedes Teilnehmers! Diese ist in jedem klemmenspezifischen Datenblatt angegeben. Sie kann klemmenspezifisch differieren. Somit ist die mögliche Anzahl anschließbarer Teilnehmer vom speziellen Aufbau der Station abhängig.			
Buskopplereinspeisung U_{BK} ; Aus der Buskopplereinspeisung werden die Logikversorgung U_{L} (7,5 V) und die Analogversorgung U_{ANA} (24 V) erzeugt.			

Buskopplereinspeisung U_{BK} ; Aus der Buskopplereinspeisung werden die Logikversorgung U_{L} (7,5 V) und die
Analogversorgung U _{ANA} (24 V) erzeugt.

Analogversorgung OANA (24 V) erzeugt.	
Versorgungsspannung	24 V DC (über Inline-Stecker)
Versorgungsspannungsbereich	19,2 V DC 30 V DC (inklusive aller Toleranzen, inklusive Welligkeit)
Stromaufnahme	min. 80 mA (ohne angeschlossene I/O-Klemmen) max. 0,98 A (mit maximaler Anzahl angeschlossener I/O-Klemmen)
Leitungslänge	max. 30 m (Kabelführung über Freiflächen ist nicht zulässig)
Versorgung der Logik (U _L)	
Versorgungsspannung	7,5 V DC
Stromversorgung	max. 0,8 A DC
Versorgung der Analogmodule (U _{ANA})	
Versorgungsspannung	24 V DC
Versorgungsspannungsbereich	19,2 V DC 30 V DC (inklusive aller Toleranzen, inklusive Welligkeit)
Stromversorgung	max. 0,5 A DC
Versorgung des Hauptkreises (U _M)	
Versorgungsspannung	24 V DC (über Inline-Stecker)
Versorgungsspannungsbereich	19,2 V DC 30 V DC (inklusive aller Toleranzen, inklusive Welligkeit)
Stromversorgung	max. 8 A DC (Summe aus $U_M + U_S$)

min. 3 mA (ohne Sensoren) max. 8 A DC

max. 30 m (Kabelführung über Freiflächen ist nicht zulässig)

24 V DC (über Inline-Stecker)
19,2 V DC 30 V DC (inklusive aller Toleranzen, inklusive Welligkeit)
max. 8 A DC (Summe aus $U_M + U_S$)
min. 3 mA (ohne Aktoren) max. 8 A DC
max. 30 m (Kabelführung über Freiflächen ist nicht zulässig)
typ. 3 W (Gerät gesamt)
Suppressordiode, 35 V DC
Suppressordiode, 35 V DC

Absicherung

HINWEIS Elektronikschäden bei Überlastung

Sichern Sie die 24-V-Bereiche U_{BK} , U_{M} und U_{S} extern ab. Falls Sie eine Schmelzsicherung verwenden, muss das Netzteil den vierfachen Nennstrom der Schmelzsicherung liefern können. Damit ist ein sicheres Auslösen im Fehlerfall gewährleistet.

Digitale Eingänge	
Anzahl der Eingänge	8
Anschlussart	Inline-Stecker
Anschlusstechnik	3-Leiter
Beschreibung des Eingangs	EN 61131-2 Typ 1
Nenneingangsspannung	24 V DC
Nenneingangsstrom	typ. 3 mA
Stromverlauf	begrenzt auf maximal 3 mA
Eingangsspannungsbereich "0"-Signal	-30 V DC 5 V DC
Eingangsspannungsbereich "1"-Signal	15 V DC 30 V DC
Verzögerungszeit bei Signalwechsel von 0 auf 1	typ. 1,2 ms
Verzögerungszeit bei Signalwechsel von 1 auf 0	typ. 1,2 ms
Zulässige Leitungslänge zum Sensor	100 m
Einsatz von AC-Sensoren	AC-Sensoren im Spannungsbereich <u<sub>IN sind nur eingeschränkt verwendbar (entsprechend der Auslegung der Eingänge)</u<sub>
Verpolschutz	Suppressordiode
Digitale Ausgänge	
Anzahl der Ausgänge	4
Anschlussart	Inline-Stecker
Anschlusstechnik	3-Leiter
Anschlusstechnik Nennausgangsspannung	3-Leiter 24 V DC
Nennausgangsspannung	24 V DC
Nennausgangsspannung Spannungsdifferenz bei Nennstrom	24 V DC < 1 V
Nennausgangsspannung Spannungsdifferenz bei Nennstrom Maximaler Ausgangsstrom je Kanal	24 V DC < 1 V 500 mA

Digitale Ausgänge	
Nennlast induktiv	12 VA (1,2 H, 48 Ω)
Nennlast Lampen	12 W
Signalverzögerung	typ. 1,2 ms
Maximale Schaltfrequenz bei induktiver Nennlast	0,5 Hz (1,2 H, 48 Ω)
Verhalten beim Spannungsabschalten	Der Ausgang folgt der Spannungsversorgung unverzögert
Begrenzung induktiver Abschaltspannung	ca30 V
Ausgangsstrom im ausgeschalteten Zustand	max. 10 μA (Im nicht belasteten Zustand kann auch an einem nicht gesetzten Ausgang eine Spannung gemessen werden.)
Verhalten bei Überlast	Auto-Restart
Verhalten bei induktiver Überlast	Ausgang kann zerstört werden
Rückspannungsfestigkeit gegen kurze Impulse	rückspannungsfest
Festigkeit gegen dauerhaft angelegte Rückspannung	max. 2 A
Überstromabschaltung	min. 0,7 A
Kurzschlussschutz, Überlastschutz	Freilaufbeschaltung im Ausgangstreiber
Fehlermeldungen an das übergeordnete Steuerungs	s- oder Rechnersystem
Kurzschluss oder Überlast der digitalen Ausgänge	ja
Ausfall der Sensorversorgung	ja
Ausfall der Aktorversorgung	ja
Mechanische Prüfungen	
Vibrationsfestigkeit nach EN 60068-2-6/IEC 60068-2-6	5g
Schock nach EN 60068-2-27/IEC 60068-2-27	Betrieb: 25g, 11 ms Dauer, Halbsinus-Schockimpuls
Konformität zur EMV-Richtlinie 2014/30/EU	
Prüfung der Störfestigkeit nach EN 61000-6-2	
Entladung statischer Elektrizität (ESD) EN 61000-4-2/IEC 61000-4-2	Kriterium B, 6 kV Kontaktentladung, 8 kV Luftentladung
Elektromagnetische Felder EN 61000-4-3/IEC 61000-4-3	Kriterium A, Feldstärke: 10 V/m
Schnelle Transienten (Burst) EN 61000-4-4/IEC 61000-4-4	Kriterium A, alle Schnittstellen 1 kV Kriterium B, alle Schnittstellen 2 kV
Transiente Überspannung (Surge) EN 61000-4-5/IEC 61000-4-5	Kriterium B, Versorgungsleitungen DC: 0,5 kV/0,5 kV (symmetrisch/unsymmetrisch), Feldbuskabelschirm 1 kV
Leitungsgeführte Störgrößen EN 61000-4-6/IEC 61000-4-6	Kriterium A, Prüfspannung 10 V
Prüfung der Störaussendung nach EN 61000-6-4	Klasse A

Zulassungen

 $\label{thm:com/electrics} \mbox{Die aktuellen Zulassungen finden Sie unter www.boschrexroth.com/electrics.}$

Bosch Rexroth AG

5 Internes Prinzipschaltbild

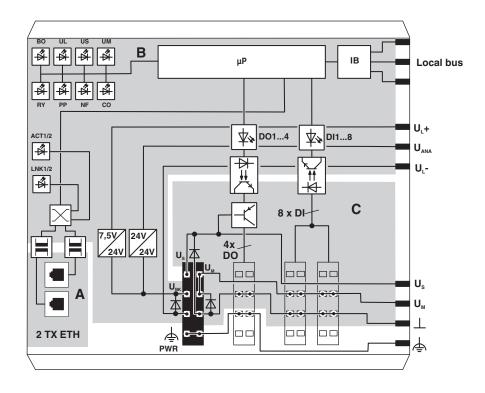


Bild 1 Interne Beschaltung der Klemmpunkte

Legende:

Mikroprozessor

Protokoll-Chip

Optokoppler

Ethernet Switch

PNP-Transistor

Übertrager mit galvanischer Trennung

LED

Netzteil

Potenzialgetrennter Bereich

Die grau unterlegten Felder im Prinzipschaltbild stellen die galvanisch getrennten Bereiche dar:

A Ethernet-Schnittstelle

B Logik C Peripherie

Die Erklärung für sonstige verwendete Symbole entnehmen Sie bitte der Anwendungsbeschreibung "Die Automatisierungsklemmen der Produktfamilie Inline" (DOK-CONTRL-ILSYSINS***-AW..-DE-P, MNR R911317017).

6 IT-Security

ACHTUNG: Unbefugte Netzwerkzugriffe möglich

Um unbefugte Netzwerkzugriffe zu verhindern, beachten Sie die folgenden Hinweise.

Bei Geräten, die über Ethernet mit einem Netzwerk verbunden sind, besteht die Gefahr von unbefugten Netzwerkzugriffen.

Falls möglich, deaktivieren Sie nicht verwendete Kommunikationskanäle.

Vergeben Sie Passwörter so, dass Dritte nicht unbefugt auf den Buskoppler zugreifen und Veränderungen vornehmen können.

Der Buskoppler sollte aufgrund seiner Kommunikationsschnittstellen in sicherheitskritischen Anwendungen nicht ohne zusätzliche Security-Appliance eingesetzt werden.

Treffen Sie daher entsprechend der IT-Sicherheitsanforderungen und der geltenden Normen für Ihren Einsatzbereich weitere Schutzmaßnahmen (z. B. virtuelle Netzwerke (VPN) für Fernwartungszugriffe, Firewalls etc.) gegen unbefugte Netzwerkzugriffe.

