Premium und Atrium mit EcoStruxure™ Control Expert

Prozessoren, Racks und Stromversorgungsgeräte Installationshandbuch

(Übersetzung des englischen Originaldokuments)

12/2018

Die Informationen in der vorliegenden Dokumentation enthalten allgemeine Beschreibungen und/oder technische Leistungsmerkmale der hier erwähnten Produkte. Diese Dokumentation dient keinesfalls als Ersatz für die Ermittlung der Eignung oder Verlässlichkeit dieser Produkte für bestimmte Verwendungsbereiche des Benutzers und darf nicht zu diesem Zweck verwendet werden. Jeder Benutzer oder Integrator ist verpflichtet, angemessene und vollständige Risikoanalysen, Bewertungen und Tests der Produkte im Hinblick auf deren jeweils spezifischen Verwendungszweck vorzunehmen. Weder Schneider Electric noch deren Tochtergesellschaften oder verbundene Unternehmen sind für einen Missbrauch der Informationen in der vorliegenden Dokumentation verantwortlich oder können diesbezüglich haftbar gemacht werden. Verbesserungs- und Änderungsvorschlage sowie Hinweise auf angetroffene Fehler werden jederzeit gern entgegengenommen.

Sie erklären, dass Sie ohne schriftliche Genehmigung von Schneider Electric dieses Dokument weder ganz noch teilweise auf beliebigen Medien reproduzieren werden, ausgenommen zur Verwendung für persönliche nichtkommerzielle Zwecke. Darüber hinaus erklären Sie, dass Sie keine Hypertext-Links zu diesem Dokument oder seinem Inhalt einrichten werden. Schneider Electric gewährt keine Berechtigung oder Lizenz für die persönliche und nichtkommerzielle Verwendung dieses Dokument oder seines Inhalts, ausgenommen die nichtexklusive Lizenz zur Nutzung als Referenz. Das Handbuch wird hierfür "wie besehen" bereitgestellt, die Nutzung erfolgt auf eigene Gefahr. Alle weiteren Rechte sind vorbehalten.

Bei der Montage und Verwendung dieses Produkts sind alle zutreffenden staatlichen, landesspezifischen, regionalen und lokalen Sicherheitsbestimmungen zu beachten. Aus Sicherheitsgründen und um die Übereinstimmung mit dokumentierten Systemdaten besser zu gewährleisten, sollten Reparaturen an Komponenten nur vom Hersteller vorgenommen werden.

Beim Einsatz von Geräten für Anwendungen mit technischen Sicherheitsanforderungen sind die relevanten Anweisungen zu beachten.

Die Verwendung anderer Software als der Schneider Electric-eigenen bzw. einer von Schneider Electric genehmigten Software in Verbindung mit den Hardwareprodukten von Schneider Electric kann Körperverletzung, Schäden oder einen fehlerhaften Betrieb zur Folge haben.

Die Nichtbeachtung dieser Informationen kann Verletzungen oder Materialschäden zur Folge haben!

© 2018 Schneider Electric. Alle Rechte vorbehalten.

Inhaltsverzeichnis

Teil I Kapitel 1	Sicherheitshinweise	13 15 17
	Steuerungsstationen	19 20
	Atrium-Steuerungsstation	22
Kapitel 2	Allgemeine Darstellung der Komponenten einer	
	Steuerungsstation	23
	Allgemeiner Überblick über die Premium-Prozessoren	24
	Allgemeiner Überblick über die Atrium-Prozessoren	26
	Allgemeiner Überblick über Racks	28
	Allgemeine Übersicht zu den Stromversorgungsmodulen TSX PSY .	29
	Allgemeiner Überblick über Prozess- und AS-i-Versorgungen	30
	Allgemeine Übersicht über das Rack-Erweiterungsmodul	32
	Allgemeiner Überblick über Eingangs-/Ausgangsmodule	33
	Allgemeine Übersicht zu den Stromversorgungsmodulen TSX CTY/CCY	35
	Überblick über Achsensteuerungsmodule	36
	Allgemeiner Überblick über Einzelschrittsteuerungsmodule	37
	Allgemeiner Überblick über die Kommunikation	38
	Allgemeiner Überblick über das Bus-Schnittstellenmodul AS-i: TSX	42
	SAY 100	42
	Allgemeiner Überblick über das Not-Aus-Überwachungsmodul	43 44
	Allgemeine Übersicht zum Belüftermodul TSX FAN	44
Kapitel 3	Allgemeiner Überblick über die verschiedenen Konfigura-	40
Napitoro	tionen einer Steuerungsstation	47
	Die verschiedenen Typen der Premium-Steuerungsstationen	48
	Die verschiedenen Steuerungsstationstypen mit Atrium-Prozessor	52
Kapitel 4	Allgemeiner Überblick über Steuerungsnetze	55
rapitoi i	Allgemeiner Überblick über den Modbus-Bus	56
	Allgemeiner Überblick über ein Modbus Plus-Netzwerk	57
	Allgemeiner Überblick über das Fipway-Netzwerk	58
	Allgemeiner Überblick über das Ethernet-Netzwerk	59

	Allgemeiner Überblick über die Kommunikation über Modem	60
	Allgemeiner Überblick über den Uni-Telway-Bus	61
	Allgemeiner Überblick über den Fipio-Feldbus	62
	Allgemeiner Überblick über den CANopen-Feldbus	63
	Überblick über den AS-i Bus	65
	Allgemeiner Überblick über den Profibus DP-Feldbus	66
	Allgemeiner Überblick über den Feldbus INTERBUS	67
	Beschreibung des Jnet-Netzwerks	69
Kapitel 5	Betriebsnormen und -bedingungen	71
•	Normen und Bescheinigungen	72
	Betriebsbedingungen und Umgebungsvorschriften	73
	Schutzbehandlung für Premium-Steuerungen	79
Teil II	Premium-Prozessoren TSX P57/TSX H57	81
Kapitel 6	Prozessoren TSX P57/TSX H57: Überblick	83
•	Allgemeine Informationen	84
	Physische Beschreibung der Prozessoren TSX P57/TSX H57	86
	Echtzeituhr	89
	Katalog der TSX 57-Prozessoren	92
	Datengröße an Premium- und Atrium-Steuerungen	96
Kapitel 7	Prozessoren TSX P57/TSX H57: Installation	99
	Positionierung eines Prozessormoduls	100
	Prozessormodule montieren	102
	Installation der Module neben den Prozessoren TSX P57	404
	0244/104/154	104
	Speicherkarten des Typs Applikation/Dateien und des Typs	105
	Speicherung von Dateien	108
	Vorgehensweise zum Einsetzen/Entfernen einer PCMCIA-Speicherer-	
	weiterungskarte an einer Premium-SPS	112
	Einbau/Ausbau der PCMCIA-Speichererweiterungskarten im TSX	114
Kanital 0	P57/TSX H57-Prozessor	119
Kapitel 8	Prozessoren TSX P57/TSX H57: Diagnose	120
	Beim Austauschen eines Prozessors des Typs TSX P57/TSX H57 zu	120
	beachtende Vorsichtsmaßnahmen	122
	Auswechseln der Backup-Batterie des RAM-Speichers im TSX	
	P57/TSX H57	123
	Austausch der Batterien einer PCMCIA-Speicherkarte	126
	Batterie-Lebensdauer für PCMCIA-Speicherkarten	130
	Vorgänge nach dem Drücken der RESET-Taste des Prozessors	140

	Fehlersuche anhand der Status-LEDs des Prozessors
	Nicht blockierende Fehler
	Blockierende Fehler
	Prozessor- bzw. Systemfehler
Kapitel 9	Prozessor TSX P57 0244
	Allgemeine technische Daten der Prozessoren vom Typ
	TSX P57 0244
Kapitel 10	Prozessor TSX P57 104
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 104
Kapitel 11	Prozessor TSX P57 154
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 154
Kapitel 12	Prozessor TSX P57 1634
	Allgemeine technische Daten der Prozessoren vom Typ
17 40	TSX P57 1634
Kapitel 13	Prozessor TSX P57 204
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 204
Kapitel 14	Prozessor TSX P57 254
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 254
Kapitel 15	Prozessor TSX P57 2634
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 2634
Kapitel 16	Prozessor TSX P57 304
Kapitei 10	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 304
Kapitel 17	Prozessor TSX P57 354
Kapitei 17	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 354
Kapitel 18	Prozessor TSX P57 3634
Kapitei 10	Allgemeine technische Daten der Prozessoren vom Typ
	TSX P57 3634
Kapitel 19	Prozessor TSX P57 454
•	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 454
Kapitel 20	Prozessor TSX P57 4634
·	Allgemeine technische Daten der Prozessoren vom Typ
	TSX P57 4634
Kapitel 21	Prozessor TSX P57 554
	Allgemeine technische Daten der Prozessoren vom Typ TSX P57 554
Kapitel 22	Prozessor TSX P57 5634
	Allgemeine technische Daten der Prozessoren vom Typ
	TSX P57 5634

Kapitel 23		175
	Allgemeine technische Daten der Prozessoren vom Typ	175
Kapital 24	TSX P57 6634 Prozessoren TSX H57 24M	173
Kapitel 24	Allgemeine technische Daten der Prozessoren vom Typ TSX H57 24M	177
Kapital 25	Prozessoren TSX H57 44M	179
Kapitel 25	Allgemeine technische Daten der Prozessoren vom Typ TSX H57 44M	179
Kapitel 26	Premium-Prozessor TSX P57/TSX H57: Allgemeine	179
Napitei 20	technische Daten	181
	Eigenschaften der Premium-Prozessoren	182
	Elektrische Kenndaten der Prozessoren TSX P57/TSX H57 und der	102
	anschließbaren oder integrierbaren Geräte	183
	Definition und Zählung der anwendungsspezifischen Kanäle	186
Kapitel 27	Prozessorleistung	187
•	MAST-Task-Zykluszeit: Einführung	188
	MAST-Task-Zykluszeit: Programmverarbeitung (Ttp)	189
	Zykluszeit der MAST-Task: Interne Ein-/Ausgangsverarbeitung	190
	Berechnungsbeispiel für die Zykluszeiten eines MAST-Tasks bei	400
	folgenden Bedingungen:	193
	FAST-Task Zykluszeit n.	195
	Antwortzeit bei einem Ereignis.	196
Teil III	Atrium-Prozessoren	197
Kapitel 28	Atrium-Prozessoren: Überblick	199
	Allgemeine Informationen	200
	Physikalische Beschreibung der Atrium-Prozessoren	201
	Kalender	203
	Abmessungen der Atrium-Prozessorkarten	204
	Grundelemente einer Atrium-Karte	206
	Optionale Elemente einer Atrium-Karte	207
I/a=#a 00	Katalog der Atrium-Prozessoren	210
Kapitel 29	Atrium-Prozessoren: Installation	211 212
	Technischer Einbau des Atrium-Prozessors in den PC	212
	Logischer Einbau des Atrium-Prozessors in den X-Bus	213
	•	214
	Vorbereitungen vor der Installation	217
	Konfigurieren der E/A-Basisadresse des Prozessors auf dem A-Bus	218
	Installieren der Atrium-Prozessorkarte in den PC	219
	Einsetzen der 24-V-Stromversorgungskarte	
	Linselzen der 24-v-stromversorgungskarte	222

	Integration des Atrium-Prozessors in einem Leitungsabschnitt des X-
	Busses
	Atrium-Prozessor
	Speicherkarten für die Atrium-Prozessoren.
	Installation/Deinstallation der Kommunikationskarte beim Atrium-
	Prozessor
	Vorgehensweise beim Einstecken/Herausziehen einer PCMCIA-
	Speicherkarte in/aus eine/r Atrium-SPS
	Beim Auswechseln eines Atrium-Prozessors zu beachtende Vorsichtsmaßnahmen
Kapitel 30	Atrium-Prozessoren: Diagnose
rapitor oo	Beschreibung der Anzeige-LEDs der Atrium-Prozessoren
	Auswechseln der Backup-Batterie des RAM-Speichers bei Atrium
	Vorgänge nach dem Drücken der RESET-Taste des Prozessors
	Verhalten des Atrium-Prozessors nach einem Vorgang auf dem PC.
	Fehlersuche ausgehend von den Zustands-LEDs des Prozessors
Kapitel 31	Prozessor TSX PCI 57 204
	Allgemeine technische Daten des Prozessors TSX P57 204
Kapitel 32	Prozessor TSX PCI 57 354
•	Allgemeine technische Daten des Prozessors TSX PCI 57 354
Kapitel 33	Atrium-Prozessoren: Allgemeine technische Daten
•	Eigenschaften der Atrium-Prozessoren
	Elektrische Kenndaten der Atrium-Prozessoren sowie der
	anschließbaren und integrierbaren Geräte
	Definition und Zählung der anwendungsspezifischen Kanäle
	Leistung der Prozessoren
Teil IV	Stromversorgungsmodule TSX PSY
Kapitel 34	Stromversorgungsmodule TSX PSY: Übersicht
	Allgemeine Informationen
	Stromversorgungsmodule: Beschreibung
	Katalog der Stromversorgungsmodule TSX PSY
Kapitel 35	Stromversorgungsmodule TSX PSY: Installation
	Einbau/Montage der Stromversorgungsmodule TSX PSY
	Anschlussanweisungen für die Stromversorgungsmodule TSX PSY . Anschluss der Stromversorgungsmodule für Wechselstromnetze
	Auschiuss der arromversordungsmodule für Wechselstromnetze

	Anschluss der Gleichstromversorgungsmodule von einem potentialfreien Gleichstromnetz mit 24 oder 48 VDC	
	Wechselstromnetz	
	Überwachung der Stromversorgung von Gebern und Vorstellgliedern	
	Definition der Schutzelemente am Leitungsanfang	
Kapitel 36	Stromversorgungsmodule TSX PSY: Diagnose Anzeige an den Stromversorgungsmodulen TSX PSY Backup-Batterie am Versorgungsmodul TSX PSY	
	Unterbrechung der Stromversorgung eines Racks (außer Rack 0)	
	Vorgänge nach dem Drücken der RESET-Taste an einem Stromversorgungsmodul	
Kapitel 37	Stromversorgungsmodule TSX PSY : Hilfsfunktionen . Alarmrelais am Versorgungsmodul TSX PSY	
	Technische Daten des Alarmrelaiskontakts	
Kapitel 38	Versorgungsmodule TSX PSY: Leistung und	
	Verbrauchsbilanz Verbrauchsbilanz zur Auswahl des Stromversorgungsmoduls	
	Verbrauch	
	Verbrauch	
	Verbrauch	
	Verbrauchsbilanz	
	Verbrauch	
	Leistungsbilanz	
Kapitel 39	Stromversorgungsmodul TSX PSY 2600	
Kapitel 40	Stromversorgungsmodul TSX PSY 5500	
Kapitel 41	Stromversorgungsmodul TSX PSY 8500 Technische Daten des Versorgungsmoduls TSX PSY 8500	
Kapitel 42	Stromversorgungsmodul TSX PSY 1610	
. apitoi 12	Technische Daten des Versorgungsmoduls TSX PSY 1610	
Kapitel 43	Stromversorgungsmodul TSX PSY 3610	
•	Technische Daten des Versorgungsmoduls TSX PSY 3610	
Kapitel 44	Stromversorgungsmodul TSX PSY 5520	
	Technische Daten des Versorgungsmoduls TSX PSY 5520	

Teil V Prozessversorgungen	
Kapitel 45 Prozessversorgungen: Überblick	
Allgemeiner Überblick über Prozessver	rsorgungsmodule
Physikalische Beschreibung des Modul	s TBX SUP 10
Physikalische Beschreibung des Modul	s TSX SUP 1011
Physikalische Beschreibung des Modul	s TSX 1021/1051
Beschreibung des Versorgungsmoduls	TSX SUP 1101
Physische Beschreibung der Trägerplat	tine
Katalog mit Prozessversorgungsmodule	
Prozess-Stromversorgungen: Hilfsfunkt	ionen
Kapitel 46 Prozessversorgungen: Installation	on
Platzbedarf/Montage von Prozessverso	
Abmessungen/Montage/Verbindung TB	X SUP 10
Platzbedarf/Montage von Stromversorg	ungen TSX SUP 1101
Zusammenfassung der Befestigungsart	ten
Kapitel 47 Prozessversorgungsmodule: An	schlüsse
Anschluss der Stromversorgungsmodul	le TSX SUP 1101/1021
Anschluss der Stromversorgungsmodul	le TSX SUP 1051
Anschluss der Stromversorgungsmodul	le TSX SUP 1101
Kapitel 48 Eigenschaften von Prozessverse	
Elektrische Kenndaten der Versorgungs	module: TBX SUP 10 und TSX
SUP 1011	
1021/1051/1101	
Physikalische Umgebungsbedingungen	
Teil VI Standard- und Erweiterungsra	
Kapitel 49 Übersicht über die Standardrack	
Racks TSX RKY	
Standard- und Erweiterungsracks TSX	
Standardrack: Beschreibung	
Erweiterbares Rack: Beschreibung	
Kapitel 50 Standard- und Erweiterungsrack	
Einbau/Montage	
Montage der Racks	
Montage und Befestigung der Racks .	
Masseanschluss eines TSX RKY-Rack	