Der Betrieb von Anlagen, Systemen und Maschinen erfordert grundsätzlich die Implementierung eines ganzheitlichen Konzepts für die IT-Security, welches dem aktuellen Stand der Technik entspricht. Die Produkte von Bosch Rexroth sind ein Teil dieses ganzheitlichen Konzepts. Die Eigenschaften der Produkte von Bosch Rexroth müssen bei einem ganzheitlichen IT-Security-Konzept berücksichtigt werden. Die zu berücksichtigenden Eigenschaften sind im IT-Security-Leitfaden DOK-IWORKS-SECURITY***-PR..-DE-P (R911342561) dokumentiert.

7 Anschluss Ethernet, Versorgung, Aktoren und Sensoren

7.1 Ethernet anschließen

Schließen Sie das Ethernet über einen 8-poligen RJ45-Stecker an den Buskoppler an.

Die Ethernet-Anschlüsse sind auf Autocrossing eingestellt.

Schirmung

Die Schirmungsmasse der anschließbaren Twisted-Pair-Leitungen ist elektrisch leitend mit der Buchse verbunden. Vermeiden Sie beim Anschließen von Netzsegmenten Erdschleifen,

Potenzialverschleppungen und Potenzialausgleichsströme über das Schirmgeflecht.

Biegeradien einhalten

Die unter "Abmessungen" angegebenen Gehäusemaße beziehen sich auf den Buskoppler mit Peripheriesteckern ohne Ethernet-Verbindung. Beachten Sie beim Einbau des Buskopplers in einen Schaltkasten die Biegeradien der verwendeten Ethernet-Leitungen sowie der verwendeten Steckverbinder (z. B.

FL CAT5 FLEX: 30 mm bei fester Verlegung und FL CAT5 HEAVY: 30 mm ohne Außenmantel und 45 mm mit Außenmantel). Verwenden Sie zur Einhaltung dieser Biegeradien bei Bedarf abgewinkelte RJ45-Stecker.

7.2 Versorgung, Aktoren und Sensoren anschließen - Klemmpunktbelegung

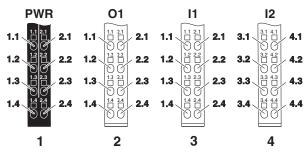


Bild 2 Klemmpunktbelegung

Klemmpunktbelegung des Einspeisesteckers (1)

Klemm- punkt	Belegung	Klemm- punkt	Belegung
1.1	U _S	2.1	U _M
1.2	U _{BK}	2.2	U _M
1.3	GND U _{BK}	2.3	GND U _M , U _S
1.4	Funktions- erde FE	2.4	Funktions- erde FE

ACHTUNG: Fehlfunktion

Das Modul ist ausschließlich für den Betrieb mit Sicherheitskleinspannung (SELV) nach

IEC 950 / EN 60950 / VDE 0805 ausgelegt.

Hinweise zu den Spannungsversorgungen finden Sie in der Anwendungsbeschreibung zum Inline-System, Materialnummer R911317017.

Wenn Sie dasselbe Bezugspotenzial für Logik- und Segmentspannung verwenden wollen, können Sie die Klemmpunkte 1.3 und 2.3 auf dem Stecker brücken.

Stellen Sie sicher, dass der Summenstrom durch die Potenzialrangierer maximal 8 A beträgt.

Schließen Sie die Funktionserde über den Einspeisestecker an!

Klemmpunktbelegung des Ausgangssteckers (2)

Klemm- punkt	Belegung	Klemm- punkt	Belegung
1.1	OUT1	2.1	OUT2
1.2	GND	2.2	GND
1.3	FE	2.3	FE
1.4	OUT3	2.4	OUT4

Klemmpunktbelegung des Eingangssteckers (3)

Klemm- punkt	Belegung	Klemm- punkt	Belegung
1.1	IN1	2.1	IN2
1.2	U _M	2.2	U _M
1.3	GND	2.3	GND
1.4	IN3	2.4	IN4

Klemmpunktbelegung des Eingangssteckers (4)

Klemm- punkt	Belegung	Klemm- punkt	Belegung
3.1	IN5	4.1	IN6
3.2	U _M	4.2	U _M
3.3	GND	4.3	GND
3.4	IN7	4.4	IN8

8 Anschlussbeispiel

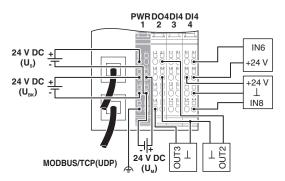


Bild 3 Anschlussbeispiel

9 Lokale Diagnose- und Statusanzeigen

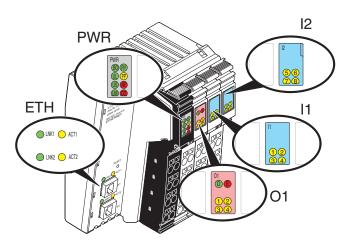


Bild 4 Lokale Diagnose- und Statusanzeigen

Bezeichnung	Farbe	Bedeutung	Zustand	Beschreibung
ETH	•			
LNK 1/2	Grün	Link Port 1/2	Ein	Verbindung über Ethernet zu einem Modul über Port 1/2 ist aufgebaut
			Aus	Keine Verbindung über Port 1/2 aufgebaut
ACT 1/2	gelb	Activity Port 1/2	Blinkt	Senden oder Empfangen von Ethernet-Telegrammen an Port 1/2
			Aus	Kein Senden oder Empfangen von Ethernet-Telegrammen an Port 1/2
PWR/ETH				
ВО	Grün	Boot	Aus	System-Hochlauf abgeschlossen
			Blinkt	Warten auf BootP/DHCP-Reply
			Ein	Bootloader aktiv, Firmware wird gestartet
UL	Grün	U _{Logik}	Aus	24-V-Buskopplereinspeisung ist nicht vorhanden
			Ein	24-V-Buskopplereinspeisung ist vorhanden
US	Grün	U _{Segment}	Aus	24-V-Segmentversorgung ist nicht vorhanden
			Ein	24-V-Segmentversorgung ist vorhanden
UM	Grün	U _{Main} Aus		24-V-Einspeisung in den Hauptkreis ist nicht vorhanden
			Ein	24-V-Einspeisung in den Hauptkreis ist vorhanden
RY	Grün	Ready	Ein	Verbindung zu einem Prozessdaten-Client ist aufgebaut
			Blinkt	Firmware ist betriebsbereit
			Aus	Gerät ist nicht betriebsbereit.
PP	Gelb	Plug-and-Play-	Ein	Plug-and-Play-Modus ist aktiviert.
		Modus	Aus	Plug-and-Play-Modus ist deaktiviert.
NF	Rot	Network Failure		Netzwerkfehler
			Aus	Kein Netzwerkfehler, Normalzustand
			Ein	Ein Netzwerkfehler liegt vor. Von der Monitorfunktion wurde ein
				Fehler erkannt oder der Prozessdaten-Watchdog wurde aktiv.
СО	Rot	Configuration	Aus	Die aktuelle Konfiguration des Lokalbusses stimmt mit der ge-
				speicherten überein.
			Ein	Die aktuelle Konfiguration des Lokalbusses stimmt nicht mit der
				gespeicherten überein.

Bezeichnung	Farbe	Bedeutung	Zustand	Beschreibung	
O1: Diagnose	O1: Diagnose der Inline-Station/Diagnose und Status der Ausgänge				
D	D Grün D iagnose		Ein	Datenübertragung ist innerhalb der Station aktiv	
			Blinkt	Datenübertragung ist innerhalb der Station nicht aktiv	
E	Rot	Error	Ein	Kurzschluss/Überlast an einem der Ausgänge	
			Aus	Kein Kurzschluss/Überlast an einem der Ausgänge	
1 4	Gelb	Status der Aus- Ein Ausgang ist gesetzt.		Ausgang ist gesetzt.	
		gänge 1 4	Aus	Ausgang ist nicht gesetzt.	
I1, I2: Status o	I1, I2: Status der Eingänge				
1 8	1 8 Gelb Status der Ein- Ein Eingang ist aktiv.		Eingang ist aktiv.		
		gänge 1 8	Aus	Eingang ist nicht aktiv.	

10 Reset-Taster

Auf der Frontseite des Buskopplers befindet sich der Reset-Taster.

Der Reset-Taster hat zwei Funktionen:

- Neustart des Buskopplers
- Rücksetzen auf Werkseinstellungen

10.1 Neustart des Buskopplers

Einen Neustart des Buskopplers führen Sie aus, indem Sie im laufenden Betrieb den Reset-Taster drücken.

Die Ausgänge der Station werden zurückgesetzt.

Das Prozessabbild der Eingänge wird nicht neu eingelesen.

10.2 Rücksetzen auf Werkseinstellungen

Der Buskoppler wird mit folgenden Werkseinstellungen ausgeliefert:

IP-Einstellungen

IP-Adresse 0.0.0.0
Subnetzmaske 0.0.0.0
Standard-Gateway 0.0.0.0
BootP aktiviert

Firmware-Update

Firmware-Update beim

nächsten Neustart deaktiviert TFTP-Server IP-Adresse 0.0.0.0

Systemidentifikation

Gerätename R-IL ETH BK DI8 DO4

2TX-PAC

Beschreibung Ethernet bus terminal

Einbauort unbekannt Kontakt unbekannt

Prozessdaten-Monitoring

Prozessdaten-Watch-

dog-Time-out 500 ms

Fault response mode Reset fault mode

(Default)

Plug-and-Play-Modus aktiviert Expertenmodus deaktiviert

Falls Sie die Werkseinstellungen wiederherstellen wollen, gehen Sie bitte wie folgt vor:

- Schalten Sie das Modul spannungsfrei.
- Drücken Sie den Reset-Taster und halten Sie ihn gedrückt.
- Schalten Sie die Spannung zu.
- Wenn die LED RY grün blinkt, dann lassen Sie den Taster los.

Die Werkseinstellungen wurden wiederhergestellt.

11 Inbetriebnahme

11.1 Start der Firmware

Der Buskoppler verfügt im Auslieferungszustand über keine gültigen IP-Parameter.

Nachdem Sie den Buskoppler mit Spannung versorgt haben, wird die Firmware gestartet.