Kapitel 51		38: 38:
	Aufbau einer Steuerungsstation mit Atrium-Prozessor	38
	Adressierung der Racks einer Steuerungsstation	39
		39
		39
	Einbau von Versorgungsmodulen, Prozessoren und anderen Modulen	39
Kapitel 52	Racks TSX RKY: Zubehör	40
•		40
	TSX CBY 1000 X-Bus-Verlängerungskabel	40
	Leitungsabschluss TSX TLYEX	40
	Setzen von Leitungsabschlüssen in einer Station mit einem Premium-	
		40
	Setzen von Leitungsabschlüssen in einer Station mit einem Atrium-	40
		40 40
	-	41
		41:
Vanital 52	·	41:
Kapitel 53		41
		41
		419
		42
	X-Bus-Erweiterungsmodul: Maximalabstände in Abhängigkeit von	42
		42
	······································	42
		42
		43
	Verwalten eines Stromversorgungsmoduls mit einem X-Bus-	
	Erweiterungsmodul	43
Kapitel 54	.	43
		43
		43
	Belüftungsmodul: Katalog	43
	Belüftungsmodul: Abmessungen	43

	Belüftungsmodul: Montage	439
	Einbaubestimmungen für Racks mit Belüftungsmodulen	441
	Belüftungsmodul: Anschlüsse	442
	Belüftungsmodul: Technische Daten	444
Index		445

Sicherheitshinweise

Wichtige Informationen

HINWEISE

Lesen Sie sich diese Anweisungen sorgfältig durch und machen Sie sich vor Installation, Betrieb, Bedienung und Wartung mit dem Gerät vertraut. Die nachstehend aufgeführten Warnhinweise sind in der gesamten Dokumentation sowie auf dem Gerät selbst zu finden und weisen auf potenzielle Risiken und Gefahren oder bestimmte Informationen hin, die eine Vorgehensweise verdeutlichen oder vereinfachen.

Wird dieses Symbol zusätzlich zu einem Sicherheitshinweis des Typs "Gefahr" oder "Warnung" angezeigt, bedeutet das, dass die Gefahr eines elektrischen Schlags besteht und die Nichtbeachtung der Anweisungen unweigerlich Verletzung zur Folge hat.

Dies ist ein allgemeines Warnsymbol. Es macht Sie auf mögliche Verletzungsgefahren aufmerksam. Beachten Sie alle unter diesem Symbol aufgeführten Hinweise, um Verletzungen oder Unfälle mit Todesfälle zu vermeiden.

▲ GEFAHR

GEFAHR macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge hat.**

WARNUNG

WARNUNG macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge haben kann.**

▲ VORSICHT

VORSICHT macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, leichte Verletzungen **zur Folge haben kann.**

HINWEIS

HINWEIS gibt Auskunft über Vorgehensweisen, bei denen keine Verletzungen drohen.

BITTE BEACHTEN

Elektrische Geräte dürfen nur von Fachpersonal installiert, betrieben, bedient und gewartet werden. Schneider Electric haftet nicht für Schäden, die durch die Verwendung dieses Materials entstehen.

Als qualifiziertes Fachpersonal gelten Mitarbeiter, die über Fähigkeiten und Kenntnisse hinsichtlich der Konstruktion und des Betriebs elektrischer Geräte und deren Installation verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

Über dieses Buch

Auf einen Blick

Ziel dieses Dokuments

In diesem Handbuch ist die Installation der Premium- und Atrium-Steuerungen sowie ihrem wichtigsten Zubehör beschrieben:

Das Handbuch ist in 6 Abschnitte untergliedert:

- Überblick über die Premium- und Atrium-Steuerungsstationen
- Premium-Prozessor TSX P57/TSX H57
- Atrium-Prozessor TSX PCI 57
- Versorgungsmodule TSX PSY
- Prozessversorgungsmodule
- Standard- und Erweiterungsracks TSX RKY

Gültigkeitsbereich

Diese Dokumentation ist gültig ab EcoStruxure™ Control Expert 14.0.

Die technischen Merkmale der hier beschriebenen Geräte sind auch online abrufbar. So greifen Sie auf diese Informationen online zu:

Schritt	Aktion
1	Gehen Sie zur Homepage von Schneider Electric <u>www.schneider-electric.com</u> .
2	 Geben Sie im Feld Search die Referenz eines Produkts oder den Namen einer Produktreihe ein. Die Referenz bzw. der Name der Produktreihe darf keine Leerstellen enthalten. Wenn Sie nach Informationen zu verschiedenen vergleichbaren Modulen suchen, können Sie Sternchen (*) verwenden.
3	Wenn Sie eine Referenz eingegeben haben, gehen Sie zu den Suchergebnissen für technische Produktdatenblätter (Product Datasheets) und klicken Sie auf die Referenz, über die Sie mehr erfahren möchten. Wenn Sie den Namen einer Produktreihe eingegeben haben, gehen Sie zu den Suchergebnissen Product Ranges und klicken Sie auf die Reihe, über die Sie mehr erfahren möchten.
4	Wenn mehrere Referenzen in den Suchergebnissen unter Products angezeigt werden, klicken Sie auf die gewünschte Referenz.
5	Je nach der Größe der Anzeige müssen Sie ggf. durch die technischen Daten scrollen, um sie vollständig einzusehen.
6	Um ein Datenblatt als PDF-Datei zu speichern oder zu drucken, klicken Sie auf Download XXX product datasheet.

Die in diesem Dokument vorgestellten Merkmale sollten denen entsprechen, die online angezeigt werden. Im Rahmen unserer Bemühungen um eine ständige Verbesserung werden Inhalte im Laufe der Zeit möglicherweise überarbeitet, um deren Verständlichkeit und Genauigkeit zu verbessern. Sollten Sie einen Unterschied zwischen den Informationen im Dokument und denen online feststellen, nutzen Sie die Online-Informationen als Referenz.

Produktbezogene Informationen

UNBEABSICHTIGTER GERÄTEBETRIEB

Die Anwendung dieses Produkts erfordert Fachkenntnisse bezüglich der Entwicklung und Programmierung von Steuerungssystemen. Nur Personen mit solchen Fachkenntnissen sollten dieses Produkt programmieren, installieren, ändern und anwenden.

Befolgen Sie alle lokalen und nationalen Sicherheitsnormen und -vorschriften.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Teil I

Steuerungsstationen Premium und Atrium

Inhalt dieses Abschnitts

In diesem Teil werden Ihnen in allgemeiner Weise die Steuerungsstationen Premium TSX P57/TSX H57 und Atrium TSX PCI 57, ihre verschiedenen Untersysteme und die verschiedenen verwendeten Netze und Feldbusse vorgestellt.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
1	Überblick über die Premium- und Atrium-Steuerungsstationen	19
2	Allgemeine Darstellung der Komponenten einer Steuerungsstation	23
3	Allgemeiner Überblick über die verschiedenen Konfigurationen einer Steuerungsstation	47
4	Allgemeiner Überblick über Steuerungsnetze	55
5	Betriebsnormen und -bedingungen	71

Kapitel 1

Überblick über die Premium- und Atrium-Steuerungsstationen

Gegenstand dieses Kapitels

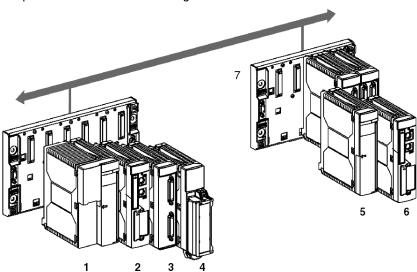
Dieses Kapitel enthält einen allgemeinen Überblick über die Steuerungsstationen TSX P57/TSX H57 und TSX PCI 57.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Premium-Steuerungsstation	20
Atrium-Steuerungsstation	22

Premium-Steuerungsstation


Allgemeines

Die Prozessoren der Premium TSX P57-Plattformen steuern die gesamte Steuerungsstation, die sich aus den digitalen und analogen Ein- und Ausgangsmodulen sowie den anwendungsspezifischen Modulen zusammensetzt. Diese können auf ein oder mehrere am X-Bus oder Feldbus angeschlossene Racks verteilt sein.

Premium-Steuerungen des Typs TSX H57 sind für Hot Standby-Anwendungen vorgesehen. Ein Premium Hot Standby-System besteht aus zwei identischen Steuerungsstationen, die über ein oder mehrere Racks verteilt sein können. Eine der zwei Steuerungen (SPS) fungiert als primäre Steuerung, die andere als Standby-Steuerung.

Abbildung

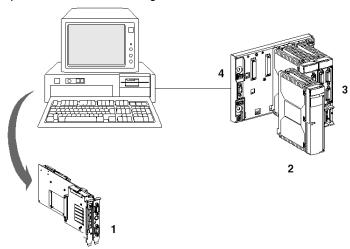
Beispiel zweier Premium-Steuerungsstationen:

HINWEIS: Falls das zweite Rack kein Prozessormodul enthält, handelt es sich um eine **einzige** auf zwei Racks verteilte Steuerungsstation.

Variablentabelle

Beschreibung je nach den Variablen obigen Schemas

Nummer	Beschreibung
1	Versorgungsmodul doppelten Formats
2	Prozessormodul
3	X-Bus-Erweiterungsmodul
4	Ein-/Ausgangsmodul
5	Versorgungsmodul Standardformat
6	Prozessormodul
7	Rack TSX RKY


Atrium-Steuerungsstation

Allgemeines

Die Atrium TSX PCI 57-Koprozessoren werden in einem PC integriert und steuern die gesamte Steuerungsstation, die sich aus denselben Ein- und Ausgangsmodulen wie eine Steuerungsstation mit Premium-Prozessoren (digital, analog, spezifisch oder Kommunikation) zusammensetzt. Diese Module können auf ein oder mehrere am X-Bus angeschlossene Racks verteilt sein.

Abbildung

Beispiel einer Atrium-Steuerungsstation:

Variablentabelle

Beschreibung abhängig von den Variablen des obigen Schemas:

Nummer	Beschreibung
1	Koprozessor
2	Versorgung
3	Ein-/Ausgangsmodule
4	Rack TSX RKY

Kapitel 2

Allgemeine Darstellung der Komponenten einer Steuerungsstation

Ziel dieses Kapitels

In diesem Kapitel werden Ihnen die verschiedenen Komponenten, aus denen einer Steuerungsstation bestehen kann, beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Allgemeiner Überblick über die Premium-Prozessoren	
Allgemeiner Überblick über die Atrium-Prozessoren	
Allgemeiner Überblick über Racks	28
Allgemeine Übersicht zu den Stromversorgungsmodulen TSX PSY	29
Allgemeiner Überblick über Prozess- und AS-i-Versorgungen	
Allgemeine Übersicht über das Rack-Erweiterungsmodul	
Allgemeiner Überblick über Eingangs-/Ausgangsmodule	
Allgemeine Übersicht zu den Stromversorgungsmodulen TSX CTY/CCY	
Überblick über Achsensteuerungsmodule	
Allgemeiner Überblick über Einzelschrittsteuerungsmodule	
Allgemeiner Überblick über die Kommunikation	
Allgemeiner Überblick über das Bus-Schnittstellenmodul AS-i: TSX SAY 100	
Allgemeine Übersicht über das Wägemodul TSX ISPY	
Allgemeiner Überblick über das Not-Aus-Überwachungsmodul	
Allgemeine Übersicht zum Belüftermodul TSX FAN	

Allgemeiner Überblick über die Premium-Prozessoren

Allgemeines

Jede Steuerungsstation ist mit einem Prozessor ausgestattet, der in Abhängigkeit folgender Merkmale ausgewählt wird:

- Verarbeitungsgeschwindigkeit (Anzahl der verwalteten E/A)
- Speicherkapazität
- Verarbeitungstyp: sequenziell oder sequenziell + Regelung

(Siehe Premium-Prozessoren TSX P57/TSX H57, Seite 81).

Tabelle der verschiedenen Formattypen des Prozessors:

Prozessor	Abbildung
Prozessoren im Standardformat: TSX P57 0244, TSX P57 104, TSX P57 154.	
Prozessoren im doppelten Format: TSX P57 204, TSX P57 254, TSX P57 304, TSX P57 354, TSX P57 454.	

Prozessor	Abbildung
Prozessoren im doppelten Format: TSX P57 1634, TSX P57 2634, TSX P57 3634, TSX P57 4634.	
Prozessoren im doppelten Format: TSX P57 554 TSX P57 5634 TSX P57 6634, TSX H57 24M, TSX H57 44M.	

TSX P57 0244

Der Prozessor TSX P57 0244 ist in drei Versionen erhältlich:

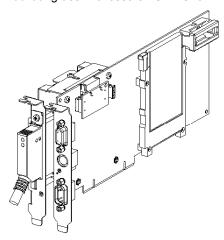
- einfache Version TSX P57 0244 mit:
 - o Prozessor,
 - O TSX CPP 110 PCMCIA-CANopen-Karte.
- Version TSX P57 CA 0244 mit Wechselstrom-Konfiguration mit:
 - O Standard-Rack TSX RKY 6,
 - o Prozessor.
 - O Wechselstrom (100 240 VAC) TSX PSY 2600
 - o TSX CPP 110 PCMCIA-CANopen-Karte,
 - O Zählmodul TSX CTY 2A.
- Version TSX P57 CD 0244 mit Gleichstrom-Konfiguration mit:
 - O Standard-Rack TSX RKY 6,
 - o Prozessor.
 - O Gleichspannungsversorgung (24 VDC) TSX PSY 1610,
 - O TSX CPP 110 PCMCIA-CANopen-Karte,
 - O Zählmodul TSX CTY 2A.

Allgemeiner Überblick über die Atrium-Prozessoren

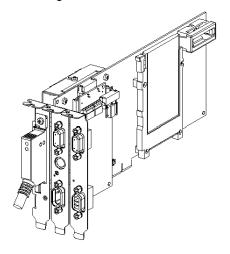
Allgemeines

Die auf einem **PCI**-Bus eines Industrie- oder Büro-PCs installierten Prozessoren ermöglichen bei Betrieb in einer Windows 2000- oder Windows XP-Umgebung die Steuerung einer Steuerungsstation.

Durch die Installation eines Kommunikationstreibers ist außerdem eine transparente Kommunikation zwischen dem Host-PC und dem Prozessor möglich, dank der von einer zusätzlichen Datenstation zur Programmierung abgesehen werden kann.


Es gibt zwei Typen von Atrium-Prozessoren:

- TSX PCI 57 204
- TSX PCI 57 354


Siehe Atrium-Prozessoren, Seite 197.

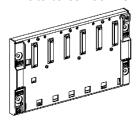
Abbildungen

Abbildung des Prozessors TSX PCI 57:

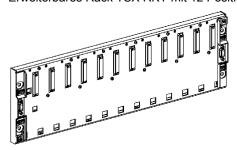
Abbildung des Prozessors TSX PCI 57 mit optionaler 24-V-Spannungsversorgung:

Allgemeiner Überblick über Racks

Allgemeines


Es werden zwei Rackfamilien vorgeschlagen:

- Standardracks: 6, 8 und 12 Positionen
 - Zum Aufbau einer Steuerungsstation mit einem einzigen Rack
- erweiterbare Racks: 4, 6, 8 und 12 Positionen
 - Mit diesen Racks kann eine Steuerungsstation mit bis zu :
 - maximal 16 Racks aufgebaut werden, wenn die Station aus Racks mit 4, 6 oder 8 Positionen besteht.
 - o maximal 8 Racks aufgebaut werden, wenn die Station aus Racks mit 12 Positionen besteht.


Siehe "Standardracks und erweiterbare Racks" (siehe Seite 365).

Abbildung

Erweiterbares Rack TSX RKY mit 6 Positionen

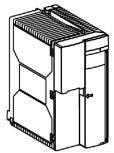
Erweiterbares Rack TSX RKY mit 12 Positionen

Allgemeine Übersicht zu den Stromversorgungsmodulen TSX PSY

Allgemeines


Für jedes Rack ist ein Stromversorgungsmodul (siehe Seite 259) erforderlich, das in Abhängigkeit vom verteilten Netz (Wechselstrom oder Gleichstrom) und der auf Rack-Ebene erforderlichen Leistung definiert wird.

Es gibt zwei Modularten:


- · Versorgungsmodul im Standardformat,
- Versorgungsmodul im doppelten Format.

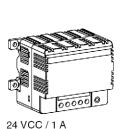
Abbildung

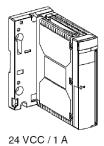
Folgende Abbildung zeigt die beiden Formate der Stromversorgungsmodule TSX PSY:

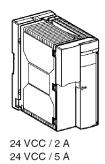
Versorgungsmodul im Standardformat für Wechselstrom- oder Gleichstromnetz

Versorgungsmodul im doppelten Format für Wechselstrom- oder Gleichstromnetz

Allgemeiner Überblick über Prozess- und AS-i-Versorgungen


Prozessversorgungen


Eine breite Palette von Versorgungsblöcken und -modulen ermöglicht Ihnen eine bedarfsgerechte Auswahl. Die Versorgungsmodule sind für die Versorgung der Peripherie eines von den Premiumoder Atrium-Steuerungen gesteuerten Steuerungssystems mit 24 VDC vorgesehen. Die Montage der Versorgungsmodule erfolgt auf einer Telequick AM1-PA-Platine und bei manchen Modellen auf einer zentralen DIN-Schiene AM1-DP200/DE200.


Siehe Prozessversorgungen, Seite 323.

Abbildung

Verschiedene Typen von Prozessversorgungen:

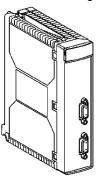
AS-i-Versorgungen

Diese Versorgungsmodule dienen der Versorgung der an den AS-i-Bus angeschlossenen Elemente mit 30 VDC.

Abbildung

Typen von AS-i-Versorgungen:

30 VCC AS-i / 5 A et 24 VCC


Allgemeine Übersicht über das Rack-Erweiterungsmodul

Allgemein

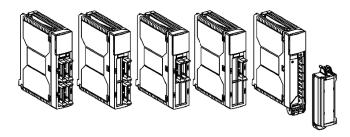
Dieses Modul ermöglicht ausgehend von dem für den Prozessor bestimmten Rack die Erweiterung von zwei Bussegmenten bis auf einen Maximalabstand von 250 Metern. Jedes erweiterte Segment kann die auf den lokalen Bus verteilten Racks auf einer Maximallänge von 100 Metern unterstützen.

Siehe X-Bus-Erweiterungsmodule, Seite 415.

Rack-Erweiterungsmodul

Allgemeiner Überblick über Eingangs-/Ausgangsmodule

Digitale Eingänge/Ausgänge


Aus einer breiten Palette digitaler Eingangs-/Ausgangsmodule können Sie die für Ihren Bedarf erforderlichen auswählen. Diese Module unterscheiden sich folgendermaßen:

Kenndaten	Beschreibung
Modularität	8, 16, 28, 32 oder 64 Kanäle
Eingangstyp	 Module mit Gleichstromeingängen (24 VCC, 48 VCC) Module mit Wechselstromeingängen (24 VAC, 48 VAC, 110 VAC, 240 VAC)
Ausgangstyp	 Module mit Relaisausgängen Module mit statischen Gleichstromausgängen (24 VDC / 0,1 A - 0,5 A - 2 A, 48 VDC / 0,25 A - 1 A) Module mit statischen Wechselstromausgängen (24 VAC / 130 VAC / 1 A, 48 VAC / 240 VAC / 2 A)
Anschlusstyp	Klemmenleisten mit Schrauben und Steckern vom Typ HE10, mit denen der Anschluss an die Geber und Vorstellglieder mit Hilfe des Vorverdrahtungssystems TELEFAST 2 erfolgen kann.

Abbildung:

Anschluss über Klemmenleiste mit Schrauben

Analogeingänge/-ausgänge

Die Palette der analogen Eingangs- und Ausgangsmodule ermöglicht Ihnen eine bedarfsspezifische Auswahl. Diese Module unterscheiden sich folgendermaßen:

Kenndaten	Beschreibung
Modularität	4, 6, 16 Kanäle
Leistung und angebotene Signalbandbreite	Spannung/Strom, Thermoelement, Mehrfachfunktion (Thermoelement, Temperaturfühler, Spannung/Strom)
Anschlusstyp	Klemmenleisten mit Schrauben oder Steckern vom Typ SUB D, 25-polig, mit denen der Anschluss an die Geber mit Hilfe des Vorverdrahtungssystems TELEFAST 2 erfolgen kann.

Abbildung: Anschlüsse über SUB-D, 25-polig

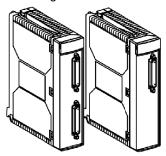
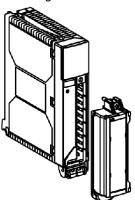
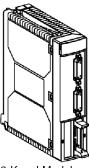



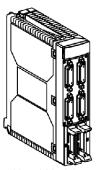
Abbildung: Anschlüsse über Klemmenleiste mit Schrauben

Allgemeine Übersicht zu den Stromversorgungsmodulen TSX CTY/CCY

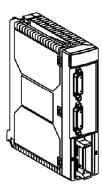
Allgemeines


Die Steuerungen Premium und Atrium stellen für applikationsspezifische "Zählfunktionen" die wichtigsten Zählfunktionen zur Verfügung (Abwärtszählen, Aufwärtszählen, Aufwärtszählen).

Drei Module werden angeboten:


- Ein 2-Kanal-Modul und ein 4-Kanal-Modul für einen Inkrementalgeber mit einer maximalen Erfassungsfrequenz von 40 kHz,
- ein 2-Kanal-Modul für:
 - o einen Inkrementalgeber mit einer maximalen Erfassungsfrequenz von 500 kHz,
 - o einen Absolutwertgeber der Reihe SSI mit einer maximalen Erfassungsfrequenz von 2 MHz.

Abbildung


Abbildung der verschiedenen Zählmodule TSX CTY/CCY:

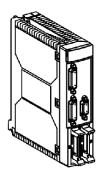
2-Kanal-Modul

4-Kanal-Modul

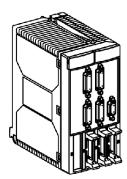
2-Kanal-Modul (Inkrementalgeber/ Absolutwertgeber)

Überblick über Achsensteuerungsmodule

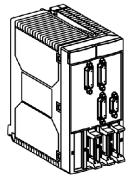
Allgemeines


Premium-Steuerungen können mit Hilfe von applikationsspezifischen "Achsensteuerungsmodulen" zur Verwaltung von Bewegungsüberwachungsapplikationen verwendet werden. Sie werden von Servomotoren gesteuert, deren Geschwindigkeitssollwert eine analoge Größe (+/- 10 V) ist.

Fünf Module werden vorgeschlagen:


Modul	Kenndaten
2 Kanäle	Ermöglicht eine gesteuerte Positionierung mit zwei unabhängigen, linearen und begrenzten Achsen.
2 Kanäle	Ermöglicht eine gesteuerte Positionierung mit zwei unabhängigen, kreisförmigen und unendlichen Achsen.
4 Kanäle	Ermöglicht eine gesteuerte Positionierung mit vier unabhängigen, linearen und begrenzten Achsen.
4 Kanäle	Ermöglicht eine gesteuerte Positionierung mit vier unabhängigen und kreisförmigen Achsen.
3 Kanäle	Ermöglicht eine Positionierung an 2 oder 3 synchronisierten Achsen (lineare Interpolation).

Abbildung


Abbildung zu den verschiedenen Achsensteuerungsmodultypen:

2-Kanal-Modul

4-Kanal-Modul

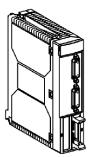
3-Kanal-Modul

Allgemeiner Überblick über Einzelschrittsteuerungsmodule

Allgemeines

Mit den Steuerungen Premium und Atrium können mit Hilfe von applikationsspezifischen "Einzelschrittsteuerungsmodulen" Applikationen zur Bewegungssteuerung gesteuert werden, die selbst über Drehzahlgeber, deren Geschwindigkeitssollwert ein Frequenzwert ist, gesteuert werden.

Zwei Module werden vorgeschlagen:


- ein Modul mit einem Kanal zur Steuerung eines Drehzahlgebers
- ein Modul mit 2 Kanälen zur Steuerung von zwei Drehzahlgebern

Abbildung

Abbildungen der verschiedenen Module:

2-channel module

Allgemeiner Überblick über die Kommunikation

Allgemeines

Mit den Premium- und Atrium-Steuerungen sind verschiedene Kommunikationsarten möglich:

- Kommunikation über den PG-Anschluss:
 - an den Premium-Prozessoren TSX P57/TSX H57: Sie verfügen über zwei PG-Anschlüsse (TER) und (AUX), eine nicht potenzialgetrennte serielle RS 485-Verbindung, Uni-Telwayoder Zeichenmodusprotokoll.
 - an Atrium-Prozessoren TSX PCI 57: Sie verfügen über einen PG-Anschluss (TER), eine nicht potenzialgetrennte serielle RS 485-Verbindung, Uni-Telway- oder Zeichenmodusprotokoll.
- Fipio-Master-Kommunikation, in einigen Prozessoren integriert,
- Ethernet-Kommunikation, in einigen Prozessoren integriert,
- Kommunikation über den USB-Port, in einigen Prozessoren integriert,
- Kommunikation über PCMCIA-Karten, die in den Prozessor oder das anwendungsspezifische Kommunikationsmodul TSX SCY 21601 integrierbar sind: Die Prozessoren sowie das anwendungsspezifische Kommunikationsmodul TSX SCY 21601 verfügen über einen Steckplatz, in den eine Kommunikationskarte im PCMCIA-Format, Typ III (erweitert), eingeschoben werden kann.
- Kommunikation über anwendungsspezifische Module:
 - O Modul TSX SCY 21601
 - Modul TSX ETY 110

35006162 12/2018

Abbildungen

Die folgende Tabelle zeigt die verschiedenen Kommunikationsmodi:

Abbildung	Beschreibung
	Anschlüsse TER und AUX am Prozessor TSX P57
	Anschlüsse TER und AUX am Prozessor TSX PCI 57
	Fipio-Verbindung am Prozessor TSX P57
	Fipio-Verbindung an TSX PCI 57- Prozessoren

35006162 12/2018

Abbildung	Beschreibung
	Ethernet-Verbindung an TSX P57- Prozessoren
	USB-Verbindung an TSX P57/TSX H57- Prozessoren
	Kommunikation über im Prozessor bzw. Modul integrierbare PCMCIA-Karten

Abbildung	Beschreibung
	Kommunikation über anwendungsspezifische TSX SCY 21601-Module: 1: integrierter Kommunikationskanal 2: Steckplatz für PCMCIA-Karte
	Kommunikation über anwendungsspezifische TSX ETY 110- Module

Allgemeiner Überblick über das Bus-Schnittstellenmodul AS-i: TSX SAY 100

Allgemeines

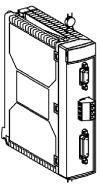
Das Modul ermöglicht den Anschluss an einen AS-i-Bus einer Steuerungsstation Premium oder Atrium.

Dieses Master-Modul verwaltet und koordiniert den Zugriff auf den Bus. Es überträgt Daten an alle Slaves und empfängt Daten von ihnen.

Abbildung

Abbildung des Moduls:

Allgemeine Übersicht über das Wägemodul TSX ISPY


Allgemeines

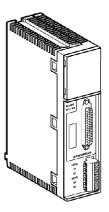
Die Premium-Steuerungen ermöglichen mithilfe der applikationsspezifischen "Wägemodule" des Typs TSX ISPY 101 und TSX ISPY 101 die folgenden Wägeapplikationen: Dosierung, Mehrproduktdosierung, Dreiergewichtsdosierung, Durchsatzsteuerung, Gewichtssummenbildung usw.

Dieses Modul bietet einen Messeingang für maximal acht Geber, zwei Schnell-Digital-Ausgänge und eine serielle Verbindung für einen Anzeigebericht.

Abbildung

Abbildung des Moduls TSX ISPY 100/101:

Allgemeiner Überblick über das Not-Aus-Überwachungsmodul


Allgemeines

Module mit integrierter Sicherheitskette zur sicheren Steuerung der Not-Aus-Schaltungen der Maschinen.

Mit diesen Modulen werden die Sicherheitsfunktionen entsprechend der Norm EN 954-1 bis Kategorie 4 abgedeckt.

Zwei Module werden vorgeschlagen:

- 1 Modul mit 12 Eingängen und 2 Ausgängen
- 1 Modul mit 12 Eingängen und 4 Ausgängen

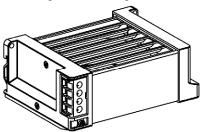
Allgemeine Übersicht zum Belüftermodul TSX FAN

Allgemeines

Je nach der Modularität der Racks (4, 6, 8 oder 12 Positionen) können ein, zwei oder drei Belüftungsmodule über jedem Rack installiert werden, damit die verschiedenen Module durch einen gerichteten Luftstrom gekühlt werden können.

Diese Belüftungsblocks sind in folgenden Fällen zu verwenden:

- Umgebungstemperatur im Bereich 25 60 °C
- Umgebungstemperatur im Bereich 60 70 °C


Es werden drei Typen von Belüftungsmodulen angeboten:

- Belüftungsmodul mit 110-VAC-Versorgung,
- Belüftungsmodul mit 220-VAC-Versorgung,
- Belüftungsmodul mit 24-VDC-Versorgung.

Siehe Belüftungsmodul, Seite 433.

Abbildung

Abbildung des Belüftungsmoduls TSX FAN:

Kapitel 3

Allgemeiner Überblick über die verschiedenen Konfigurationen einer Steuerungsstation

Inhalt dieses Kapitels

In diesem Kapitel werden die verschiedenen möglichen Konfigurationen der Steuerungsstationen Premium und Atrium in allgemeiner Weise beschrieben.

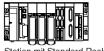
Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	
Die verschiedenen Typen der Premium-Steuerungsstationen	48
Die verschiedenen Steuerungsstationstypen mit Atrium-Prozessor	52

Die verschiedenen Typen der Premium-Steuerungsstationen

Allgemeines


Mit der Auswahl des Rack- und Prozessortyps werden die maximalen Kapazitäten einer Premium-Steuerungsstation festgelegt.

Die TSX P57-Stationen bestehen aus den Prozessoren TSX 57 104/1634/154/0244 und den Prozessoren TSX P57 204/254/2634/304/354/3634/454/4634/554/5634/6634.

Die Stationen des Typs TSX H57 bestehen aus den Modulen TSX H57 24M und TSX H57 44M.