An den LEDs erscheint folgende Sequenz:

Anzeige	Bedeutung
BO blinkt	Start des Bootloaders
	Versenden der BootP-Requests
BO an	Entpacken der Firmware
BO aus	Start der Firmware
RY blinkt	Firmware ist betriebsbereit

11.2 Absenden von BootP-Requests

Erste Inbetriebnahme

Bei der ersten Inbetriebnahme sendet das Gerät ununterbrochen BootP-Requests aus, bis es eine gültige IP-Adresse erhält. Um das Netzwerk nicht unnötig zu belasten, werden die Requests in unterschiedlichen zeitlichen Abständen (2 s, 4 s, 8 s, 2 s, 4 s ...) übertragen. Wenn das Gerät gültige IP-Parameter empfängt, speichert es diese als Konfigurationsdaten.

Erneute Inbetriebnahme

Wenn der Buskoppler bereits gültige Konfigurationsdaten hat und BootP nicht abgeschaltet ist, dann sendet er bei erneuter Inbetriebnahme nur noch drei BootP-Requests aus.

Wenn er einen BootP-Reply erhält, werden die neuen Parameter gespeichert.

Wenn der Buskoppler keine Antwort erhält, startet er mit der letzten Konfiguration.

Wenn BootP abgeschaltet und eine gültige Konfiguration vorhanden ist, startet der Buskoppler sofort.

Für die Vorgabe der IP-Adresse über BootP können Sie einen beliebigen BootP-Server verwenden.

Ob BootP abgeschaltet ist, sehen Sie im Web-based Management unter dem Menü "IP Configuration".

12 Anlaufverhalten des Buskopplers

Das Anlaufverhalten des Buskopplers wird über folgende Systemparameter bestimmt:

Parameter	Var ID (hex)	Auslieferungszu- stand
Plug-and-Play-Modus	2240	Aktiviert
Expertenmodus	2275	Deaktiviert
Verzögerter Anlauf (ab Ausgabestand GB1)	2278	Deaktiviert

12.1 Plug-and-Play-Modus

Diese Beschreibung gilt nur bei deaktiviertem Expertenmodus.

Plug-and-Play-Modus aktiviert

Der Buskoppler unterstützt einen sogenannten Plugand-Play-Modus.

Der Plug-and-Play-Modus ermöglicht es, die angeschlossenen Lokalbusmodule im Feld ohne überlagerten Rechner (Engineering-System) mit dem Buskoppler in Betrieb zu nehmen.

Der Status des Plug-and-Play-Modus (aktiviert oder deaktiviert) wird auf dem Buskoppler nichtflüchtig gespeichert. Der aktuelle Modus wird über die LED PP angezeigt.

Im Plug-and-Play-Modus werden die angeschlossenen Lokalbusmodule erkannt und auf Funktion genrüft

Wenn diese physikalische Konfiguration betriebsbereit ist, dann wird sie in Betrieb genommen. Das Schreiben von Ausgängen wird aber nicht freigeschaltet.

Um das Schreiben der Ausgänge freizuschalten, deaktivieren Sie den Plug-and-Play-Modus. Das Deaktivieren ist gleichzeitig das Signal, die aktuelle Konfiguration als Vergleichskonfiguration zu speichern.

Plug-and-Play-Modus deaktiviert

Bei deaktiviertem Plug-and-Play-Modus wird die Vergleichskonfiguration mit der physikalischen Konfiguration verglichen. Wenn die Konfigurationen übereinstimmen, wird der Buskoppler mit dem ersten Schreibzugriff in den RUN-Zustand gesetzt.

Wenn die Vergleichs- und die physikalische Konfiguration nicht übereinstimmen, dann leuchtet die LED CO rot. In diesem Fall ist ein Prozessdatenaustausch aus Sicherheitsgründen nicht möglich.

Um den Bus dennoch zu betreiben, stehen Ihnen zwei Möglichkeiten offen:

- Damit Vergleichs- und physikalische Konfiguration wieder übereinstimmen, stellen Sie die ursprüngliche Konfiguration wieder her.
- Damit die aktuelle physikalische Konfiguration als Vergleichskonfiguration übernommen wird, aktivieren Sie den Plug-and-Play-Modus und starten den Buskoppler neu.

12.2 Expertenmodus

Expertenmodus deaktiviert

Wenn der Expertenmodus deaktiviert ist (Auslieferungszustand), dann läuft der Buskoppler im Plugand-Play-Modus.

Expertenmodus aktiviert

Wenn der Expertenmodus aktiviert ist, dann wird der Bus nicht selbstständig in Betrieb genommen. Setzen Sie mit den geeigneten Firmware-Kommandos die Station in den "RUN"-Zustand.

Geeignete Firmware-Kommandos sind z. B. CREATE_CONFIGURATION, 0710_{hex} und START_DATA_TRANSFER, 0701_{hex}. Die LEDs PP und CO werden nicht genutzt.

12.3 Verzögerter Anlauf (Delayed start data transfer)

Ab Ausgabestand GB1

Verzögerter Anlauf deaktiviert

Wenn der verzögerte Anlauf deaktiviert ist (Auslieferungszustand), dann läuft der Buskoppler wie im Kapitel "Plug-and-Play-Modus" beschrieben an.

Verzögerter Anlauf aktiviert

Wenn der verzögerte Anlauf aktiviert ist, wird die Datenübertragung auf dem Lokalbus erst mit dem ersten Schreibzugriff der Steuerung auf die Prozessdaten aktiviert. Alternativ aktivieren Sie die Datenübertragung durch das Kommando "Clear Net Fail".

Die LED D zeigt daher zunächst den Zustand "ACTIVE" (blinkend).

Diese Option erlaubt es, den Lokalbus-Teilnehmern nach einem Neustart des Buskopplers direkt gültige Prozessdaten vorzugeben.

Beachten Sie für die Zeit bis zum Start der Datenübertragung:

- Eine PCP-Übertragung ist nicht möglich
- Die Eingangsprozessdaten sind nicht gültig.

Beachten Sie bei einer Station, die ausschließlich Eingabeklemmen enthält:

Starten Sie zuerst die Datenübertragung (wie oben beschrieben). Erst dann können Sie gültige Eingangsprozessdaten lesen.

Empfehlung: Wenn Ihre Station ausschließlich Eingangsklemmen enthält, aktivieren Sie diese Option nicht.

Power-Up

12.4 Mögliche Kombinationen der Modi

Plug-and-Play- Modus	Experten- modus	Beschreibung/Auswirkung
Deaktiviert	Deaktiviert	Normalfall. Die Station setzt die gültige Konfiguration in den RUN-Zustand. Der Prozessdatenaustausch ist möglich.
Aktiviert	Deaktiviert	Die angeschlossene Konfiguration wird als Vergleichskonfiguration eingelesen und die Station in den RUN-Zustand gesetzt. Schreiben von Prozessdaten ist nicht möglich.
Beliebig	Aktiviert	Der Bus wird nicht automatisch gestartet, sondern wartet auf Firmware-Kommandos vom Anwender.

Anlaufdiagramme des Buskopplers

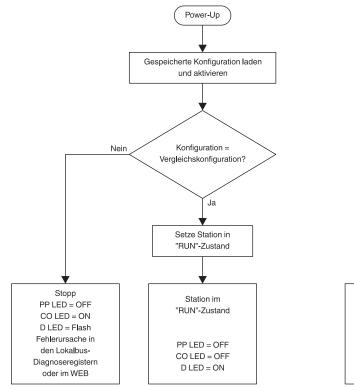
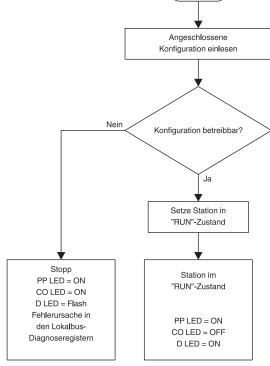



Bild 5 Normalmodus. Plug-and-Play-Modus und Expertenmodus deaktiviert

Plug-and-Play-Modus aktiviert und Expertenmodus deaktiviert

Wenn Sie den Expertenmodus deaktiviert haben, starten Sie den Buskoppler neu. Nur mit einem Neustart wird die Änderung übernommen.

Bild 6

Wenn Sie den verzögerten Anlauf aktiviert haben, wird die Station nicht sofort in den Zustand "RUN" versetzt, sondern zunächst nur in den Zustand "ACTIVE" (LED D blinkt).

Nachdem Sie erstmalig Prozessdaten geschrieben oder das Kommando "Clear Net Fail" ausgeführt haben, wird die Station in den Zustand "RUN" versetzt (LED D ein).

12.6 Änderung und Inbetriebnahme einer Konfiguration im Plug-and-Play-Modus

Stellen Sie sicher, dass der Plug-and-Play-Modus aktiviert und der Expertenmodus deaktiviert ist.

Änderung einer bestehenden Konfiguration

Um eine bestehende Konfiguration zu ändern, gehen Sie wie folgt vor:

- Schalten Sie die Versorgungsspannung ab.
- Ändern Sie die physikalische Konfiguration.
- Schalten Sie die Versorgungsspannung ein.

Inbetriebnahme einer Konfiguration

Die Inbetriebnahme erfolgt wie im vorhergehenden Kapitel dargestellt. Beachten Sie dabei:

- Wenn keine Fehler vorliegen, liest der Buskoppler nach dem Einschalten die vorgefundene Konfiguration ein und nimmt sie in Betrieb.
- Wenn auf allen Klemmen die LEDs D statisch leuchten, sind alle Teilnehmer in die aktuelle Konfiguration integriert.
- Damit Sie nicht versehentlich mit einer falschen Konfiguration arbeiten, ist der Zugriff auf die Prozessdaten erst dann möglich, wenn der Plug-and-Play-Modus deaktiviert ist.

Bei aktiviertem Plug-and-Play-Modus wird ein Zugriff auf die Prozessdaten mit der Fehlermeldung 00A9_{hex}

(ERR_PLUG_PLAY) abgewiesen. Die Ausgänge der gesamten Inline-Station sind im Plug-and-Play-Modus zurückgesetzt

Um den Plug-and-Play-Modus umzuschalten, haben Sie verschiedene Möglichkeiten:

- Web-based Management
- Modbus Command Register
- Kommando "Set_Value" über Ethernet

Nach dem Abschalten des Plug-and-Play-Modus wird der Bus nur dann aufgeschaltet, wenn die vorhandene Konfiguration und die Vergleichskonfiguration übereinstimmen.

13 Überwachung

Um die Ethernet-Kommunikation zu überwachen, stehen unterschiedliche Funktionen zur Verfügung:

- Prozessdaten-Watchdog (Prozessdatenmonitoring)
- Verbindungsüberwachung für Modbus und DTI

Die Überwachungsfunktionen unterscheiden sich darin, welche Eigenschaften und Funktionen überwacht werden. Je nach Applikationsanforderung kann die entsprechende Überwachungsfunktion aktiviert werden. Im Auslieferungszustand ist der Prozessdaten-Watchdog aktiviert.

Überwa-	Überwach	Überwachte Eigenschaft/Funktion			
chungs- mechani smus	Client- Applika- tion	Ein- zelne Kanäle	Ethernet- Verbin- dung	Prozess- datenaus- tausch	
Prozess- daten- Watchdog	Х	-	Х	Х	
Verbin- dungs- überwa- chung für Modbus und DTI	X	Х	X	-	

Wenn ein Fehler auftritt, reagiert der Buskoppler mit einem Fault response. Legen Sie dafür den gewünschten Fault response mode fest.

13.1 Fault response mode einstellen

Um den gewünschten Fault response mode einzustellen, haben Sie verschiedene Möglichkeiten:

- Web-based Management
- Schreiben auf das Modbus-Register 2002
- "Set_Value"-Dienst f
 ür die Variable 2277_{hex}

Mögliche Werte für Fault response mode

Fault response mode	Wert	Funktion
Standard fault mode	0	Alle Ausgänge auf 0 setzen.
Reset fault mode (Default)	1	Digitale Ausgänge auf 0 setzen. Analoge Ausgänge auf den Default-Wert der Klemme setzen.
Hold last state mode	2	Alle Ausgänge halten ihren letzten Wert.

13.2 Prozessdaten-Watchdog / Prozessdaten-**Monitoring**

Im Auslieferungszustand ist der Prozessdaten-Watchdog mit einer Time-out-Zeit von 500 ms aktiviert.

Funktion des Prozessdaten-Watchdog

Damit es im Fehlerfall nicht zum unkontrollierten Setzen- oder Rücksetzen von Ausgängen der I/O-Station kommt, ist ein Prozessdaten-Watchdog in den Buskoppler integriert.

Wenn Ausgänge der Station gesetzt werden, muss sichergestellt sein, dass der steuernde Prozess Zugriff auf die Station hat.

Im Fehlerfall, z. B. Netzwerkleitung unterbrochen oder Funktionsfehler im steuernden Prozess, kann der Buskoppler über den Prozessdaten-Watchdog entsprechend reagieren.

Wenn Sie den Prozessdaten-Watchdog aktivieren, wird er durch den ersten Schreibvorgang gestartet. Er erwartet innerhalb der Time-out-Zeit den nächsten Schreibvorgang. Im fehlerfreien Betrieb erfolgt der Schreibvorgang innerhalb der Time-out-Zeit. Dann wird der Watchdog neu gestartet (getriggert).

Im Auslieferungszustand ist der Watchdog mit einer Time-out-Zeit von 500 ms aktiviert.

Lesende Aufrufe führen nicht zu einer Triggerung des Prozessdaten-Watchdogs.

Net fail

Wenn die Triggerung nicht innerhalb der Time-out-Zeit erfolgt, dann liegt ein Fehler vor. Daraufhin erfolgen zwei Reaktionen:

- Der ausgewählte Fault response mode wird ausgeführt.
- Das Net Fail-Signal wird gesetzt (LED NET rot

Im Reason code ist die Ursache für das Setzen des Net-fail-Signals aufgeführt.

Aus Sicherheitsgründen kann der Anwender den Watchdog nach der Aktivierung nicht mehr stoppen. Wenn der Anwender die steuernde Applikation beendet, erfolgt keine Triggerung des Watchdogs. Mit dem Ablauf der Time-out-Zeit wird das Net-fail-Signal gesetzt und der gewählte Fault response mode ausgeführt. Nachdem der Watchdog ausgelöst hat, werden die Ausgänge erst nach dem Quittieren wieder ausgegeben.

Fehlermeldung quittieren

Um den Fehler zurückzusetzen, guittieren Sie ihn. Dafür haben Sie folgende Möglichkeiten:

- Web-based Management
- Modbus-Register 2006

Mit dem Quittieren des Fehlers startet der Watchdog erneut. D. h. innerhalb der Time-out-Zeit muss die Triggerung erfolgen, sonst wird erneut ein Fehler erkannt.

Prozessdaten-Watchdog konfigurieren

Die Time-out-Zeiten können Sie nur dann ändern, wenn der Watchdog den Status INIT hat. Dieser Status liegt in folgenden Fällen vor:

- Nach einem Power-Up, solange kein Prozessdatenaustausch stattgefunden hat.
- Wenn ein Time-out aufgetreten ist und die Fault response aktiviert wurde und noch keine Quittierung des Net fail vorgenommen wurde.
- Um den Watchdog zu aktivieren, geben Sie den gewünschten Time-out-Wert im Bereich zwischen 200 ms und 65000 ms vor.
- Um den Watchdog zu deaktivieren, geben Sie den Wert 0 vor.

Zum Ändern der Time-out-Zeit haben Sie folgende Möglichkeiten:

- Web-based Management
- Modbus-Register 2000
- "Set_Value"-Dienst für die Variable 2233_{hex}

Fault response quittieren

Das Net-fail-Signal können Sie über folgende Mechanismen quittieren:

- Web-based Management
- Schreiben des Kommandos 0002_{hex} in das Kommandoregister 2006
- Funktion "ETH ClrNet FailStatus"

Ursachen für einen Fault response

Die Gründe für eine Fault response und das Setzen des Net-fail-Signals können Sie abfragen über:

- Web-based Management
- Modbus-Register 2004
- Funktion "ETH_GetNet FailStatus"

Folgende Ursachen sind möglich:

Ursache		Code (hex)
DDI_NF_TASK_ CREAT_ERR	Fehler während des Startens einer Task	0001
DDI_NF_LISTENER_ERR	Fehler in der Listener-Task	0002
DDI_NF_RECEIVER_ERR	Fehler in der Receiver-Task	0003
DDI_NF_ACCEPT_ERR	Fehler in der Accept-Funktion	0004
DDI_NF_ECHO_ SERVER_ERR	Fehler in der Echo- Server-Task	0005
DDI_NF_HOST_ CONTROLLER_ERR	Fehler in der Host- Controller-Task	0006
DDI_NF_DTI_TIMEOUT	DTI-Time-out aufgetreten	0007
DDI_NF_HOST_TIMEOUT	Host-Time-out aufgetreten	8000
DDI_NF_USER_TEST	Net-Fail durch An- wender gesetzt	0009
DDI_NF_CONN_ABORT	Verbindung abgebrochen	000A
DDI_NF_INIT_ERR	Initialisierungs- fehler	000B
DDI_NF_DTI_WATCHDOG	Prozessdaten- Watchdog ausgelöst	000C
DDI_NF_MBUS_TIMEOUT	Modbus-Time-out aufgetreten	000D

14 Modbus-Protokolle und -Register

Der Buskoppler unterstützt sowohl einen Modbus/ TCP- als auch einen Modbus/UDP-Server.

Das Modbus-Protokoll kann sowohl verbindungsorientiert (TCP) als auch verbindungslos (UDP) genutzt werden.

14.1 Modbus-Verbindungen

Der Buskoppler unterstützt bis zu acht Modbus/TCP-Verbindungen gleichzeitig.

Die Verbindungen können gleichzeitig auf verschiedene Adressen zugreifen.

Wenn eine Verbindung über SDDI genutzt und gleichzeitig eine Verbindung auf die statische Tabelle geöffnet wird, so wird die SDDI-Verbindung mit dem Fehlercode xxxx00AA_{hex} abgebrochen.

Erst nach dem Reset des Buskopplers kann die SDDI-Verbindung neu aufgebaut werden. Gleichzeitige Verbindungen über SDDI und Modbus dynamische Tabellen sind nicht schreibgeschützt. Das Schreiben auf statischen und dynamischen Tabellen wird mit Semaphoren geschützt.

Da acht Verbindungen unterstützt werden, kann eine Verbindung schnell wiederhergestellt werden. Das bedeutet, dass der Client nach der Unterbrechung einer Modbus-Verbindung diese erfolgreich wiederherstellen kann.

Der UDP-Server ist verbindungslos.

14.2 Modbus-Schnittstelle

Die Modbus-Schnittstelle des Buskopplers unterstützt die Modbus-Kommunikation gemäß Standard-Port 502.

14.3 Modbus-Konformitätsklassen

Der Buskoppler unterstützt die Modbus-Konformitätsklasse 0.