Station TSX P57 0244

Prozessor TSX P57 0244 in einfacher Ausführung mit CANopen-Karte TSX CPP 110:

Station mit Standard-Rack: 1 Rack mit 6, 8 oder 12 Steckplätzen

Station mit erweiterbaren Racks: 1 Rack mit 4, 6, 8 oder 12 Steckplätzen

Prozessor TSX P57 0244 in Konfigurationsversion:

Station mit

1 Standard-Rack mit 6 Steckplätzen

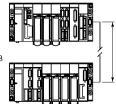
1 Wechsel- oder

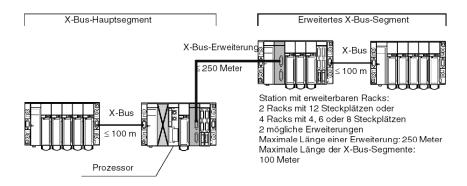
Gleichspannungsversorgung

1 Karte TSX CPP 110

1 Zählmodul TSX CTY 2A.

Station TSX P57 10


Ohne X-Bus-Erweiterungsmodul:

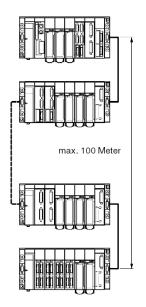

Station mit Standard-Rack: 1 Rack mit 6, 8 oder 12 Steckplätzen

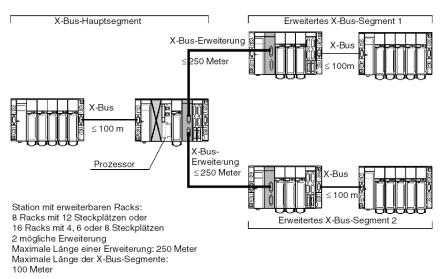
Station mit erweiterbaren Racks: 2 Racks mit 12 Steckplätzen oder 4 Racks mit 4, 6 oder 8

Steckplätzen, maximale Länge des X-Busses: 100 Meter

Mit X-Bus-Erweiterungsmodul:

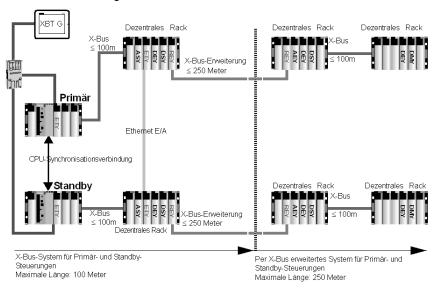
Station TSX 57 20/30/40/50/60


Ohne X-Bus-Erweiterungsmodul:


Station mit Standard-Rack: 1 Rack mit 6, 8 oder 12 Steckplätzen

Station mit erweiterbaren Racks: 8 Racks mit 12 Steckplätzen oder 16 Racks mit 4, 6 oder 8 Steckplätzen, maximale Länge des X-Busses: 100

Meter

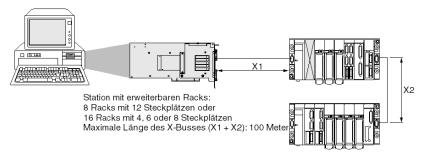


Mit X-Bus-Erweiterungsmodul:

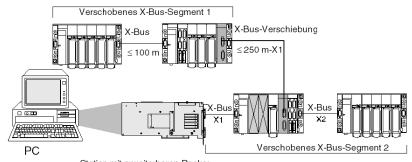
Station TSX H57 24M/44M

Mit X-Bus-Erweiterungsmodul:

Die verschiedenen Steuerungsstationstypen mit Atrium-Prozessor


Allgemeines

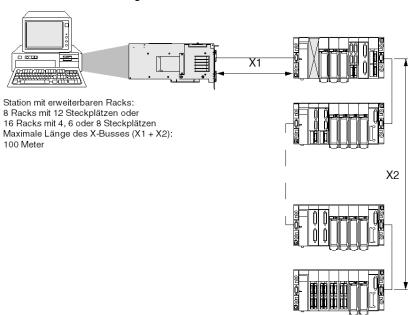
Die Wahl des Prozessortyps TSX PCI 204/354 legt die maximalen Kapazitäten einer Atrium-Steuerungsstation fest.


Bei diesem Stationstyp, bei dem der Prozessor in einem PC integriert ist, arbeitet die Station mit erweiterbaren Racks.

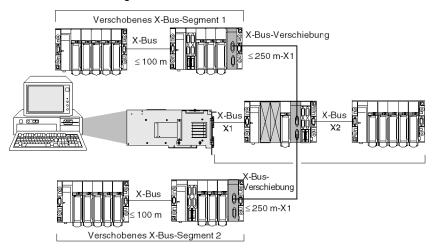
Station TSX PCI 57 204

Ohne X-Bus-Verschiebungsmodul:

Mit X-Bus-Verschiebungsmodul:



Station mit erweiterbaren Racks: 8 Racks mit 12 Steckplätzen oder 16 Racks mit 4, 6 oder 8 Steckplätzen 2 möcliche Verschiebungen


Maximale Länge einer Verschiebung: 250 Meter-X1 Maximale Länge der X-Bus-Segmente: 100 Meter

Station TSX PCI 57 354

Ohne X-Bus-Verschiebungsmodul:

Mit X-Bus-Verschiebungsmodul:

Station mit erweiterbaren Racks: 8 Racks mit 12 Steckplätzen oder

16 Racks mit 4, 6 oder 8 Steckplätzen

2 mögliche Verschiebungen

Maximale Länge einer Verschiebung: 250 Meter - X1 Maximale Länge der X-Bus-Segmente: 100 Meter

Kapitel 4

Allgemeiner Überblick über Steuerungsnetze

Inhalt dieses Kapitels

Ziel dieses Kapitels ist es, Ihnen einen allgemeinen Überblick über ein Steuerungsnetz zu verschaffen.

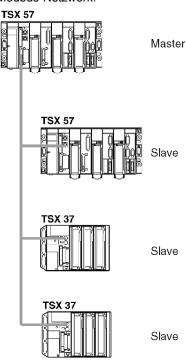
Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Allgemeiner Überblick über den Modbus-Bus	56
Allgemeiner Überblick über ein Modbus Plus-Netzwerk	57
Allgemeiner Überblick über das Fipway-Netzwerk	58
Allgemeiner Überblick über das Ethernet-Netzwerk	59
Allgemeiner Überblick über die Kommunikation über Modem	60
Allgemeiner Überblick über den Uni-Telway-Bus	61
Allgemeiner Überblick über den Fipio-Feldbus	62
Allgemeiner Überblick über den CANopen-Feldbus	63
Überblick über den AS-i Bus	65
Allgemeiner Überblick über den Profibus DP-Feldbus	66
Allgemeiner Überblick über den Feldbus INTERBUS	67
Beschreibung des Jnet-Netzwerks	69

Allgemeiner Überblick über den Modbus-Bus

Allgemeines


Über Modbus können alle an den Bus angeschlossenen Geräte Daten austauschen. Das Modbus-Protokoll erzeugt eine hierarchische Struktur (Master und mehrere Slaves).

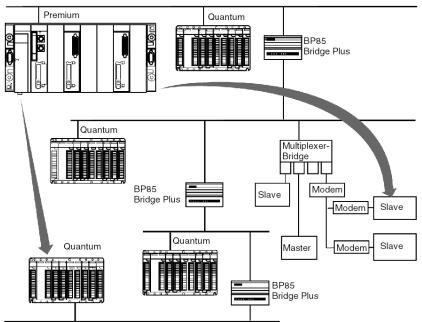
Der Master verwaltet den gesamten Austausch entsprechend zweier Dialogtypen:

- Der Master tauscht Daten mit dem Slave aus und wartet auf die Antwort.
- Der Master tauscht Daten mit allen Slaves aus, ohne auf eine Antwort zu warten (allgemeines Broadcast).

Abbildung

Modbus-Netzwerk:

Allgemeiner Überblick über ein Modbus Plus-Netzwerk


Allgemeines

Über das Modbus Plus-Netz können alle an das Netz angeschlossenen Geräte Daten austauschen.

Das von Modbus Plus verwendete Protokoll arbeitet mit logischen Tokens (Logical Token Passing). Jede Station innerhalb eines Netzes hat eine Adresse zwischen 1 und 64. Eine Station greift auf das Netz zu, nachdem sie ein Token empfangen hat. Doppelt vergebene Adressen sind ungültig.

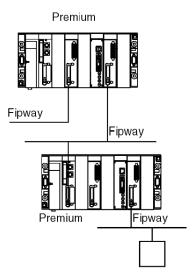
Abbildung

In der folgenden Abbildung sehen Sie ein Modbus Plus-Netzwerk:

Allgemeiner Überblick über das Fipway-Netzwerk

Allgemeines

Zur Dezentralisierung von Peripherie, Intelligenz und Diensten über große Entfernungen schlägt Schneider Electric das lokale Industrienetz Fipway vor.


Das Fipway-Netz entspricht vollständig der Norm FIP. Der Zugang erfolgt über einen Buscontroller.

Die Kommunikation über Fipway beinhaltet drei Grundfunktionen:

- Nachrichtenaustausch zwischen den Stationen, mit dem das Routing der Nachrichten sichergestellt wird
- Sende- und Empfangsfunktion für Telegramme
- Funktion für Erstellung/Verbrauch von gemeinsamen Wörtern (%NW) und gemeinsamen Tabellen

Abbildung

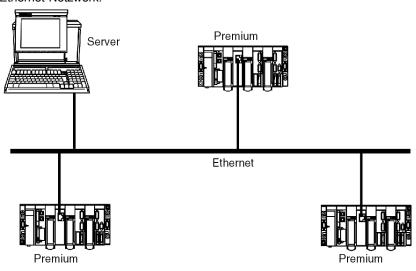
Die folgende Abbildung zeigt ein Fipway-Netzwerk:

Allgemeiner Überblick über das Ethernet-Netzwerk

Allgemeines

Die Kommunikation über Ethernet wird hauptsächlich von folgenden Anwendungen genutzt, die folgende Aufgaben erfüllen:

- Koordination zwischen programmierbaren Steuerungen
- Lokale oder zentrale Überwachung
- Kommunikation mit den Programmen für die Fertigungssteuerung
- Kommunikation mit dezentralen Ein-/Ausgängen


Die Ethernet-Netzwerkmodule unterstützen zwei Kommunikationsprofile:

- Das Profil ETHWAY enthält alle Mechanismen der X-WAY-Kommunikationsarchitektur:
 - X-WAY-Adressierungssystem
 - UNI-TE Nachrichtenaustausch
 - Verteilte Datenbank (gemeinsame Wörter)
- Das Profil TCP/IP über Ethernet erlaubt folgende Kommunikationsverfahren:
 - UNI-TE-Nachrichtenaustausch mit der gesamten X-WAY-Architektur
 - Modbus-Nachrichtenaustausch

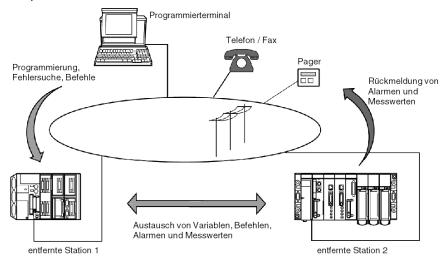
In der Funktion als Agent unterstützen die Ethernet-Netzwerkmodule auch die Verwaltung des Netzwerküberwachungsstandards SNMP.

Abbildung

Ethernet-Netzwerk:

Allgemeiner Überblick über die Kommunikation über Modem

Allgemeines


Anwendungen müssen unter Umständen über Modem kommunizieren.

Über diese Art der Kommunikation können Sie über das öffentliche Telefonnetz auf entfernte Stationen zugreifen, um remote Überwachungen, Diagnosen oder Steuerungen vorzunehmen.

HINWEIS: Schneider hat für seine SPS keine Modemkarte entwickelt. Die Implementierung einer derartigen Lösung obliegt dem Kunden.

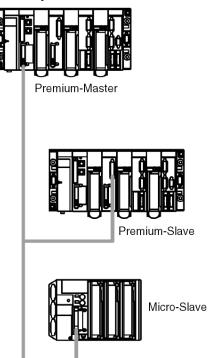
Abbildung

Beispiel der Kommunikation über Modem und der verschiedenen Dienste:

35006162 12/2018

Allgemeiner Überblick über den Uni-Telway-Bus

Allgemeines


Über Uni-Telway können alle an den Bus angeschlossenen Geräte Daten austauschen. Der Uni-Telway Standard ist ein UNI-TE Protokoll, das eine hierarchische Struktur erzeugt (Master und mehrere Slaves). Das als Master fungierende Gerät verwaltet den Bus.

Uni-Telway erlaubt eine egalitäre Kommunikation und ermöglicht folgende Arten der Nachrichtenübermittlung:

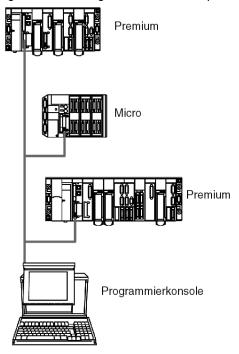
- Master zu Slave
- Slave zu Master
- Slave zu Slave

Abbildung

Uni Telway-Bus:

Allgemeiner Überblick über den Fipio-Feldbus

Allgemeines


Die Kommunikation über Fipio ist ein Teil des Gesamtangebots WORLDFIP von Schneider Electric.

Mit dem Feldbus Fipio können Ein- und Ausgänge einer Steuerungsstation und ihrer Industrieperipherie näher an den verarbeitenden Bereich gelegt werden.

Das von Fipio verwendete Protokoll basiert auf einem Austausch zwischen Ersteller und Verbraucher (z.B. gemeinsame Wörter). Die Busverwaltung wird von einem Buscontroller durchgeführt.

Abbildung

In der folgenden Abbildung sehen Sie einen Fipio-Feldbus:

Allgemeiner Überblick über den CANopen-Feldbus

Allgemeines

Der Kommunikationsbus CAN wurde ursprünglich für Bordsysteme in Kraftfahrzeugen entwickelt und wird heute in zahlreichen Bereichen verwendet. Nachfolgend sind einige Beispiele aufgeführt:

- Transportwesen
- tragbare Ausrüstung
- medizinische Ausrüstung
- Gebäudetechnik
- industrielle Steuerungen

Stärken des CAN-Systems:

- Buszuordnung
- Fehlererkennung
- Zuverlässigkeit des Datenaustauschs

Eine CANopen-Architektur besteht aus folgenden Komponenten:

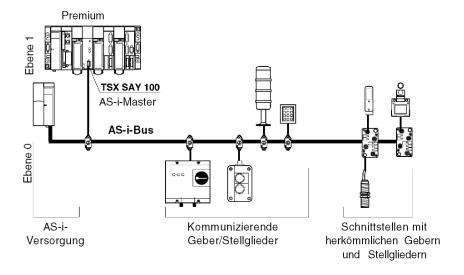
- Busmaster (PCMCIA-Karte TSX CPP 110)
- Slave-Geräte, auch als Knoten bezeichnet

Abbildung

Im folgenden Beispiel ist eine CANopen-Feldbusarchitektur dargestellt:

35006162 12/2018

Überblick über den AS-i Bus


Allgemeines

Der AS-i-Bus ("Actuator Sensor Interface", Stellglied-Geber-Schnittstelle) ermöglicht über ein einziges Kabel die Verbindung zwischen Gebern und Stellgliedern auf der niedrigsten Ebene der Steuerung.

Diese Geber und Stellglieder werden in der Dokumentation als Slave-Geräte bezeichnet.

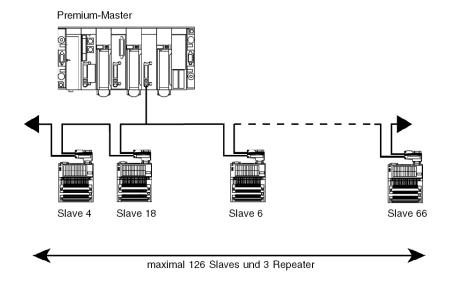
Abbildung

AS-i-Bus

Allgemeiner Überblick über den Profibus DP-Feldbus

Allgemeines

Der Profibus DP ist ein Feldbus, der serielle Verbindungen für Geber und Stellglieder benutzt und für die Anforderungen industrieller Umgebungen geeignet ist.


Der Bus arbeitet gemäß dem Master/Slave-Verfahren. Das Master-Modul verwaltet und koordiniert den Zugriff auf den Bus. Es sendet Daten an alle anderen Geräte und empfängt Daten von ihnen.

Andere Geräte wie Ein-/Ausgangsmodule sind ebenfalls erhältlich:

- Klassische TIO-Kompaktslaves
 - Klassische digitale Eingänge
 - Klassische digitale Ausgänge
- Modular aufgebaute DEA203-Slaves
- Modular aufgebaute Momentum-Slaves
 - Digitaleingänge
 - Digitalausgänge
 - Digitale Eingänge/Ausgänge
 - Analogeingänge/-ausgänge

Abbildung

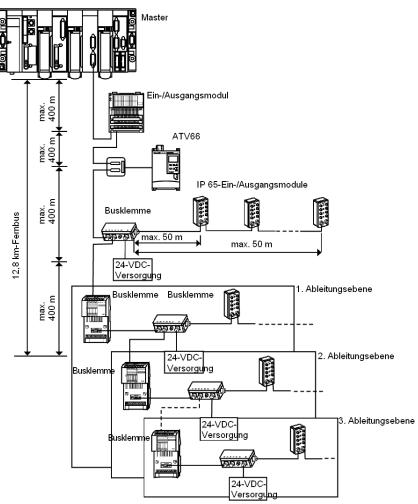
Die folgende Abbildung zeigt einen Profibus DP-Feldbus:

35006162 12/2018

Allgemeiner Überblick über den Feldbus INTERBUS

Allgemeines

Der INTERBUS ist ein Feldbus, der serielle Verbindungen für Geber und Stellglieder benutzt und für die Anforderungen industrieller Umgebungen geeignet ist.


Der Bus arbeitet gemäß dem Master/Slave-Verfahren. Der Master-Teilnehmer verwaltet und koordiniert den Zugriff auf den Bus. Er sendet Daten an alle Teilnehmer und empfängt Daten von allen Teilnehmern.