14.4 Modbus-Funktionscodes

Folgende Funktionscodes werden unterstützt:

Funkti- onscode	Funktion	Beschreibung
FC3	Read holding registers	Lesen von Wörtern für Aus- und Eingänge
FC4	Read input registers	Lesen von Wörtern von Eingängen
FC6	Write single registers	Schreiben eines Worts für Ausgangsdaten
FC16	Write multiple registers	Schreiben mehrerer Ausgangsworte
FC23	Read/write mul- tiple registers	Lesen und Schreiben meh- rerer Prozessdaten für Ein- und Ausgänge

14.5 Modbus-Register

Modbus-Registertabelle (16-Bit-Wort)	Zugriff	Funktion	Zugriff mit Funktionscode
Lokalbus	- 1	,	
1400	R	Anzahl der Lokalbus-Teilnehmer/Einträge	FC3, FC4
1401 1463	R	ID- und Längencode des jeweiligen Teilnehmers	
Sonderregister			
1280	R/W	Time-out der Überwachung der Modbus/TCP- Verbindungen	FC3, FC4, FC6, FC16
2000	R/W	Time-out des Prozessdaten-Watchdogs	FC3, FC4, FC6, FC16
2002	R/W	Fault response mode	FC3, FC4, FC6, FC16
2004	R	Net fail reason	FC3, FC4
2006	W	Kommandoregister	FC6, FC16
PCP	•		
6020 6173	R/W	CR 2 CR 17 (siehe "Modbus/TCP-PCP-Register")	FC3, FC4, FC16
2075 2089	R	Elektronisches Typenschild (ab Firmware-Version 1.42)	FC3, FC4
Diagnose	•		
7996	R	Statusregister	FC3, FC4, FC23
7997	R	Diagnose-Statusregister	
7998	R	Diagnose-Parameterregister 1	
7999	R	Diagnose-Parameterregister 2	
Prozessdaten (dynamisch	e Tabelle)		
8000	R	Lokale digitale Eingänge	FC3, FC4, FC6, FC16, FC23
8001 (8000+x)	R	Eingänge Lokalbus (x Worte)	
(8001+x)	R/W	Lokale digitale Ausgänge	
(8002+x) (8001+x+y)	R/W	Ausgänge Lokalbus (y Worte)	

Modbus-Registertabelle (16-Bit-Wort)	Interne Tabellen R-IL ETH BK (16-Bit-Wort)	Zugriff	Funktion	Zugriff mit Funkti- onscode
Prozessdaten (statische Ta	belle)			
0 191	%l1 192	R	Digitale Eingänge	FC3, FC4, FC23
192 383	%Al1 192	R	Analoge Eingänge	FC3, FC4, FC23
384 575	%Q1 192	R/W	Digitale Ausgänge	FC6, FC16, FC23
576 767	%AQ1 192	R/W	Analoge Ausgänge	FC6, FC16, FC23

R Lesen (read)W Schreiben (write)

14.6 Zuordnung der Prozessdaten

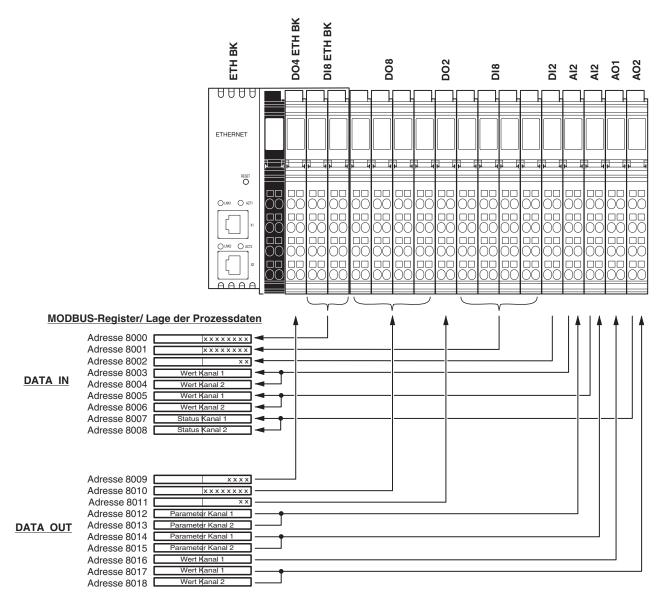


Bild 7 Beispiel für die Lage der Prozessdaten in dynamischen Tabellen

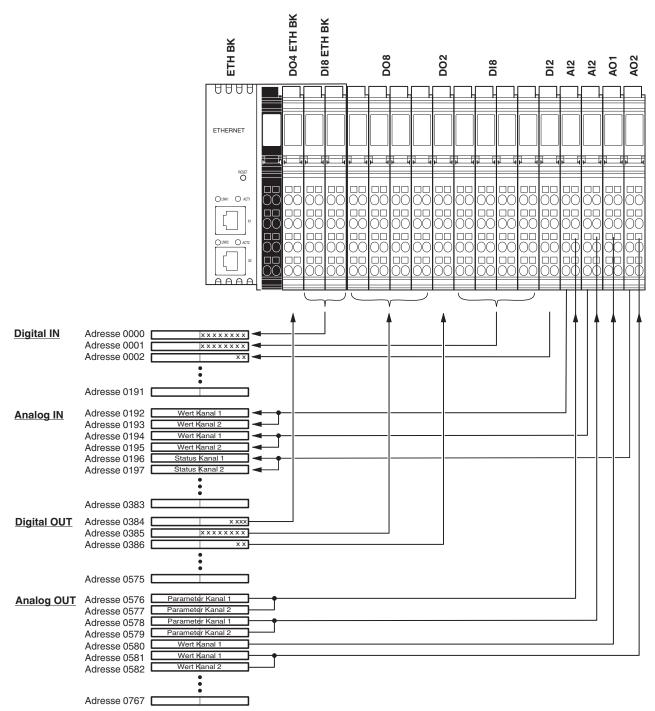


Bild 8 Beispiel für die Lage der Prozessdaten in statischen Tabellen

14.7 Diagnoseregister (7996 ... 7999)

Die Diagnoseregister geben einen Überblick über den allgemeinen Betriebszustand des Buskopplers und der angeschlossenen Teilnehmer.

Um im Fehlerfall schnell reagieren zu können, werden die Fehlerquelle und teilweise auch der genaue Fehlerort angegeben.

Übersicht:

Modbus-Register (16-Bit-Wort)	Zugriff	Funktion	Zugriff mit Funktionscode
Diagnose			
7996	R	Statusregister	FC3, FC4, FC23
7997	R	Diagnose-Statusregister	FC3, FC4, FC23
7998	R	Diagnose-Parameterregister 1	FC3, FC4, FC23
7999	R	Diagnose-Parameterregister 2	FC3, FC4, FC23

14.7.1 Register 7996: Statusregister

Aus dem Netzwerk-Interface-Status-Wort können Sie mit dem Ethernet-Host-Controller, z. B. einer SPS, aktuelle Diagnoseinformationen entnehmen, ohne eine Konfigurations-Software benutzen zu müssen.

Nur die zwei niederwertigsten Bits (Bit 0 und Bit 1) haben eine Funktion. Bit 2 bis Bit 15 sind reserviert.

Um schnell feststellen zu können, ob am Buskoppler ein Fehler anliegt, sollte dieses Register zyklisch überwacht werden. Eine weitergehende Diagnose kann über die folgenden Diagnoseregister erfolgen.

Bit	Wert	Bedeutung
0	0	Ein Fehler liegt vor, z. B. ein Bit im Diag- nose-Statusregister ist gesetzt. Weitere Informationen finden Sie im Register 7997.
	1	Es liegt kein Fehler vor.
1	0	Es liegt kein Net fail vor.
	1	Net fail liegt vor, Ersatzwerte sind aktiv.

14.7.2 Register 7997: Diagnose-Statusregister

Jedem Bit im Diagnose-Statusregister für den Lokalbus ist ein Zustand des Lokalbus-Masters auf dem Buskoppler zugeordnet.

Die Zustände in den Fehlerbits (USER, PF, BUS, CTRL) werden über das Diagnose-Parameterregister näher beschrieben. Das Diagnose-Parameterregister wird immer dann neu beschrieben, wenn eines der oben genannten Fehlerbits gesetzt wird. Andernfalls enthält das Diagnose-Parameterregister den Wert 0000_{hex}.

Bit	Bezeichnung	Bedeutung
0	USER_BIT	Fehler des Anwenderprogramms.
1	PF_BIT	Lokalbus-Teilnehmer hat einen Fehler der Peripherie festgestellt.
2	BUS_BIT	Fehler im Lokalbus.
3	CTRL_BIT	Lokalbus-Master hat einen internen Fehler.
4	DETECT_BIT	Fehlerlokalisierung ("LOOK FOR FAIL")
5	RUN_BIT	Datenzyklen werden ausgetauscht.
6	ACTIVE_BIT	Lokalbus-Master ist im Zustand ACTIVE.
7	READY_BIT	Lokalbus-Master ist im Zustand READY, Selbsttest ist abgeschlossen.

Betriebsanzeigen READY, ACTIVE, RUN

Die Betriebsanzeigen READY, ACTIVE und RUN zeigen den aktuellen Zustand des Lokalbussystems an. Das Diagnose-Parameterregister wird nicht genutzt.

Nach dem Selbsttest ist der Lokalbus-Master betriebsbereit.

Das Anzeigebit READY ist gesetzt (READY_BIT = 1).

Ist der Lokalbus-Master konfiguriert und der Konfigurationsrahmen wurde fehlerfrei aktiviert, meldet sich das System als aktiv.

Die Anzeigebits READY und ACTIVE sind gesetzt (READY_BIT = 1, ACTIVE_BIT = 1).

Mit dem Start des Datenaustauschs wird zusätzlich das Anzeigebit RUN gesetzt

(READY_BIT = 1, ACTIVE_BIT = 1 und RUN_BIT = 1).

Fehler werden so lange angezeigt, bis sie guittiert werden.

Fehleranzeigen DETECT, CTRL, BUS, PF, USER

Das Fehlerbit DETECT zeigt an, dass ein Fehler den weiteren Lokalbusbetrieb nicht zulässt (DETECT = 1). Die Ausgänge fallen in den eingestellten Zustand (Fault response mode) zurück. Die Diagnoseroutine sucht die Fehlerursache.

Nachdem die Ursache gefunden wurde, wird das Fehlerbit DETECT zurückgenommen (DETECT = 0) und der Fehler in den Bits USER, PF, BUS und CTRL angezeigt. Das Diagnose-Parameterregister und das erweiterte Diagnose-Parameterregister beschreiben die Fehlerursache näher.

Fehler mit Lokalbusabschaltung

Fehlerbit	Fehlerort	Inhalt des Dia- gnose-Para- meterregisters
CTRL = 1	Fehler wird auf dem Lokal- bus-Master / Hardware ver- mutet.	Fehlercode
BUS = 1	Der Fehler betrifft ein Lokal- bussegment.	Fehlerort

Fehler ohne Lokalbusabschaltung

Fehlerbit	Fehlerort	Inhalt des Dia- gnose-Para- meterregisters
PF = 1	Fehler auf der Peripherie- seite eines Lokalbus-Teil- nehmers, z. B. Kurzschluss am Ausgang, Sensor-/Ak- torversorgung fehlt	Fehlerort
USER = 1	Anwenderfehler, z. B. durch falsche Parameter	Fehlercode

14.7.3 Register 7998: Diagnose-Parameterregister 1

Bei lokalisierten Lokalbusfehlern liefert das Diagnose-Parameterregister 1 für den Lokalbus den Fehlerort.

Fehlerort: z. B. Teilnehmernummer 0.3 bedeutet: Bussegment 0, Teilnehmer 3

Byte	n	n + 1
Bit	7 0	7 0
Inhalt	00	03
Bedeutung	Segmentnummer	Position im Seg- ment

14.7.4 Register 7999: Diagnose-Parameterregister 2

Das Diagnose-Parameterregister 2 für den Lokalbus beinhaltet zusätzliche Informationen zu den Fehlercodes.

15 Sonderregister

15.1 Register 1280: Time-out Modbus-Verbindung

Damit der Buskoppler einen Fehler im Netzwerk (z. B. defektes Kabel) oder im Client (Absturz des Betriebssystems oder Fehler im TCP/IP-Protokollstack) erkennen und entsprechend reagieren kann, können Sie für jede Modbus/TCP-Verbindung einen Monitor-Mechanismus aktivieren.

Der Monitor-Mechanismus wird mit dem ersten Lesen oder Schreiben über die jeweilige TCP-Verbindung aktiviert.

Um den Time-out-Wert für die jeweilige TCP-Verbindung zu verändern, schreiben Sie den neuen Time-out-Wert in die Time-out-Tabelle an die spezielle Adresse 1280. Nutzen Sie dazu die Funktionen "fc 6" oder "fc 16". Der Wert dieses Eintrags ist der Wert der Time-out-Tabelle. Die Zeitangabe ist in Millisekunden in einem Bereich von 200 ms bis 65000 ms.

Ein Time-out-Wert von 0 deaktiviert die Monitor-Funktion. Werte zwischen 1 ms und 199 ms sowie Werte größer 65000 ms erzeugen die Ausnahmeantwort 3 (ILLEGAL DATA VALUE).

Die Verbindungsüberwachung wird erst mit den neuen Time-out-Werten aktiviert, nachdem eine Modbus/TCP-Funktion auf der jeweiligen TCP-Verbindung ausgeführt wurde.

Nach dem ersten Zugriff durch eine Modbus/TCP-Funktion müssen alle anderen Zugriffe mit dem eingetragenen Time-out-Wert ausgeführt werden. Anderenfalls wird der Fault response mode aktiviert und die entsprechende Modbus/TCP-Verbindung wird geschlossen.

15.2 Register 1400 ... 1463: Lokalbuskonfiguration

Der Buskoppler stellt die Lokalbuskonfiguration in diesen Registern bereit.

Register	Inhalt		
1400	Anzahl der Lokalbus-Teilnehmer		
1401 1463	Längen-/ID-Code des Teilnehmers		
	Byte 0 Längen-Code		
	Byte 1 ID-Code		

Der ID-Code ist als "Module-ID" auf jeder Inline-Klemme als Dezimalwert aufgedruckt und beschreibt die Funktion der Klemme.

Der Längen-Code gibt einen Code für die Prozessdatenbreite an. Damit die Prozessdaten passend in den Modbus/TCP-Registern liegen, runden Sie die ermittelte Datenlänge auf 16 Bit auf.

Beispiel:

Inline-Klemme	R-IB IL 24 DI 8-PAC
Längen-Code	81 _{hex}
ID-Code	BE _{hex} (190 _{dez})
Datenlänge	Byte
Anzahl	1
Aufrunden auf 16-Bit-Regis-	1 Wort in der Modbus/TCP-
ter:	Prozessdatentabelle

15.2.1 Register 2000: Time-out des Prozessdaten-Watchdogs

Mit diesem Register können Sie den Time-out-Wert für den Prozessdaten-Watchdog einstellen oder lesen. Die Zeitangabe ist in Millisekunden in einem Bereich von 200 ms bis 65000 ms. Ein Time-out-Wert von 0 deaktiviert den Watchdog.

15.2.2 Register 2002: Fault response mode

Mit diesem Register können Sie den Fault response mode einstellen oder lesen. Angaben zum Einstellen finden Sie im Kapitel "Einstellen des gewünschten Fault response mode".

15.2.3 Register 2004: Net fail reason

Über dieses Register können Sie nach dem Setzen des Net-fail-Signals die Ursache auslesen. Wenn kein Net-fail-Signal vorliegt, ist das Register 0.

15.2.4 Register 2006: Kommandoregister

Über das Netzwerk-Interface-Kommandoregister können Sie über den Ethernet-Host-Controller Kommandos mit Basisfunktionen an den Buskoppler senden. Ein Ethernet-Host-Controller kann z. B. eine SPS sein.

Kommandowort

Bit	15 3	2	1	0
Belegung	Reserviert	CPF	CNF	PP

Bedeutung

CPF	Clear peripheral fail error	Peripheriefehler löschen	
CNF	Clear net fail	Net fail löschen	
PP	Plug and Play mode	0	Plug-and-Play- Modus ausschal- ten
		1	Plug-and-Play- Modus einschalten

15.2.5 Register 2008: Delayed start data transfer

Ab Ausgabestand GB1

Über dieses Register können Sie die verzögerte Datenübertragung auf dem Lokalbus aktivieren oder deaktivieren.

Optionen:

- 0 Verzögerter Anlauf deaktiviert (Default)
- 1 Verzögerter Anlauf aktiviert

Eine Änderung der Einstellung wird erst nach einem Neustart des Buskopplers übernommen.

Siehe auch Kapitel "Anlaufverhalten des Buskopplers".

15.2.6 Register 2010: On-Board-Ein- und -Ausgänge

Ab Ausgabestand GB1

Über dieses Register können Sie die On-Board-Einund -Ausgänge aktivieren oder deaktivieren.

Optionen:

- On-Board-Ein- und -Ausgänge deaktivieren
- 1 On-Board-Ein- und -Ausgänge aktivieren (Default)

15.2.7 Elektronisches Typenschild (2075 ... 2089)

Das elektronische Typenschild enthält die grundlegenden Informationen zum Modul.

Auf die Register können Sie nur lesend zugreifen.

Diese Register sind wie ein Objektindex zu sehen und können länger als 2 Byte sein. Greifen Sie deshalb nur nacheinander auf die Register zu.

Modbus-Register	Funktion	Maximale Länge des Registers
2075	Gerätename	125
2076	Beschreibung	125
2077	Einbauort	125
2078	Kontakt	125
2079	Bootloader-Ver- sion	4
2080	Firmware-Version	6
2081	Firmware-Status	4
2082	Hardware-Version	2
2083	Firmware-Datum	4
2084	Hardware-Datum	4
2085	Seriennummer	10
2086	MAC-Adresse	9
2087	Artikelnummer	10
2088	Artikelname	15
2089	Herstellername	10

15.3 Modbus/TCP-PCP-Register

Die PCP-Register teilen sich in zwei Klassen auf:

- Kommunikationsregister zum Datenaustausch mit dem gewünschten PCP-Teilnehmer
- Konfigurationsregister zum Auswählen von Invoke ID, Index und Subindex des PCP-Teilnehmers

Der Buskoppler unterstützt 16 PCP-Teilnehmer. Es werden 16 Kommunikationsregister und 24 Konfigurationsregister unterstützt.

Beispiel: Um das Object 5FE0_{hex} eines R-IB IL RS 232-PAC mit der Kommunikationsreferenz 4 zu lesen, setzen Sie zuerst die Konfigurationsregister (6041 - 6043) mit dem fc16-Kommando auf die gewünschten Werte (z. B. 6041 Index: 5FE0_{hex}, 6042 Subindex: 0_{hex}, 6043 Invoke ID: 0_{hex}). Mit dem fc3-Kommando können Sie dann 29 Worte über das Kommunikationsregister 6040 lesen.

Mit einer Modbus-Funktion kann immer nur auf einen PCP-Index lesend oder schreibend zugegriffen werden. Es kann z. B. nicht das fc3-Kommando genutzt werden, um 20 Worte aus den Registern 6020 bis 6039 zu lesen.

Das Kommunikationsregister enthält einen unterschiedlichen Wertebereich, verursacht durch die ausgewählten Werte des Registers und der verwendeten Klemme.

So hat z. B. die Klemme R-IB IL RS 232-PAC drei unterschiedliche PCP-Objekte. Zwei Objekte sind ein Wort lang, das dritte 29 Worte. Die drei Konfigurationsregister können Sie mit einem einzelnen Modbus-Kommando lesen oder schreiben.

Der Zugriff auf ein reserviertes Register erzeugt eine Ausnahmeantwort.

Kommuni- kations- referenz	Kommuni- kations- register	Konfigurati- onsregister	Anmerkung
CR 2	6020		
		6021	Index
		6022	Subindex
		6023	Invoke ID
		6024 6029	Reserviert
CR 3	6030		
		6031	Index
		6032	Subindex
		6033	Invoke ID
		6034 6049	Reserviert
CR 4	6040		
		6041	Index
		6042	Subindex
		6043	Invoke ID
		6044 6049	Reserviert
CR 16	6160		
		6161	Index
		6162	Subindex
		6163	Invoke ID
		6164 6169	Reserviert
CR 17	6170		
		6171	Index
		6172	Subindex
		6173	Invoke ID
		6174 6179	Reserviert

15.4 Übertragung einer ungeraden Anzahl von Datenbytes über PCP (ab Firmware-Version 1.30)

Mit Modbus-Funktionen können Sie Datenworte mit PCP-Teilnehmern austauschen.

Bei Buskopplern mit einer Firmware-Version <1.30 konnte auf Kommunikationsobjekte mit ungerader Länge nicht zugegriffen werden.