Es sind weitere Geräte in folgenden Kategorien erhältlich:

- Busklemmen
- Ein-/Ausgangsmodule
- INTERBUS-/AS-i-Gateways
- AS-i-Gateways/-Controller
- Drehzahlgeber ATV 18, 58, 66
- ATS46/NEPTUNE
- elektrische Schutzelemente LT6
- Programmiergeräte mit Tastatur und LEDs XBT BB
- Bedienterminals XBT-P/E
- induktive Identifikationen
- IP20 Telefast-E/A-Schnittstellen
- Momentum

Abbildung

In der folgenden Abbildung ist eine INTERBUS-Feldbusarchitektur dargestellt:

Beschreibung des Jnet-Netzwerks

Einführung

Premium-/Atrium-Steuerungen werden über eine PCMCIA-Karte mit dem Jnet-Netzwerk verbunden.

Jnet-Netwerke werden zum Austausch von Daten zwischen Premium-/Atrium-Steuerungen und Steuerungen der Serie 1000 April und SMC 500/600-Steuerungen verwendet.

Dazu werden eine busartige Topologie und ein deterministisches Token-gesteuertes Kommunikationsprotokoll eingesetzt.

Die ausgetauschten Wörter bilden eine Tabelle. Diese Tabelle wird in jeder Steuerung gespeichert und in so viele Zonen unterteilt, wie es Steuerungen im Jnet-Netzwerk gibt. Die jeder Steuerung zugewiesene Zone kann in der Größe variieren (wird während der Konfiguration festgelegt).

Hauptmerkmale

Es gelten folgende Merkmale:

- Kompatibilität: April 2000/3000/5000/7000 SMC50/600
- Anzahl SPS: Max. 32 (16 für ein Netzwerk vom Typ SMC)
- Festgelegte Übertragungsgeschwindigkeit: 19200 Baud
- Festgelegtes Übertragungsformat: 8 Bit, ohne Parität, 1 Stopp
- Übertragene Daten: Max. 128 Wörter, von allen Steuerungen gemeinsam (max. 64 Wörter bei einem Netzwerk des Typs SMC)
- Übertragungsmedien: Stromschleife oder 2-Draht-RS485

HINWEIS: Die Jnet-Dokumentation ist nur auf der CD-ROM mit der technischen Dokumentation verfügbar.

HINWEIS: Premium-Steuerungen mit Control Expert werden in bestimmten Fällen mit einem Jnet-Netzwerk verbunden (bei vorhandenen Installationen). Sofern die Funktionen wie bei PL7 sind, bleibt die Dokumentation im PL7-Format. Sie müssen sie deshalb für die Verwendung in einer Control Expert-Umgebung anpassen.

Kapitel 5

Betriebsnormen und -bedingungen

Gegenstand dieses Kapitels

In diesem Kapitel werden die Betriebsnormen und -bedingungen der Premium- und Atrium-SPS aufgeführt.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Normen und Bescheinigungen	72
Betriebsbedingungen und Umgebungsvorschriften	73
Schutzbehandlung für Premium-Steuerungen	79

Normen und Bescheinigungen

Allgemein

Die Steuerungen Premium und Atrium entsprechen den allgemeinen nationalen und internationalen Normen für elektronische Geräte, die in der Industrie-Automatisierung eingesetzt werden.

- Speicherprogrammierbare Steuerung: Spezielle Voraussetzungen: Funktionskenndaten, Unempfindlichkeit, Robustheit, Sicherheit usw. IEC 61131-2, CSA 22.2 Nr. 142, UL 508
- Handelsmarine-Vorschriften der wichtigsten internationalen Organisationen:
 ABS, BV, DNV, GL, LROS, RINA, RRS, CCS usw.
- Einhaltung von EU-Richtlinien:
 - Niederspannung: 73/23/EWG, Ergänzung 93/68/EWG Elektromagnetische Verträglichkeit: 89/336/EWG, Ergänzung 92/31/EWG und 93/68/EWG
- Elektrische Eigenschaften und Selbstlöschbarkeit von Isolationsmaterialien: UL 746C, UL 94
- Gefahrenbereiche Cl1 Div2 CSA 22.2 Nr. 213

▲ GEFAHR

STROMSCHLAGGEFAHR, EXPLOSION

Trennen Sie die Verbindung nicht, während der Schaltkreis Strom führt, sofern der Bereich nicht als ungefährlich bekannt ist.

Dieses Gerät ist nur geeignet für den Einsatz an Positionen mit Class I, Division 2, Groups A, B, C und D oder an gefahrenfreien Positionen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Betriebsbedingungen und Umgebungsvorschriften

Umgebungstemperatur/Feuchtigkeit/Höhe

Datentabelle:

Umgebungstemperatur	0 bis 60°C (IEC 1131-2 = 5 bis 55°C)	
Relative Feuchtigkeit	10 bis 95% (ohne Kondensation)	
Höhe	0 bis 2000 Meter	

Versorgungsspannung

Datentabelle:

Spannung	Nennspannung	24 VDC	48 VDC	100 - 240 VAC	100120 / 200240 VAC
	Grenzwert	19 - 30 VDC	19 - 60 VDC (1)	90 - 264 VAC	90 - 140 / 190 - 264 VAC
Frequenz	Nennwert	-	-	50/60 Hz	50/60 Hz
	Grenzwert	-	-	47/63 Hz	47/63 Hz
Kurzeinbrüche	Dauer	≤ 1 µs	≤ 1 µs	≤ 1/2 Periode	≤ 1/2 Periode
	Wiederholung	≥1s	≥ 1 s	≥ 1 s	≥ 1 s
Oberwelligkeit		-	-	10%	10%
Restwelligkeit inbegriffen		5%	5%	-	-

(1) Bis 34 VDC möglich, auf 1 Stunde pro 24 Stunden begrenzt.

Bei den Stromversorgungen TSX PSY 1610 und TSX PSY 3610, falls Module mit Relaisausgängen verwendet werden, verkleinert sich dieser Bereich auf $21,6\ V$ bis $26,4\ V$.

Sicherheit von Gütern und Personen

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene		
Durchschlagfestigkeit und Isolationswiderstand *	IEC 61131-2 UL 508 CSA 22-2 Nr. 142 IEC 60950	Spannungsversorgung 24 -48 V Spannungsversorgung 100 - 220 V Digitaler E/A < 48 V Digitaler E/A > 48 V > 10 MΩ	1500 Veff 2000 Veff 500 Veff 2000 Veff	
Kontinuität der Massen *	IEC 61131-2 UL 508 CSA 22-2 Nr. 142	< 0,1 Ω / 30 A / 2 min		
Leckstrom *	CSA 22-2 Nr. 142 IEC 60950	Gerät, fest < 3,5 mA		
Sicherheit durch Schutzgehäuse *	IEC 61131-2 CSA 22-2 Nr. 142 IEC 60950	IP 20		
Stoßfestigkeit	CSA 22-2 Nr. 142 IEC 60950	Fall/1,3 m/Bereich 500 g		
Legende				
*: Prüfungen, die gemäß EU-Direktiven vorgeschrieben sind				

HINWEIS: Die Geräte müssen entsprechend den Hinweisen des Handbuchs für TSX DG KBL• installiert und verkabelt werden.

Unempfindlichkeit der Geräte gegen Niederfrequenzstörungen der Stromversorgung Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene		
Spannungs- und Frequenzschwankungen *	EN 50082-1	Un 15%/Fn 5% 30 min x 2 Un 20%/Fn 10% 5 s x 2		
Schwankung der Gleichspannung *	EN 50082-1	0,85 Un - 1,2 Un 30 + 30 min + Welligkeit 5% Spitzenwert		
Oberwelle 3 *	IEC 61131-2	10% Un 0°/5 min - 180°/5 min		
Legende				
Un: Nennspannung Fn: Nennfrequenz Ud: Erkennungsebene der Unterspannung				
*: Prüfungen, die gemäß EU-Direktiven vorgeschrieben sind				

Bezeichnung der Prüfung	Normen	Ebene			
Momentane Unterbrechungen *	IEC 61131-2	AC 10 ms DC 1 ms			
Spannungsausfall und - aufnahme *	IEC 61131-2	Un-0-Un; Un/60 s 3 Zyklen, getrennt durch 10 s Un-0-Un; Un/5 s 3 Zyklen, getrennt durch 1 bis 5 s Un-0,9Ud; Un/60 s 3 Zyklen, getrennt durch 1 bis 5 s			
Legende					
Un: Nennspannung Fn: Nennfrequenz Ud: Erkennungsebene der Unterspannung					
*: Prüfungen, die gemäß EU-Direktiven vorgeschrieben sind					

HINWEIS: Die Geräte müssen entsprechend den Hinweisen des Handbuchs für TSX DG KBL• installiert und verkabelt werden.

Unempfindlichkeit gegen Hochfrequenzstörungen

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene		
Gedämpfte Schwingungswelle *	IEC 61131-2 IEC 61000-4-12	AC/DC 1 kV SM Digitaler E/A 24 V 1 kV SM		
Schnelle, stoßweise Übergänge *	EN 50082-1 IEC 61000-4-4	Stromversorgung AC/DC 2 kV LM/GM Digitaler E/A > 48 V 2 kV GM andere Ports 1 kV GM		
Hybride Stoßwelle	IEC 61000-4-5	Stromversorgung AC/DC 2 kV LM/1 kV SM Digitaler E/A AC 2 kV LM/1 kV SM Digitaler E/A DC 2 kV LM/0,5 kV SM Geschirmtes Kabel 1 kV GM		
Elektrostatische Entladungen *	IEC 61131-2 IEC 61000-4-2	Kontakt 6 kV Luft 8 kV		
Elektromagnetisches Feld *	EN 50082-2 IEC 61000-4-3	10 V/m; 80 MHz - 2 GHz Modulation der Sinusamplitude 80 %/1 kHz		
Leitungsgeführte Störungen *	EN 50082-2 IEC 61000-4-6	10 V; 0,15 MHz - 80 MHz Modulation der Sinusamplitude 80 %/1 kHz		
Legende				
SM: Serieller Modus GM: Gemeinsamer Modus LM: Leitungsmodus				
*: Prüfungen, die gemäß EU-Direktiven vorgeschrieben sind				

HINWEIS: Die Geräte müssen entsprechend den Hinweisen des Handbuchs für TSX DG KBL• installiert und verkabelt werden.

Elektromagnetische Emission

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene
Leitungsgrenzwerte *	EN55022/55011 EN50081-2	Klasse A 150 kHz - 500 kHz quasi Spitzenwert 79 dB mV Mittelwert 66 dB mV 500 kHz - 30 MHz quasi Spitzenwert 73 dB mV Mittelwert 60 dB mV
Strahlungsgrenzwerte *(1)	EN55022/55011 EN50081-2	Klasse A d = 10 m 30 kHz - 230 kHz quasi Spitzenwert 30 dB mV/m 230 kHz - 1 GHz quasi Spitzenwert 37 dB mV/m

Legende

HINWEIS: Die Geräte müssen entsprechend den Hinweisen des Handbuchs für TSX DG KBL• installiert und verkabelt werden.

⁽¹⁾ Diese Prüfung wird außerhalb des Schaltschranks, mit auf einem Metallgitter befestigten Geräten und Kabeln entsprechend den Empfehlungen des Handbuchs TSX DG KBL• ausgeführt.

^{*:} Prüfungen, die gemäß EU-Direktiven vorgeschrieben sind

Unempfindlichkeit gegen Klimaschwankungen

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene		
trockene Wärme	IEC60068-2-2 Bd	60°C/16 h (G.O.) 40°C/16 h (G.G.)		
Kälte	IEC60068-2-1 Ad	0°C/16 h		
Ständige feuchte Wärme	IEC60068-2-30 Ca	60°C/93 % rF/96 h (G.O.) 40°C/93 % rF/96 h (G.G.)		
Zyklische feuchte Wärme	IEC60068-2-30 Db	(55°C G.O./40°C G.G.); - 25°C/93 - 95% rF 2 Zyklen: 12 h - 12 h		
Zyklische Temperaturschwankungen	IEC60068-2-14 Nb	0°C; -60°C/5 Zyklen: 6 h - 6 h (G.O.) 0°C; -40°C/5 Zyklen: 6 h - 6 h (G.G.)		
Überhitzung	IEC61131-2 UL508 CSA22-2 Nr. 142	Umgebungstemperatur: 60°C		
Legende				
G.O.: Gerät offen G.G.: Gerät geschlossen rF: relative Feuchtigkeit				

Unempfindlichkeit gegen mechanische Einflüsse

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene		
Sinusförmige Vibration	IEC60068-2-6 Fc	3 - 100 Hz/1 mm Amplitude/0,7 Gn Dauerfestigkeit: rf/90 min /Achse (Q Grenzwert) < 10 3 - 150 Hz/1,5 mm/2 Gn Dauerfestigkeit: 10 Zyklen (1 Oktave/min)		
Stöße, Sinushalbwelle	IEC60068-2-27 Ea	15 Gn x 11 ms 3 Stöße/Richtung/Achse		
Legende				
rf: Resonanzfrequenz Q: Ve	erstärkungskoeffizient			

Unempfindlichkeit gegen Klimaschwankungen

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene
Trockene Umgebungswärme außer Betrieb	IEC60068-2-2 Bb	70°C/96 h
Umgebungskälte außer Betrieb	IEC60068-2-1 Ab	-25°C/96 h
Feuchte Umgebungswärme außer Betrieb	IEC60068-2-30 dB	60°C; - 25°C/93 - 95% rF 2 Zyklen: 12 h - 12 h
Thermoschocks außerhalb des Betriebs	IEC60068-2-14 Na	-25°C; - 70°C 2 Zyklen: 3 h - 3 h

Unempfindlichkeit gegen mechanische Einflüsse

Datentabelle:

Bezeichnung der Prüfung	Normen	Ebene
Freier Fall	IEC60068-2-32 Ed	10 cm/2 Fälle
Freier Fall aus kontrollierter Position	IEC60068-2-31 Ec	30° oder 10 cm/2 Fälle
Zufälliger freier Fall mit konditioniertem Material	IEC60068-2-32, Verfahren 1	1 m/5 Fälle

Schutzbehandlung für Premium-Steuerungen

Allgemeines

Die Steuerungen Premium und Atrium entsprechen den **TC**-Anforderungen (Behandlung für alle Klimabedingungen).

Für die Installation in einem industriellen Produktionsbereich oder in einer Umgebung, die der **TH**-Behandlung (Behandlung bei Umgebungen mit hoher Temperatur und Feuchtigkeit) entspricht, müssen Premium-Steuerungen zumindest in Schutzgehäusen des Typs IP54 integriert sein, die laut Normen IEC 60664 und NF C 20 040 vorgeschrieben sind.

Die Premium-Steuerungen selbst haben den Schutzindex IP20. Sie können darum ohne Gehäuse an Orten mit beschränktem Zugang installiert werden, deren Verunreinigungsgrad nicht über 2 liegt (Steuerungsraum ohne Maschinen und Staub erzeugende Produktionsabläufe).

Die Atrium-Karte ist für die Integration in einen Host-PC vorgesehen. Deshalb muss das Host-Gerät den Schutzindex IP20 gewährleisten.

A VORSICHT

GEFAHR DES VERLUSTS DES SCHUTZINDEX IP20

Laut Schutzindex IP20 eines Racks müssen die nicht belegten Modulsteckplätze durch eine Schutzabdeckung des Typs TSX RKA 02 geschützt werden.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Teil II

Premium-Prozessoren TSX P57/TSX H57

Gegenstand dieses Abschnitts

In diesem Abschnitt werden die Premium-Prozessoren TSX P57/TSX H57 und ihre Funktion beschrieben.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
6	Prozessoren TSX P57/TSX H57: Überblick	83
7	Prozessoren TSX P57/TSX H57: Installation	99
8	Prozessoren TSX P57/TSX H57: Diagnose	119
9	Prozessor TSX P57 0244	147
10	Prozessor TSX P57 104	149
11	Prozessor TSX P57 154	151
12	Prozessor TSX P57 1634	153
13	Prozessor TSX P57 204	155
14	Prozessor TSX P57 254	157
15	Prozessor TSX P57 2634	159
16	Prozessor TSX P57 304	161
17	Prozessor TSX P57 354	163
18	Prozessor TSX P57 3634	165
19	Prozessor TSX P57 454	167
20	Prozessor TSX P57 4634	169
21	Prozessor TSX P57 554	171
22	Prozessor TSX P57 5634	173
23	Prozessor TSX P57 6634	175
24	Prozessoren TSX H57 24M	177
25	Prozessoren TSX H57 44M	179
26	Premium-Prozessor TSX P57/TSX H57: Allgemeine technische Daten	181
27	Prozessorleistung	187

Kapitel 6

Prozessoren TSX P57/TSX H57: Überblick

Inhalt dieses Kapitels

Dieses Kapitel enthält einen Überblick über die Prozessoren TSX P57/TSX H57.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Allgemeine Informationen	84
Physische Beschreibung der Prozessoren TSX P57/TSX H57	86
Echtzeituhr	89
Katalog der TSX 57-Prozessoren	92
Datengröße an Premium- und Atrium-Steuerungen	96

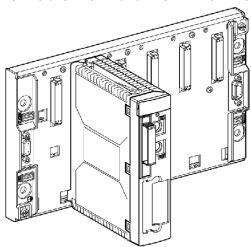
Allgemeine Informationen

Einleitung

Es steht Ihnen eine breit gefächerte Palette von TSX P57/TSX H57-Prozessoren mit verbesserter Leistung und Kapazität zur Verfügung, die besser auf Ihre unterschiedlichen Bedürfnisse zugeschnitten sind.