Die Firmware 1.30 umfasst die Option "Ignore last byte". Diese Option ermöglicht es Ihnen, Kommunikationsobjekte mit ungerader Länge zu übertragen.

Wenn Sie eine ungerade Anzahl von PCP-Bytes übertragen wollen, setzen Sie Bit 0 im High-Byte des PCP-Konfigurationsregisters "Invoke-ID". Dadurch wird das Low-Byte des zuletzt geschriebenen oder zuletzt zu lesenden Modbus-Datenworts von der PCP-Übertragung ausgenommen.

Die PCP-Invoke-ID ist ein 8-Bit-Datum, daher kann das High-Byte dieses Modbus-Registers für diese Funktion genutzt werden.

Die Änderung ist abwärtskompatibel, da ältere Firmware-Versionen das Bit nicht auswerten.

Beispiel 1: Schreiben von 15 Datenbytes in das Objekt 5FE0_{hex} des PCP-Teilnehmers mit Kommunikationsreferenz 2 (CR 2)

Initialisieren Sie die Konfigurationsregister der CR 2:

Modbus-Adresse	Registername	Wert (hex)
6021	Index der CR 2	5FE0
6022	Subindex der CR 2	0
6023	Invoke-ID der CR 2	100

Anschließend werden acht Datenworte in das Kommunikationsregister der CR 2 (Modbus-Adresse 6020) geschrieben.

In diesem Beispiel wird das Low-Byte des letzten Datenworts, das auf die Modbus-Adresse 6020 geschriebenen wurde, nicht zum PCP-Teilnehmer mit der CR 2 übertragen.

Beispiel 2: Lesen von 11 Datenbytes aus dem Objekt 5FE0_{hex} des PCP-Teilnehmers mit Kommunikationsreferenz 4 (CR 4)

Initialisieren Sie die Konfigurationsregister der CR 4:

Modbus-Adresse	Registername	Wert (hex)
6041	Index der CR 4	5FE0
6042	Subindex der CR 4	0
6043	Invoke-ID der CR 4	100

Anschließend werden sechs Datenworte aus dem Kommunikationsregister der CR 4 (Modbus-Adresse 6040) gelesen.

In diesem Beispiel wird das letzte Datenbyte, das vom PCP-Teilnehmer gelesene wurde, im High-Byte des letzten Modbus-Datenworts übertragen.

16 DDI: Device Driver Interface

Der Buskoppler unterstützt den Zugriff über das Device Driver Interface (DDI).

In neuen Applikationen empfehlen wir den Einsatz des aktuellen HFI.

Für die Nutzung dieses Interface muss auf dem Host der entsprechende Treiber installiert sein.

Folgende Dienste werden unterstützt:

16.1 Dienste für den Remote-Zugriff auf das

- DDI DevOpenNode ()
- DDI_DevCloseNode()
- DDI DTI ReadData()
- DDI_DTI_WriteData()
- DDI_DTI_ReadWriteData()
- DDI_MXI_SndMessage()
- DDI_MXI_RcvMessage ()
- GetIBSDiagnostic ()

16.2 Verbindungs- und Fehlerüberwachung

- ETH SetDTITimeoutCtrl ()
- ETH ClearDTITimeoutCtrl ()
- ETH_SetNet Fail ()
- ETH_GetNet FailStatus ()
- ETH ClrNet FailStatus ()
- ETH_SetNet FailMode ()
- ETH_GetNet FailMode ()

16.3 Dienste für die Prozessdatenüberwachung

- ETH_ActivatePDinMonitoring ()
- ETH_DeactivatePDinMonitoring ()

16.4 Dienste der Firmware

Nicht jeder Firmware-Dienst ist in beiden Betriebsarten (Expertenmodus aktivieren oder deaktivieren) sinnvoll zu verwenden. Deshalb finden Sie in der folgenden Tabelle eine Zuordnung der Dienste zu den Betriebsarten. Wenn Sie die Dienste anders als in der Tabelle dargestellt verwenden, kann es zum folgenden Verhalten der Firmware kommen:

- Der Dienst ist in diesem Modus nicht zulässig und wird mit negativer Quittung abgewiesen.
- Der Dienst wird durchgeführt und mit positiver Quittung beendet. Die Wirkung des Dienstes wird durch die Firmware wieder aufgehoben.

16.4.1 Unterstützte Firmware-Dienste, die in jeder Betriebsart nutzbar sind

Code (hex)	Dienst	Funktion	
0309	Read_Configuration	Verschiedene Einträge des Konfigurationsverzeichnisses lesen Used_Attributes: 0002 _{hex} = Teilnehmer-Code	
030B	Complete_Read_Configuration	Alle Teilnehmerdaten einer Konfiguration lesen Used_Attributes: 0002 _{hex} = Teilnehmer-Code	
0315	Read_Device_State	Status von Lokalbus-Teilnehmern lesen Device_State_Mask: 0008 _{hex} = Peripheral Fault	
0316	Get_Error_Info	Ergänzende Fehlerinformationen anfordern	
032A	Get_Version_Info	Versionsinformationen lesen	
032B	Get_Diag_Info	Lokalbus-Counter lesen Diag_Info_Attr: 0004 _{hex} = Global_Count	
0351	Read_Value	Systemparameter lesen	
0714	Control_Device_Function	Steuerbefehle an Lokalbus-Teilnehmer senden Device_Function: 0003 _{hex} = Conf_Dev_Err 0004 _{hex} = Conf_Dev_Err_All	
0750	Set_Value	Systemparametern neue Werte zuweisen	
0760	Confirm_Diagnostics	Diagnoseanzeige und Diagnoseregister aktualisieren	
0956	Reset_Controller_Board	Reset der Anschaltbaugruppe veranlassen	

16.4.2 Unterstützte Firmware-Dienste, die nur im Expertenmodus zur Verfügung stehen

Code (hex)	Dienst	Funktion	
0306	Initiate_Load_Configuration	Konfigurationsrahmen anlegen (Extension nicht unterstützt)	
0307	Load_Configuration	Teilnehmerdaten einer Konfiguration übertragen Used_Attributes: 0002 _{hex} = Teilnehmer-Code	
030A	Complete_Load_Configuration	Alle Teilnehmerdaten einer Konfiguration übertragen Used_Attributes: 0002 _{hex} = Teilnehmer-Code	
0308	Terminate_Load_Configuration	Übertragung von Konfigurationsdaten abschließen (nur bei automatischer Parametrierung)	
030C	Delete_Configuration	Konfiguration löschen	
030E	Control_Parameterization	Parametrierungsphase starten oder beenden	
0701	Start_Data_Transfer	Datenübertragung starten	
0710	Create_Configuration	Angeschlossene Konfiguration einlesen	
0711	Activate_Configuration	Gespeicherte und angeschlossene Konfiguration vergleichen	
1303	Alarm_Stop	Lokalbus zurücksetzen (Reset)	

Systemparameter für die Dienste Set_Value (0750_{hex}) und Read_Value (0351_{hex}) 16.4.3

Variable_ID (hex)	Systemparameter	Länge	Wert/Anmerkung	
0104	Diagnose-Statusregister	16-Bit-Wort	Nur lesen	
0105	Diagnose-Parameterregister 1	16-Bit-Wort	Nur lesen	
010D	Diagnose-Parameterregister 2	16-Bit-Wort	Nur lesen	
2216	Aktuelle PD-Zykluszeit	32-Bit-Wort	Nur lesen	
2240	Plug-and-Play-Modus	32-Bit-Wort	0	Plug-and-Play-Modus aktivieren
			1	Plug-and-Play-Modus deaktivieren
2273	On-Board-Ein- und -Ausgänge	32-Bit-Wort	0	On-Board-Ein- und -Ausgänge deaktivie-
	(ab Ausgabestand GB1)			ren
2275	Expertenmodus	32-Bit-Wort	0	Expertenmodus aktivieren
			1	Expertenmodus deaktivieren
2277	Fault response mode	32-Bit-Wort	siehe "Einstellen des gewünschten Fault response	
			mode'	II
2278	Delay start data transfer	32-Bit-Wort	0	Verzögerten Anlauf deaktivieren (Default)
	(ab Ausgabestand GB1)		1	Verzögerten Anlauf aktivieren
2293	Time-out des Prozessdaten- Watchdogs	32-Bit-Wort	siehe	"Prozessdaten-Watchdog"

16.5 PCP-Kommunikation

16.5.1 Übertragung von Parameterdaten

Einfache Geräte tauschen Prozessdaten aus. Es gibt jedoch auch intelligente Geräte, wie z. B. Frequenzumrichter oder Regler. Diese tauschen neben den Prozessdaten auch größere Datenmengen mit dem Steuerungssystem austauschen. Dazu gehören z. B. Daten, die in der Anlaufphase von Maschinen verwendet werden. Solche Parameterdaten ändern sich nur selten und werden nur bei Bedarf übertragen.

Das INTERBUS-Protokoll ist in der Lage, zeitgleich Prozessdaten und komplexe Datensätze (Parameterdaten) zu übertragen. Dazu werden die umfangreichen Parameterdaten in kleinere Einheiten geteilt, übertragen und wieder zusammengesetzt.

Das Zerlegen der Parameterdaten in einzelne Segmente und das Zusammensetzen nach der Übertragung übernimmt beim INTERBUS das "Peripherals Communication Protocol - PCP". PCP bezeichnet die Protokoll-Software. Sie stellt u. a. die erforderlichen Dienste für den Verbindungsauf- und -abbau zur Verfügung.

Beachten Sie, dass an den Buskoppler maximal 16 PCP-Klemmen angeschlossen werden können.

16.5.2 Unterstützte PCP-Kommandos

Über das MXI-Interface des DDI können Sie folgende PCP-Kommandos absetzen.