Allgemeines

Prozessoren des Typs **TSX P57/TSX H57** können in Racks des Typs TSX RKY... (siehe Seite 368) integriert werden.


Liste der P57 TSX/P57 H57-Prozessoren:

- Prozessor TSX P57 0244, TSX P57 104, TSX P57 1634, TSX P57 154,
- Prozessor TSX P57 204, TSX P57 254, TSX P57 2634,
- Prozessor TSX P57 304, TSX P57 354, TSX P57 3634,
- Prozessor TSX P57 454, TSX P57 4634,
- Prozessor TSX P57 554, TSX P57 5634,
- Prozessor TSX P57 6634.
- Prozessor TSX H57 24M, TSX H57 44M

HINWEIS: Die Prozessoren der Familien 20, 30, 40 und 50 verfügen über integrierte Prozesssteuerungsfunktionen.

Abbildung

TSX P57/TSX H57 in einem TSX RKY 8EX-Rack:

Funktionen

Die TSX P57/TSX H57-Premium-Prozessoren verwalten eine komplette Steuerungsstation bestehend aus:

- digitalen Eingangs-/Ausgangsmodulen,
- analogen Eingangs-/Ausgangsmodulen,
- spezifischen Modulen (Zählen, Achssteuerung, Einzelschrittsteuerung, Kommunikation usw.), die sich in einem oder mehreren, an den X-Bus angeschlossenen Racks befinden.

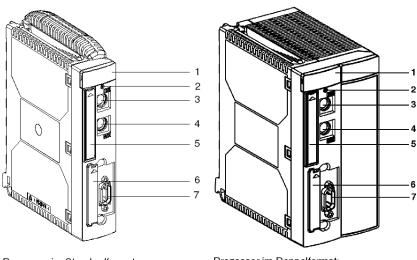
Tabelle der Prozessoren TSX P57/TSX H57

In der folgenden Tabelle finden Sie alle Prozessoren der Serie TSX P57/TSX H57.

Typ TSX	Bauform	Maximale	Maximale Speichergröße			Integrierte Fipio-	Integrierte	
		Anzahl der	Interner	PCMCIA		Masterverbindung	Ethernet-	
		digitalen Ein-/Ausgänge pro Rack	RAM	Daten	Programm		Verbindung	
P57 0244 (1)	einfach	256	96 KB	96 KB	128 KB	-	-	
P57 104	einfach	512	96 KB	96 KB	224 KB	-	-	
P57 1634	doppelt	512	96 KB	96 KB	224 KB	-	Х	
P57 154	einfach	512	96 KB	96 KB	224 KB	Х	-	
P57 204	doppelt	1024	160 KB	160 KB	768 KB	-	-	
P57 254	doppelt	1024	192 KB	192 KB	768 KB	Х	-	
P57 2634	doppelt	1024	160 KB	160 KB	768 KB	-	Х	
P57 304	doppelt	1024	192 KB	192 KB	1792 KB	-	-	
P57 354	doppelt	1024	224 KB	224 KB	1792 KB	Х	-	
P57 3634	doppelt	1024	192 KB	192 KB	1792 KB	-	Х	
P57 454	doppelt	2048	320 KB	440 KB	2048 KB	Х	-	
P57 4634	doppelt	2048	320 KB	440 KB	2048 KB	-	Х	
P57 554	doppelt	2048	1024 KB	1024 KB	7168 KB	Х	-	
P57 5634	doppelt	2048	1024 KB	1024 KB	7168 KB	-	Х	
P57 6634	doppelt	2048	640 KB	896 KB	4096 KB	-	Х	
H57 24M	doppelt	1024	192 KB	192 KB	768 KB	-	Х	
H57 44M	doppelt	2048	440 KB	440 KB	2048 KB	-	Х	

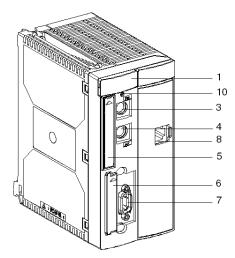
Legende

(1) Prozessor auch in Version Konfiguration (siehe Seite 25) erhältlich.

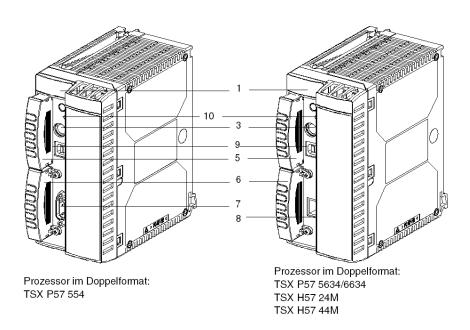

X: verfügbar

-: nicht verfügbar

Physische Beschreibung der Prozessoren TSX P57/TSX H57


Abbildung

In diesen Abbildungen sind die verschiedenen Elemente eines TSX P57/TSX H57-Prozessor-moduls (Standard oder doppelt) gekennzeichnet:



Prozessor im Standardformat: TSX P57 0244/104/154

Prozessor im Doppelformat: TSX P57 204/254/304/354/454

Prozessor im Doppelformat: TSX P57 1634/2634/3634/4634

Beschreibung

In dieser Tabelle werden die Elemente eines Prozessormoduls beschrieben.

Nummer	Funktion
1	Anzeigetafel mit 4 oder 5 Anzeige-LEDs.
2	Taste zum Auswurf der PCMCIA-Karte und zur Speicherung der SRAM-Dateien. Die Taste muss vor Entnahme der Karte gedrückt werden. Der Status der Anfrage wird von einer LED angezeigt.
3	PG-Anschluss (TER-Steckverbinder (8-poliger DIN-Ministecker)): Zum Anschluss eines FTX- oder eines PC-kompatiblen Terminals oder um die Steuerung über das Isolierungsgehäuse TSX P ACC 01 an den Uni-Telway-Bus anzuschließen. Über diesen Anschluss erfolgt die Versorgung (5 V) der angeschlossenen Peripheriegeräte (im Rahmen der Leistungsfähigkeit des Versorgungsmoduls).
4	PG-Anschluss (AUX-Steckverbinder (8-poliger DIN-Ministecker)): Zum Anschluss eines Peripheriegeräts (Station, Bedienpult oder Drucker) mit eigener Versorgung (keine Spannungsversorgung über diesen Anschluss).
5	Steckplatz für eine Speichererweiterungskarte im PCMCIA-Format, Typ 1. Bei fehlender Speicherkarte ist dieser Steckplatz mit einer Abdeckung ausgestattet, die unbedingt montiert bleiben muss, um den Steckplatz vor Staub zu schützen. Hinweis: Der Metallkontakt des Kartenhalters wurde entfernt.
6	Steckplatz für eine Kommunikationskarte im PCMCIA-Format, Typ 3, mit der ein Fipway-Kommunikationskanal, ein Fipio-Agent, Uni-Telway, eine serielle Schnittstelle, Modbus, Modbus Plus, usw. an den Prozessor angeschlossen werden kann. In diesen Steckplatz passt ebenfalls eine SRAM-Karte zur Speicherung von Dateien (nur für TSX 57 554\5634\6634\24M\44M). Bei fehlender Kommunikationskarte ist dieser Steckplatz mit einer Abdeckung versehen. TSC H57 24M und 44M bieten keine Unterstützung für PCMCIA-Kommunikationskarten.
7	9-poliger SUB-D-Stecker zum Anschluss eines Fipio-Masterbusses. Dieser Steckverbinder ist nur bei den Prozessoren TSX P57 •54 vorhanden.
8	RJ-45-Steckverbinder zum Anschluss an das Ethernet.
9	USB-Port
10	 Taste RESET (mit Bleistiftspitze betätigen), löst bei Betätigung einen Kaltstart der Steuerung aus. Prozessor im Normalbetrieb: Kaltstart in STOP oder in RUN abhängig vom konfigurierten Verfahren. Prozessor im Fehlerzustand: Forcierter Start im STOP-Modus.

HINWEIS: Die Anschlüsse (**TER**) und (**AUX**) verwenden standardmäßig einen Master-Unit-Telway-Kommunikationsmodus mit 19.200 Baud und können für den Slave-Uni-Telway- oder für den ASCII-Zeichenmodus konfiguriert werden.

Echtzeituhr

Auf einen Blick

Jeder Prozessor (Premium oder Atrium) hat eine gesicherte Echtzeituhr, die Folgendes verwaltet:

- Aktuelles Datum und aktuelle Uhrzeit
- Datum und Uhrzeit, wann die Applikation zum letzten Mal gestoppt wurde

Datum und Uhrzeit werden auch dann verwaltet, wenn der Prozessor ohne Netzspannung ist, vorausgesetzt jedoch, dass:

- Der Prozessor Premium mit eingesetztem Versorgungsmodul im Rack arbeitet und eine Backup-Batterie eingesetzt ist
- Der Atrium-Prozessor mit einer Backup-Batterie ausgerüstet ist

Aktuelles Datum und aktuelle Uhrzeit

Der Prozessor aktualisiert das aktuelle Datum und die aktuelle Uhrzeit in den Systemwörtern %SW49 bis %SW53; diese Daten sind BCD-kodiert.

Systemwörter	Höchstwertiges Byte	Niederwertiges Byte
%SW49:	00	Wochentage von 1 bis 7 (1 für Montag und 7 für Sonntag)
%SW50	Sekunden (0 bis 59)	00
%SW51	Stunden (0 bis 23)	Minuten (0 bis 59)
%SW52	Monate (1 bis 12)	Monatstage (1 bis 31)
%SW53	Jahrhundert (0 bis 99)	Jahr (0 bis 99)
%SW70		Woche (1 bis 52)

HINWEIS: %SW49 ist schreibgeschützt und kann nur gelesen werden.

Zugriff auf Datum und Uhrzeit

Sie können auf Datum und Uhrzeit zugreifen über:

- Das Debugfenster des Prozessors
- Das Programm
 - O Lesen: Systemwörter %SW49 bis %SW53, wenn Systembit %S50 = 0 ist
 - Sofortige Aktualisierung: Schreiben der Systemwörter %SW50 bis %SW53, wenn das Systembit %S50 = 1 ist
 - Inkrementelle Aktualisierung: Mit dem Systemwort %SW59 können Datum und Uhrzeit feldweise auf der Basis des aktuellen Werts eingestellt werden, wenn das Systembit %S59
 1 ist, oder es kann eine globale Inkrementierung/Dekrementierung durchgeführt werden.

Tabelle der Bitwerte

Bit0 = 1 inkrementiert global Datum und Uhrzeit (1)	Bit8 = 1 dekrementiert global Datum und Uhrzeit (1)
Bit1 = 1 inkrementiert die Sekunden	Bit9 = 1 dekrementiert die Sekunden
Bit2 = 1 inkrementiert die Minuten	Bit10 = 1 dekrementiert die Minuten
Bit3 = 1 inkrementiert die Stunden	Bit11 = 1 dekrementiert die Stunden
Bit4 = 1 inkrementiert die Tage	Bit12 = 1 dekrementiert die Tage
Bit5 = 1 inkrementiert die Monate	Bit13 = 1 dekrementiert die Monate
Bit6 = 1 inkrementiert die Jahre	Bit14 = 1 dekrementiert die Jahre
Bit7 = 1 inkrementiert die Jahrhunderte	Bit15 = 1 dekrementiert die Jahrhunderte

(1) Alle Felder werden aktualisiert.

HINWEIS: Der Prozessor verwaltet den Übergang von Winter- auf Sommerzeit nicht automatisch.

Datum und Uhrzeit, wann die Applikation zum letzten Mal gestoppt wurde

Datum und Uhrzeit, wann die Applikation zum letzten Mal gestoppt wurde, sind in BCD-Format in den Systemwörtern %SW54 bis %SW58 gespeichert.

Systemwörter	Höchstwertiges Byte	Niederwertiges Byte
%SW54:	Sekunden (0 bis 59)	00
%SW55	Stunden (0 bis 23)	Minuten (0 bis 59)
%SW56	Monate (1 bis 12)	Monatstage (1 bis 31)
%SW57	Jahrhundert (0 bis 99)	Jahr (0 bis 99)
%SW58	Wochentag (1 bis 7)	Grund, warum die Applikation das letzte Mal gestoppt wurde

- Zugriff auf Datum und Uhrzeit, wann die Applikation das letzte Mal gestoppt wurde: Durch Lesen der Systemwörter %SW54 bis %SW58
- Grund, warum die Applikation das letzte Mal gestoppt wurde:
 Durch Lesen des niederwertigen Bytes des Systemworts %SW58 (in BCD-Format gespeicherter Wert)

Tabelle Systemwort %SW58

%SW58 = 1	Applikation geht in STOP über
%SW58 = 2	Applikation wurde wegen Softwarefehler gestoppt
%SW58 = 4	Netzausfall oder Betätigung der Taste RESET des Versorgungsmoduls
%SW58 = 5	Stopp aufgrund eines Hardwarefehlers
%SW58 = 6	Stopp der Applikation bei Anweisung HALT

Katalog der TSX 57-Prozessoren

Katalog der Prozessoren TSX P570244/104/1634/154/

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Prozessoren TSX P57 0244, TSX P57 104, TSX P57 1634 und TSX P57 154 angegeben.

Referenz		TSX P 57 0244	TSX P 57 104	TSX P 57 1634	TSX P 57 154
Anzahl der Racks	TSX RKY 12 EX	1	2	2	2
	TSX RKY 4EX/6EX/8EX	1	4	4	4
Anzahl der	Mit TSX RKY 12 EX	10	21	21	21
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	6	27	27	27
Anzahl der	Digitale E/A im Rack	256	512	512	512
Kanäle	Analoge E/A	12	24	24	24
	Spezifische Module (Zählen, Achssteuerung usw.)	4	8	8	8
Anzahl der Anschlüsse	Netz (Fipway, ETHWAY/TCP-IP, Modbus Plus)	1	1	1	1
	Fipio-Master, Anzahl der Geräte	-	-	-	63
	Ethernet	-	-	1	-
	Feldbus (InterBus-S, Profibus)	0	0	0	0
	CANopen	1	1	1	1
	AS-i-Geber/Stellglied	1	2	2	2
Speichergröße	Intern	96 KB	96 KB	96 KB	96 KB
	Erweiterung	128 KB	224 KB	224 KB	224 KB

Katalog der Prozessoren TSX P57204/254/2634

In der folgenden Tabelle sind die wichtigsten technischen Daten (maximale Werte) der Prozessoren TSX P57 204, TSX P57 254 und TSX P57 2634 aufgeführt.

Referenz		TSX P 57 204	TSX P 57 254	TSX P 57 2634
Anzahl der Racks	TSX RKY 12 EX	8	8	8
	TSX RKY 4EX/6EX/8EX	16	16	16
Anzahl der	Mit TSX RKY 12 EX	87	87	87
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	111	111	111
Anzahl der Kanäle	Digitale E/A im Rack	1024	1024	1024
	Analoge E/A	80	80	80
	Spezifische Module (Zählen, Achssteuerung usw.)	24	24	24
Anzahl der Anschlüsse	Netz (Fipway, ETHWAY/TCP-IP, Modbus Plus)	1	1	1
	Fipio-Master, Anzahl der Geräte	-	127	-
	Ethernet	-	-	1
	Feldbus (InterBus-S, Profibus)	1	1	1
	CANopen	1	1	1
	AS-i-Geber/Stellglied	4	4	4
Speichergröße	Intern	160 KB	192 KB	160 KB
	Erweiterung	768 KB	768 KB	768 KB

Katalog der Prozessoren TSX P57304/354/3634/454/4634

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Prozessoren TSX P57 304, TSX P 57 354, TSX P57 3634, TSX P57 454 und TSX P57 4634 aufgeführt.

Referenz		TSX P 57 304	TSXP57 354	TSX P 57 3634	TSX P 57 454	TSX P 57 4634
Anzahl der Racks	TSX RKY 12 EX	8	•	•	•	•
	TSX RKY 4EX/6EX/8EX	16 87				
Anzahl der	Mit TSX RKY 12 EX	07				
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	111				
Anzahl der Kanäle	Digitale E/A im Rack	1024	1024	1024	2048	2048
	Analoge E/A	128	128	128	256	256
	Spezifische Module (Zählen, Achssteuerung usw.)	32	32	32	64	64
Anzahl der Anschlüsse	Netzwerk: Fipway, ETHWAY/TCP-IP, Modbus Plus	3	3	3	4	4
	Fipio-Master, Anzahl der Geräte	-	127	-	127	-
	Ethernet	-	-	1	-	1
	Feldbus (InterBus-S, Profibus)	3	3	3	4	4
	CANopen	1	1	1	1	1
	AS-i-Geber/Stellglied	8	8	8	8	8
Speichergröße	Intern	192 KB	224 KB	192 KB	440 KB	440 KB
	Erweiterung	1792 KB	1792 KB	1792 KB	2048 KB	2048 KB

Katalog der Prozessoren TSX H57 24M/44M

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Prozessoren TSX H57 24M und TSX H57 44M aufgeführt.

Referenz		TSX H57 24M	TSX H57 44M		
Anzahl der Racks	TSX RKY 12 EX	8			
	TSX RKY 4EX/6EX/8EX	16			
Anzahl der	Mit TSX RKY 12 EX	87	87		
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	111			
Anzahl der Kanäle	Digitale E/A im Rack	1024	2048		
	Analoge E/A	80	256		
	Spezifische Module (Zählen, Achssteuerung, Bewegung, Wiegen)	0	0		
	Modbus	24	64		

Referenz		TSX H57 24M	TSX H57 44M
Anzahl der Anschlüsse	Netzwerk: FIPWAY, ETHWAY/TCP-IP, Modbus Plus	0	
	Ethernet	2	4
	Feldbus (InterBus-S, Profibus)	0	
	CANopen	0	
	AS-i-Geber/Stellglied	0	
Speichergröße	Intern	192 KB	440 KB
	Erweiterung	768 KB	2048 KB

Katalog der Prozessoren TSX P57554/5634/6634

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Prozessoren TSX P57 554 und TSX P 57 5634 angegeben.

Referenz		TSX P 57 554	TSX P 57 5634	TSX P 57 6634
Anzahl der Racks	TSX RKY 12 EX	8	8	8
	TSX RKY 4EX/6EX/8EX	16	16	16
Anzahl der	Mit TSX RKY 12 EX	87	87	87
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	111	111	111
Anzahl der Kanäle	Digitale E/A im Rack	2048	2048	2048
	Analoge E/A	512	512	512
	Spezifische Module (Zählen, Achssteuerung usw.)	64	64	64
Anzahl der Anschlüsse	Netzwerk: Fipway, ETHWAY/TCP-IP, Modbus Plus	4	4	4
	Fipio-Master, Anzahl der Geräte	127		
	Ethernet		1	1
	Feldbus (InterBus-S, Profibus)	5	5	5
	CANopen	1	1	1
	AS-i-Geber/Stellglied	8	8	8
Speichergröße	Intern	1024 KB	1024 KB	2048 KB
	Erweiterung	7168 KB	7168 KB	4096 KB

Datengröße an Premium- und Atrium-Steuerungen

Auf einen Blick

Je nach verwendetem Prozessor ist die maximale Größe der lokalisierten und nicht lokalisierten Daten unterschiedlich.

Größe der lokalisierten Daten

Maximale Größe der lokalisierten Daten nach Prozessortyp:

Objekttyp	Adresse	Max. Wert/Stan- dardwert für TSX P57 0244/104/ 154/1634	Max. Wert/Stan- dardwert für TSX P57 204/254/2634, TSX PCI 57 204 und TSX H57 24M	Max. Wert/Stan- dardwert für TSX P57 304/354/3634 und TSX PCI 57 354	Max. Wert/Stan- dardwert für TSX P57 454/4634 und TSX H57 44M	Max. Wert/Stan- dardwert für TSX P57 554/5634	Max. Wert/Stan- dardwert für TSX P57 6634
Interne Bits	%Mi	3692/256	8056/512	16250/512	32634/512	32634/512	32634/512
Ein-/ Ausgangsbits	%I/Qr.m.c	(1)	(1)	(1)	(1)	(1)	(1)
Systembits	%Si	128	128	128	128	128	128
Interne Wörter	%MWi	32464/512	32464/1024	32464/1024	32464/1024	65232/2048	65232/2048
Konstante Wörter	%KWi	32760/128	32760/256	32760/256	32760/256	32760/256	32760/256
Systemwörter	%SWi	168	168	168	168	168	168

⁽¹⁾ abhängig von der deklarierten Hardwarekonfiguration (E/A-Module, AS-interface-Konfiguration).

Größe der nicht lokalisierten Daten

Maximale Größe der nicht lokalisierten Daten nach Prozessortyp:

Objekttyp	Größe für TSX P57 0244/104/154/1634	Größe für TSX P57 204/2634/254/304/354/3634 und TSX PCI 57 204/354	Größe für TSX P57 454/4634/554/5634/6634 und TSX H57 24M/44M
Elementare Datentypen (EDT) Abgeleitete Datentypen (DDT)	begrenzt auf 32 Kilobyte	begrenzt auf 64 Kilobyte	Unbegrenzt (1)
Daten der DFB- und EFB- Funktionsbausteine	Die Größe jeder Instanz ist auf 64 Kilobyte begrenzt, die Anzahl der Instanzen ist unbegrenzt (1).	Die Größe jeder Instanz ist auf 64 Kilobyte begrenzt, die Anzahl der Instanzen ist unbegrenzt (1).	Die Größe einer Instanz und die Anzahl der Instanzen sind unbegrenzt (1).

⁽¹⁾ Die Grenze ist von der Größe des internen Speichers (siehe Seite 92) der Steuerung abhängig.

Kapitel 7

Prozessoren TSX P57/TSX H57: Installation

Gegenstand dieses Kapitels

In diesem Kapitel wird die Installation der Prozessormodule TSX P57/TSX H57 und der PCMCIA-Erweiterungskarte beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

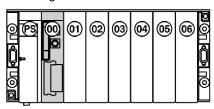
Thema	Seite
Positionierung eines Prozessormoduls	100
Prozessormodule montieren	102
Installation der Module neben den Prozessoren TSX P57 0244/104/154	104
Standard-Speicherkarten für SPS	105
Speicherkarten des Typs Applikation/Dateien und des Typs Speicherung von Dateien	108
Vorgehensweise zum Einsetzen/Entfernen einer PCMCIA-Speichererweiterungskarte an einer Premium-SPS	112
Einbau/Ausbau der PCMCIA-Speichererweiterungskarten im TSX P57/TSX H57-Prozessor	114

Positionierung eines Prozessormoduls

Einleitung

Bei der Positionierung eines Prozessormoduls in einem Rack gibt es zwei Möglichkeiten:

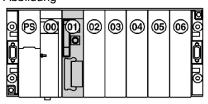
- Positionierung eines Prozessormoduls im Standardformat
- Positionierung eines Prozessormoduls im Doppelformat


Positionierung eines Prozessormoduls im Standardformat

Ein Prozessormodul im Standardformat wird immer am Rack **TSX RKY..** mit der Adresse 0 und in Position 00 oder 01 eingesetzt, je nachdem, ob das Rack mit einem Versorgungsmodul im Standard- oder im Doppelformat ausgestattet ist.

Rack mit Versorgungsmodul im Standardformat: TSX PSY 2600/1610.

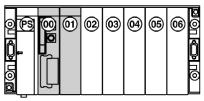
In diesem Fall wird das Prozessormodul in Position 00 eingesetzt (Vorzugsposition) oder in Position 01, wobei in letzterem Fall die Position 00 frei bleiben muss.


Abbildung

Rack mit Versorgungsmodul im Doppelformat: TSX PSY 3610/5500/5520/8500.

In diesem Fall belegt das Versorgungsmodul zwei Positionen (PS und 00), und der Prozessor ist in Position 01 eingesteckt.

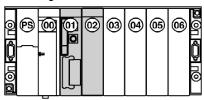
Abbildung


Positionierung eines Prozessormoduls im Doppelformat

Ein Prozessormodul im Doppelformat wird immer am Rack **TSX RKY..** mit der Adresse 0 und in den Positionen 00 und 01 oder den Positionen 01 und 02 eingesetzt, je nachdem, ob das Rack mit einem Versorgungsmodul im Standard- oder im Doppelformat ausgestattet ist.

Rack mit Versorgungsmodul im Standardformat: TSX PSY 2600/1610.

In diesem Fall wird das Prozessormodul in Position 00 und 01 eingesetzt (Vorzugsposition) oder in Position 01 und 02, wobei in letzterem Fall die Position 00 frei bleiben muss.


Abbildung

Rack mit Versorgungsmodul im Doppelformat: TSX PSY 3610/5500/5520/8500.

In diesem Fall belegt das Versorgungsmodul zwei Positionen (PS und 00), und der Prozessor ist in Position 01 und 02 eingesetzt.

Abbildung

HINWEIS: Das Rack, in das der Prozessor eingesetzt ist, hat immer die Adresse 0.

Prozessormodule montieren

Einleitung

Die Montage und Demontage der Prozessormodule ist mit der Montage und Demontage anderer Module identisch, mit der einzigen Ausnahme, dass diese nicht unter Spannung erfolgen darf.

Einbau eines Prozessormoduls in ein Rack

Führen Sie folgende Schritte durch:

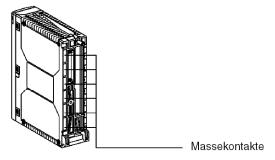
Schritt	Aktion	Abbildung
1	Schieben Sie die Passstifte auf der Rückseite des Moduls in die Zentrierlöcher im unteren Teil des Racks (Ziffer 1).	
2	Schwenken Sie das Modul, um es in Kontakt mit dem Rack zu bringen (Nummer 2).	
3	Befestigen Sie das Prozessormodul am Rack, indem Sie die Schraube im oberen Bereich des Moduls anziehen (Nummer 3).	

HINWEIS: Das Montieren und Entfernen von Prozessormodulen ist identisch mit dem Montieren anderer Module.

HINWEIS: Maximales Anzugsmoment: 2.0. N.m.

HINWEIS

MÖGLICHE BESCHÄDIGUNG DES MODULS


Prozessormodule dürfen nur bei ausgeschalteter Stromversorgung des Racks montiert werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

Erdungsmodule

Prozessormodule werden mit Metallplatten auf der Rückseite des Moduls geerdet. Bei eingesetztem Modul stehen diese Metallplatten in Kontakt mit dem Metall des Racks. Dies stellt den Masseanschluss bereit.

Abbildung

Installation der Module neben den Prozessoren TSX P57 0244/104/154

A WARNUNG

ÜBERHITZUNG DES MODULS

Das neben den Prozessoren TSX P57 0244/104/154 positionierte Modul darf keine Verlustleistung von mehr als:

- 10 W für eine Umgebungstemperatur von 60 °C und von
- 16 W für eine Umgebungstemperatur von 25 °C aufweisen.

Im gegenteiligen Fall muss es in einem anderen Steckplatz des Racks installiert werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Wenn beispielsweise der Prozessor in Steckplatz 1 des Racks installiert ist:

- kann ein Modul des Typs TSX CTY 2A mit einer maximalen Verlustleistung von 6 W neben dem Prozessor installiert werden, was dem Steckplatz 2 entspricht,
- muss ein Modul des Typs TSX CTY 4A mit einer maximalen Verlustleistung von 11,5 W in einem anderen Steckplatz als dem Steckplatz 2 installiert werden.

Standard-Speicherkarten für SPS

Standard-Speicherkarten

Es wird zwischen 2 Typen von Standard-Speicherkarten unterschieden:

- Speichererweiterungskarten mit gesichertem RAM.
- Speichererweiterungskarten des Typs Flash Eprom.

Speichererweiterungskarten mit geschütztem RAM:

Diese Karten werden insbesondere beim Erstellen und Debuggen eines Anwendungsprogramms verwendet. Sie ermöglichen sämtliche Übertragungs- und Änderungsdienste der angeschlossenen Anwendung.

Der Speicherinhalt wird durch eine in der Speicherkarte integrierte, herausnehmbare Batterie geschützt.

Flash Eprom-Speichererweiterungskarten:

Diese Karten werden verwendet, wenn der Debug-Vorgang für das Anwendungsprogramm abgeschlossen ist. Sie ermöglichen ausschließlich eine globale Übertragung der Anwendung. Eine Batteriesicherung ist bei dieser Karte nicht erforderlich.

Hinweis: Gehen Sie wie folgt vor, um die Erstellung einer Animationstabelle im Onlinemodus unter Verwendung einer Flash Eprom-Speicherkarte zu aktivieren:

- 1 Klicken Sie auf Extras → Projekteinstellungen
- 2 Deaktivieren Sie das Kontrollkästchen Animationstabelle auf der Registerkarte Generieren

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG - PCMCIA-KARTENSCHUTZ

Eine Änderung der Position des Schreibschutz-Schalters der PCMCIA-Karten muss unbedingt bei ausgeschalteter Steuerung erfolgen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Bestellreferenzen der Speichererweiterungskarten vom Typ RAM

Folgende Tabelle gibt an, inwieweit die Karten mit den Prozessoren kompatibel sind:

Artikelnummern	Typ/Kapazität		Maximale durch die Prozessoren unterstützte Speicherkapazität						
	Anwendung	Datei	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57.204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4	
TSX MRP P 128K	RAM 128 KB	0	Begrenzt auf 128 KB	Gesamt	Gesamt	Gesamt	Gesamt	-	
TSX MRP P 224K	RAM 224 KB	0	Begrenzt auf 128 KB	Gesamt	Gesamt	Gesamt	Gesamt	-	
TSX MRP P 384K	RAM 384 KB	0	Begrenzt auf 128 KB	Begrenzt auf 224 KB	Gesamt	Gesamt	Gesamt	-	

Bestellreferenzen der Speichererweiterungskarten vom Typ Flash Eprom

Folgende Tabelle gibt an, inwieweit die Karten mit den Prozessoren kompatibel sind:

Artikelnummern	Typ/Kapazität		Maximale durch die Prozessoren unterstützte Speicherkapazität						
	Anwendung	Datei	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57.204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4	
TSX MFP P 128K	Flash Eprom 128 KB	0	Begrenzt auf 128 KB	Gesamt	Gesamt	Gesamt	Gesamt	-	
TSX MFP P 224K	Flash Eprom 224 KB	0	Begrenzt auf 128 KB	Gesamt	Gesamt	Gesamt	Gesamt	-	
TSX MFP P 384K	Flash Eprom 384 KB	0	Begrenzt auf 128 KB	Begrenzt auf 224 KB	Gesamt	Gesamt	Gesamt	-	
TSX MFP P 512K	Flash Eprom 512 KB	0	Begrenzt auf 128 KB	Begrenzt auf 224 KB	Gesamt	Gesamt	Gesamt	Gesamt	
TSX MFP P 001M	Flash Eprom 1024 KB	0	Begrenzt auf 128 KB	Begrenzt auf 224 KB	Begrenzt auf 768 KB	Gesamt	Gesamt	Gesamt	

TSX MFP P 002M	Flash Eprom 2048 KB	0	Begrenzt auf 224 KB	Begrenzt auf 768 KB	Gesamt	Gesamt	Gesamt
TSX MFP P 004M	Flash Eprom 4096 KB	0	Begrenzt auf 224 KB	Begrenzt auf 768 KB	Begrenzt auf 1792 KB	Begrenzt auf 2048 KB	Gesamt

HINWEIS: Speicherkapazität: K8 = Kilobyte.

Alle PCMCIA-Karten können in jeden Prozessor eingesetzt werden, ausgenommen die Prozessoren TSX P57 554/5634/6634, die die Karten mit geringer Kapazität (TSX MRP P 128/224/384/K und TSX MFP P 128/224/384/K) nicht unterstützen.