Dienst	Code (hex)
Initiate_Request	008B
Abort_Request	088D
Read_Request	0081
Write_Request	0082
Information_Report_Request	0885
Status_Request	0083
Identify_Request	0087
Load_Kbl_Par_Loc_Request	0264
Read_Kbl_Loc_Request	0203

16.5.3 Konfiguration der PCP PDU Size

Die Standard-PDU-Größe für die Kommunikation zu allen Inline-Teilnehmern beträgt 64 Byte in der Sendeund der Empfangsrichtung.

Systemkoppler besitzen konfigurierbare PDU-Größen. Wird hier eine andere Größe konfiguriert und soll über den Buskoppler mit dieser kommuniziert werden, muss der Buskoppler ebenfalls auf die neuen Werte konfiguriert werden.

Sie können die Größe über das Web-based Management konfigurieren.

17 HFI: High Level Language Fieldbus Interface

Der Buskoppler unterstützt den Zugriff über das High Level Language Fieldbus Interface (HFI).

Ab Ausgabestand GB1 und größer ist nur mit der HIFI-Version nutzgar.

18 WBM: Web-based Management

Das Gerät verfügt über einen Webserver, der die für das Web-based Management erforderlichen Seiten generiert und nach Anforderung des Benutzers an einen Standard-Webbrowser versendet.

Über das Web-based Management können Sie statische oder dynamische Informationen abrufen. Statische Informationen sind z. B. technische Daten oder die MAC-Adresse. Dynamische Informationen sind z. B. IP-Adresse, Statusinformationen, Lokalbusaufbau und -diagnose.

Zusätzlich können Sie die Konfiguration ändern. Diese Funktion ist über ein Passwort geschützt.

Das Passwort lautet im Auslieferungszustand "private".

Bosch Rexroth empfiehlt, bei der Inbetriebnahme ein eigenes Passwort zu vergeben.

Aufrufen des Web-based Managements

Den Webserver des Geräts können Sie bei entsprechender Konfiguration über die IP-Adresse ansprechen. Die Eingabe der URL "http://ip-adresse" liefert die Startseite (Webseite) des Geräts.

Beispiel: http://172.16.113.38

Sollte das Aufrufen der WBM-Seiten nicht möglich sein, prüfen Sie die Verbindungseinstellung in Ihrem Browser und deaktivieren Sie gegebenenfalls den eingestellten Proxy.

19 Update der Firmware

Um die Firmware des Buskopplers zu aktualisieren, stellen Sie dem Buskoppler einen Firmware-Container über einen TFTP-Server zur Verfügung oder laden Sie ihn über FTP auf den Buskoppler. Dazu können Sie jeden beliebigen FTP-Client oder TFTP-Server nutzen, z. B. den Factory Manager.

Stoßen Sie das Firmware-Update über das Webbased Management an. Bei der Durchführung des Firmware-Updates blinkt die LED RDY gelb.

20 Prozessdatenzugriff über XML

Der integrierte Webserver bietet die Möglichkeit, auf die Prozessdaten der angeschlossenen Inline-Klemmen über eine Webseite im XML-Format zuzugreifen.

Über einen Standard-Webbrowser erhalten Sie Zugriff auf die Webseiten. Tragen Sie zum Aufruf der XML-Seiten mit den Prozessdaten in der Adresszeile des Browsers die Adresse im folgenden Format ein: http:// <IP-Adresse>/procdata.xml

20.1 Struktur der XML-Dateien

Die XML-Datei enthält verschiedene Datenbereiche:

IL STATION

Rahmen für die gesamte XML-Datei. Die Pflichtelemente dieses Rahmens sind IL_BUS_TERMINAL und IL_BUS.

IL_BUS_TERMINAL

Dieser Datenbereich enthält Informationen über die gesamte Inline-Station (Buskoppler und alle angeschlossenen Klemmen).

Zu diesem Bereich gehören:

- TERMINAL TYPE
- NAME
- IP_ADDRESS
- MODULE NUMBER
- DIAGNOSTIC_STATUS_REGISTER
- DIAGNOSTIC_PARAMETER_REGISTER

TERMINAL_TYPE

Dieser Bereich enthält die Bezeichnung des Buskopplers, also immer R-IL ETH BK DI8 DO4.

NAME

Enthält den anwenderspezifischen Stationsnamen. Den Stationsnamen können Sie über das WBM ändern.

IP ADDRESS

Enthält die IP-Adresse der Station.

MODULE_NUMBER

Enthält die Anzahl der angeschlossenen Inline-Klemmen inklusive der lokalen I/Os. Im Fall eines Busfehlers wird die Anzahl der letzten bekannten betreibbaren Konfiguration angegeben.

DIAGNOSTIC_STATUS_REGISTER

Enthält den Lokalbusstatus, abgebildet durch alle Bits des Diagnose-Statusregisters. Eine detailliertere Beschreibung befindet sich im Diagnose-Parameterregister.

Immer wenn ein Fehlerbit gesetzt wird, wird das Diagnose-Parameterregister neu geschrieben.

IL BUS

Rahmen für die angeschlossenen Inline-Klemmen.

IL MODULE

Rahmen für die Daten einer einzelnen Inline-Klemme. Die Klemmen sind von eins bis maximal 63 durchnummeriert.

MODULE TYPE

Enthält den Klemmentyp. Mögliche Typen sind DI, DO, DIO, AI, AO, AIO und PCP.

PD_CHANNELS

Anzahl der Prozessdatenkanäle einer Inline-Klemme. Bei digitalen Klemmen ist die Anzahl der Kanäle gleich der Anzahl der unterstützten Bits. Bei anderen Klemmen wird die Anzahl der Prozessdatenworte angezeigt.

Beispiel: Ein R-IB IL AO 2-PAC hat zwei Prozessdatenkanäle und ein R-IB IL 24 DO 8-PAC hat acht Bits und acht Prozessdatenkanäle.

PD_WORDS

Anzahl der Prozessdatenworte einer Inline-Klemme. Beachten Sie, dass analoge Klemmen immer die gleiche Anzahl an Ausgangs- und Eingangsworten haben.

Ein IB IL AO 2-PAC hat also auch zwei Eingangskanäle und ein IB IL AI 2-PAC hat auch zwei Ausgangskanäle.

PD IN

Dieser Bereich wird von allen Klemmen genutzt, die Eingangsdaten belegen. Die Anzahl der Prozessdatenworte ist vom Klemmentyp abhängig.

PD_OUT

Dieser Bereich wird von allen Klemmen mit Ausgangsdaten benutzt. Die Verwendung der Bits ist mit der von PD IN identisch.

Falls ein Fehler in der Inline-Station vorliegt, wird dies in den Diagnoseregistern angezeigt. Am Buskoppler blinkt die LED D.

Die Prozessdaten sind damit ungültig, weil nur interne Werte, aber nicht die Werte auf dem Lokalbus angezeigt werden.

Damit sicher gestellt ist, dass gültige Daten gezeigt werden, muss immer auch das Diagnoseregister abgefragt werden.

Gleiches gilt, wenn eine fehlerhafte Konfiguration vorliegt. In dem Fall läuft der Lokalbus nicht und nur interne Werte können in der XML-Datei gelesen werden.

Falls ein Peripheriefehler vorliegt, sind alle Daten gültig, bis auf die Daten der fehlerhaften Klemme.

Beispiele

a) Inline-Klemme mit zwei aktiven Eingängen.

<IL_MODULE number="1">

<MODULE TYPE>DI</MODULE TYPE>

<PD_CHANNELS>2</PD_CHANNELS>

<PD_WORDS>1</PD_WORDS>

<PD_IN word="1">3</PD_IN>

</IL MODULE>

b) Inline-Klemme mit zwei digitalen Eingängen und nur der zweite Eingang ist aktiv.

<IL MODULE number="3">

<MODULE TYPE>DI</MODULE TYPE>

<PD CHANNELS>2</PD CHANNELS>

<PD WORDS>1</PD WORDS>

<PD_IN word="1">2</PD_IN>

</IL_MODULE>

c) Inline-Klemme mit 16 digitalen Eingängen und die Eingänge 13 und 14 sind aktiv.

<IL_MODULE number="7">

<MODULE TYPE>DI</MODULE TYPE>

<PD_CHANNELS>16</PD_CHANNELS>

<PD_WORDS>1</PD_WORDS>

<PD_IN word="1">12288</PD_IN>

</IL MODULE>

Das Eingangswort liefert den Wert 12288 (2¹² + 2¹³) zurück.

- d) Inline-Klemme mit zwei analogen Eingängen, von denen nur der erste Kanal (14970) aktiv ist.
- <IL MODULE number="10">
- <MODULE_TYPE>AI</MODULE_TYPE>
- <PD_CHANNELS>2</PD_CHANNELS>
- <PD_WORDS>2</PD_WORDS>
- <PD_IN word="1">14970</PD_IN>
- <PD_IN word="2">8</PD_IN>
- <PD_OUT word="1">0</PD_OUT>
- <PD_OUT word="2">0</PD_OUT>
- </IL MODULE>

21 SNMP - Simple Network Management Protokoll

Der Buskoppler unterstützt SNMP v1 und v2c.

Management Information Base (MIB)

Die jeweils aktuellen MIBs finden Sie im Internet unter der Adresse www.boschrexroth.com/electrics.

Die Objektbeschreibungen entnehmen Sie den ASN1-Beschreibungen dieses Produkts.

Das Passwort für die Leseberechtigung ist "public". Sie können dieses Passwort nicht ändern. Das Passwort für die Schreib- und Leseberechtigung ist im Auslieferungszustand "private". Dieses Passwort können Sie zu jeder Zeit ändern.

DOK-CONTRL-ILETHBKDIO*-DA03-DE-P Bosch Rexroth AG Electric Drives and Controls Postfach 13 57 97803 Lohr, Deutschland

Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Deutschland Tel. +49 9352 18 0 Fax. +49 9352 18 8400

www.boschrexroth.com/electrics

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form ohne vorherige schriftliche Zustimmung von Bosch Rexroth AG, Electric Drives and Controls reproduziert oder unter Verwendung elektronischer Systeme gespeichert, verarbeitet, vervielfältigt oder verbreitet werden. Zuwiderhandlungen verpflichten zu Schadenersatz.

Die angegebenen Daten dienen allein der Produkbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.