Die verwendbare Größe der Anwendung ist entsprechend den technischen Daten des Prozessors begrenzt.

Speicherkarten des Typs Applikation/Dateien und des Typs Speicherung von Dateien

Speicherkarten des Typs Anwendung + Dateien

Diese Karten verfügen zusätzlich zum herkömmlichen Applikationsspeicherbereich (Programm + Konstanten) über einen Dateibereich, in dem die Daten pro Programm archiviert und wiederhergestellt werden können.

Applikationsbeispiele:

- Automatische Speicherung der Applikationsdaten und Remote-Abfrage über Modemverbindung.
- Speicherung von Herstellungsformeln

Es werden zwei Typen von Speicherkarten angeboten:

- Speichererweiterungskarte des Typs Gesicherter RAM: Anwendung + Dateien. Der Speicher wird durch eine auswechselbare und in diese Speicherkarte integrierbare Batterie gesichert.
- Speichererweiterungskarte des Typs Flash Eprom: Anwendung + Dateien. In diesem Fall befindet sich der Datenspeicherbereich im gesicherten RAM, was voraussetzt, dass dieser Kartentyp mit einer Backup-Batterie ausgestattet ist.

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG - PCMCIA-KARTENSCHUTZ

Eine Änderung der Position des Schreibschutz-Schalters der PCMCIA-Karten muss unbedingt bei ausgeschalteter Steuerung erfolgen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Karten für anspruchsvolle Umgebungsbedingungen

Diese Karten wurden speziell für die Verwendung unter rauen Umgebungsbedingungen entwickelt. Bei diesen Karten handelt es sich um TSX MRP C 001MC, TSX MRP C 003MC und TSX MRP C 007MC, deren Eigenschaften mit denen der Karten TSX MRP C 001M, TSX MRP C 003M und TSX MRP C 007M identisch sind.

Referenznummern der Karten

In der folgenden Tabelle finden Sie die Referenznummern der Speichererweiterungskarten des Typs Applikation + Dateien sowie Angaben zur Kompatibilität dieser Karten mit den Prozessoren:

Artikelnum-	Technologie	Kapazität		Maximale	ale durch die Prozessoren unterstützte Speicherkapazitä				rkapazität
mern		Applikati- onsbereich	Dateibe- reich (RAM- Typ)	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57.204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSXP57 5•4 TSXP57 6•4
TSX MRP	RAM	448 KB			Begrenzt	Gesamt	Gesamt	Gesamt	-
C 448K (1)	Fehler	192 KB	256 KB		auf 224/ 256 KB				
	Grenzwerte	96 bis 448 KB	0 bis 352 KB		250 KB				
TSX MRP	RAM	768 KB			Begrenzt	Gesamt	Gesamt	Gesamt	Gesamt
C 768K (1)	Fehler	512 KB	256 KB		auf 224/ 256 KB				
	Grenzwerte	192 bis 768 KB	0 bis 576 KB		230 KB				
TSX MRP	RAM		Begrenzt	Begrenzt	Gesamt	Gesamt	Gesamt		
C 001M (1)	Fehler	768 KB	256 KB		256 KB 768/	auf	3		
	Grenzwerte	192 bis 1024 KB	0 bis 832 KB			832 KB			
TSX MRP	RAM	1792 KB			Begrenzt	Begrenzt auf 768/ 1600 KB	Gesamt	Gesamt	Gesamt
C 001M7 (1)	Fehler	512 KB	1280 KB		auf 224/ 256 KB				
	Grenzwerte	192 bis 1792 KB	0 bis 1600 KB						
TSX MRP	RAM	2048 KB			Begrenzt	Begrenzt	Begrenzt auf 1792/ 1856 KB	Gesamt	Gesamt
C 002M (1)	Fehler	768 KB	1280 KB		auf 224/ 256 KB	auf 768/			
	Grenzwerte	192 bis 2048 KB	0 bis 1856 KB		230 KB	1856 KB			
TSX MRP	RAM	3072K16			Begrenzt	Begrenzt	Begrenzt	Begrenzt	Gesamt
C 003M (1)	Fehler	1024 KB	2048 KB		auf 224/ 256 KB	auf 768/	1792/ 20	auf 2048/	
	Grenzwerte	192 bis 3072 KB	0 bis 2880 KB		200 ND	2880 KB		2880 KB	
TSX MRP	RAM	7168 KB			Begrenzt	Begrenzt auf 768/ 6976 KB	Begrenzt	Begrenzt	Begrenzt
C 007M (1)	Fehler	2048 KB	5120 KB		auf 224/ 256 KB		auf 1792/	auf 2048/	auf 4096/
	Grenzwerte	192 bis 7168 KB	0 bis 6976 KB		256 KB		6976 KB	2048/ 6976 KB	6976 KB

Artikelnum-	Technologie	Kapazität		Maximale	Maximale durch die Prozessoren unterstützte Speicherkapazität				
mern		Applikati- onsbereich	Dateibe- reich (RAM- Typ)	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57.204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4
TSX MCP C 224K	Flash Eprom	224 KB	256 KB	Begrenzt auf 128/ 256 KB	Gesamt	Gesamt	Gesamt	Gesamt	-
TSX MCP C 512K	Flash Eprom	512 KB	512 KB	Begrenzt auf 128/ 256 KB	Begrenzt auf 224/ 256 KB	Gesamt	Gesamt	Gesamt	Gesamt
TSX MCP C 002M	Flash Eprom	2048 KB	1024 KB	Begrenzt auf 128/ 256 KB	Begrenzt auf 224/ 256 KB	Begrenzt auf 768/ 1024 KB	Begrenzt auf 1792/ 1024 KB	Gesamt	Gesamt

(1) Die Anwendungs- und Dateispeicherbereiche dieser PCMCIA-Karten weisen eine variable Kapazität auf.

HINWEIS: Speicherkapazität: K8 = Kilobyte

Notation der Grenzwerte: Die erste Zahl gibt die Grenze des Applikationsbereichs an, die zweite die Grenze des Dateibereichs. Beispiel: Begrenzt auf 224K/256K bedeutet einen auf 224 KB begrenzten Applikationsbereich und einen auf 256 KB begrenzten Dateibereich.

Alle PCMCIA-Karten können in jeden Prozessor eingesetzt werden, ausgenommen die Prozessoren TSX P57 554/5634/6634, die die Karten mit geringer Kapazität, nämlich TSX MCP C 224K und TSX MRP C 448K, nicht unterstützen.

Die verwendbare Größe der Anwendung ist entsprechend den technischen Daten des Prozessors begrenzt.

Speicherkarten des Typs Datei ohne Applikation

Diese Speicherkarten enthalten Daten. Sie verfügen nicht über einen Anwendungsbereich (Programm + Konstanten).

Diese Speichererweiterungskarten zur Speicherung von Dateien sind vom Typ gesicherter RAM. Der Speicher wird durch eine in der Speicherkarte integrierte, herausnehmbare Batterie gesichert.

Referenznummern der Karten

In der folgenden Tabelle finden Sie die Referenznummern der Speichererweiterungskarten des Typs Dateispeicherung ohne Applikation sowie Angaben zur Kompatibilität dieser Karten mit den Prozessoren:

Artikelnummern	Technologie	Kapazität		Maximale durch die Prozessoren unterstützte Speicherkapazität				
		Applikati- onsbereich	Dateibe- reich (RAM- Typ)	TSX P57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 454 TSX H57 44M	TSX P57 5•4 TSX P57 6•4
TSX MRP F 004M	RAM	4096 KB 0	4096 KB	-	4096 KB	4096 KB	4096 KB	4096 KB
TSX MRP F 008M	RAM	8192 KB 0	8192 KB	-	8192 KB	8192 KB	8192 KB	8192 KB

HINWEIS: Speicherkapazität: K8 = Kilobyte, M8 = Megabyte Alle PCMCIA-Karten können in jeden Prozessor eingesetzt werden, ausgenommen die Prozessoren der Familie TSX P57 1•4.

Vorgehensweise zum Einsetzen/Entfernen einer PCMCIA-Speichererweiterungskarte an einer Premium-SPS

Allgemeines

A VORSICHT

ZERSTÖRUNG DER MODULE

Wenn keine PCMCIA-Speichererweiterungskarte in die Premium-SPS eingesetzt ist, setzen Sie die Schutzabdeckung des vorderen Bedienfelds auf.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Fall der Steuerungen TSX P57 1•4 bis 4•4

Speicherkarten in Steckplatz A (oben)

Das Entfernen (oder Nichtvorhandensein) der Abdeckung oder der Speicherkarte und des Clips führt zu einem Stopp der SPS ohne Speicherung des Anwendungskontexts. Die Ausgänge der Module gehen in den Fehlermodus über.

Das Einsetzen der Abdeckung oder der Speicherkarte mit Clip führt zu einem Kaltstart der SPS.

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG

Stellen Sie sicher, dass die richtige Benutzeranwendung auf der Speicherkarte vorhanden ist, bevor Sie sie in die SPS einstecken.

Enthält das in der PCMCIA-Speicherkarte enthaltene Programm die Option RUN AUTO, startet der Prozessor nach dem Einstecken der Karte automatisch im RUN-Modus.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Speicherkarten in Steckplatz B (unten)

Die PCMCIA-Speicherkarte des Typs 3 sollte bei **ausgeschalteter** SPS in den Steckplatz B des Prozessors eingesetzt werden. Die Nichtbeachtung dieses Hinweises kann eine Fehlfunktion des Prozessors zur Folge haben.

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG - PCMCIA-KARTENSCHUTZ

Eine Änderung der Position des Schreibschutz-Schalters der PCMCIA-Karten muss unbedingt bei ausgeschalteter Steuerung erfolgen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

SPS des Typs TSX P57 5•4/TSX P57 6•4/TSX H57 24M/TSX H57 44M

Speicherkarten in Steckplatz A (oben)

Das Herausnehmen (oder Nichtvorhandensein) der Schutzabdeckung oder einer Speicherkarte für Daten oder Dateien (*) und Caddies hat keine Auswirkungen auf die Betriebsarten der SPS.

(*) In diesem Fall zeigen die Schreib-/Lesefunktionen der Speicherkarte einen Fehler an, wenn sich die Anwendung im Modus RUN befindet.

Das Entfernen (oder Nichtvorhandensein) der Speicherkarte, die die Anwendung enthält, mit ihrem Caddie führt zu einem Stopp der SPS ohne Speicherung des Anwendungskontexts. Die Ausgänge der Module gehen in den Fehlermodus über.

Das Einsetzen der Speicherkarte, auf der die Anwendung gespeichert ist, mit ihrem Caddie führt zu einem Kaltstart der SPS.

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG

Stellen Sie sicher, dass die richtige Benutzeranwendung auf der Speicherkarte vorhanden ist, bevor Sie sie in die SPS einstecken.

Enthält das in der PCMCIA-Speicherkarte enthaltene Programm die Option RUN AUTO, startet der Prozessor nach dem Einstecken der Karte automatisch im RUN-Modus.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Speicherkarten in Steckplatz B (unten)

Die PCMCIA-Speicherkarte mit ihrem Caddie kann bei **eingeschalteter** SPS in den Steckplatz B des Prozessors eingesetzt werden.

Einbau/Ausbau der PCMCIA-Speichererweiterungskarten im TSX P57/TSX H57-Prozessor

Einleitung

Zum Einsetzen der PCMCIA-Speicherkarte in ihren Steckplatz im Prozessormodul TSX P57 ist ein Halter oder im Fall der Prozessoren TSX P57 5•4/TSX H57•4 ein Caddie erforderlich.

Einsetzen der PCMCIA-Karten in die Prozessoren

Die folgende Tabelle gibt die möglichen Steckplätze für die verschiedenen PCMCIA-Kartentypen in den SPS-Prozessoren an:

PCMCIA-Karte	Steckplatz A (oben)	Steckplatz B (unten)
Standard: TSX MRPP• und MFPP•	Ja	Nein
Applikation und Dateien: TSX MRPC• und MCPC•	Ja	Nein
Daten oder Dateien: TSX MRPF•	Ja	Ja

Einbau der Karte im Halter

Die Speicherkarten (*) werden im Fall der Premium-SPS TSX P57 1•4 bis TSX P57 4•4 folgendermaßen im Halter eingebaut:

Schritt	Aktion	Abbildung
1	Positionieren Sie das Ende der Speicherkarte (Seite, die gegenüber der Anschlussbuchse liegt) zwischen den Führungsarmen des Halters. Die Orientierungspunkte (in Form von Dreiecken), die sowohl auf dem Halter als auch auf dem Etikett der Karte vorhanden sind, müssen auf derselben Seite liegen.	Orientierungspunkte
2	Schieben Sie die Speicherkarte bis zum Anschlag in den Halter. Diese bildet dann mit dem Halter eine Einheit.	Unverwechselbarkeitsvorricht ung mit einem Rand Anschlussbuchse Orientierungspunkte Unverwechselbarkeitsvorrichtung mit zwei Rändern Halter

(*) **Hinweis:** Dieser Einbau betrifft nur die TSX MRPF•-Karten des Typs Daten oder Dateien; siehe nachfolgend beschriebenes Einbauverfahren.

Einbau der TSX MRP F•-Karte im Extraktor

Die TSX MRP F•-Speicherkarten werden im Fall der Premium-Steuerungen TSX P57 1•4 bis TSX P57 4•4 folgendermaßen im Extraktor eingebaut, wenn sie in den Steckplatz B (unten) eingefügt werden sollen:

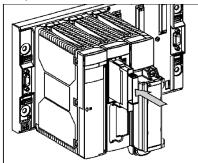
Schritt	Aktion	Abbildung Karte mit einer PV≤ 03 (1)	Abbildung Karte mit einer PV > 03 (1)		
1	Stellen Sie den Extraktor schräg zur Speicherkarte, indem Sie die beiden Nasen an der Karte in die beiden Schlitze am Extraktor schieben.	Nase	Nase		
2	Schieben Sie den Extraktor auf die Karte auf, bis diese komplett verriegelt ist.	Klick!	Klick!		
Legend	_egende				

(1): Die **Produktversion (PV)** ist auf dem Aufkleber auf der PCMCIA-Karte vermerkt.

Einlegen der Karte in den Caddie für TSX P 57 5•4/TSX H57•4

Befolgen Sie nachfolgend aufgeführte Schritte; diese sind für alle Kartentypen gültig:

Schritt	Aktion	Abbildung Karte mit einer PV ≤ 03 (1)	Abbildung Karte mit einer PV > 03 (1)		
1	Schieben Sie die Speicherkarte schräg in den Caddie ein und beachten Sie dabei die beiden Unverwechselbarkeitselemente.	Caddie Unverwechselbar keitvorrichtung	Caddie Unverwechselbark eitsvorrichtungen		
2	Schieben Sie die Speicherkarte bis zum Anschlag in den Caddie. Sie bildet dann mit dem Caddie eine Einheit.	Anschlussbuchse Klick!	Anschlussbuchse Klick!		
Legende	Legende				
	1): Die Produktversion (PV) ist auf dem Aufkleber auf der PCMCIA-Karte vermerkt.				


HINWEIS: Der Metallkontakt des oberen Caddies (Steckplatz A) wurde entfernt.

Einbau der Speicherkarte in die SPS

Um die Speicherkarte im Prozessor zu installieren, sind die folgenden Schritte auszuführen:

Schritt	Aktion
1	Entriegeln Sie die Schutzabdeckung und ziehen Sie diese nach vorne in Richtung SPS ab.
2	Setzen Sie die PCMCIA-Karte zusammen mit ihrem Halter (oder Caddie) in den freien Steckplatz ein. Schieben Sie den Halter (oder Caddie) zusammen mit der Karte bis zum Anschlag in den Steckplatz. Drücken Sie anschließend auf den Halter (oder Caddie), um die Karte anzuschließen.

Beispiel: Einsetzen der Karte in den Steckplatz A an den Prozessoren TSX 57 1-4 bis 4-4.

HINWEIS: Überprüfen Sie beim TSX 57 1-4\2-4\3-4\4-4, ob die mechanischen Unverwechselbarkeitsvorrichtungen richtig liegen:

- ein Rand nach oben,
- zwei Ränder nach unten.

Bei **TSX 57 5-4/TSX H57 -4M** -Prozessoren sorgen zwei Führungen für die richtige Positionierung der PCMCIA-Karte in ihrem Steckplatz.

HINWEIS: Wenn das im PCMCIA-Speichermodul enthaltene Programm die Option **RUN AUTO** enthält, startet der Prozessor automatisch im Modus **RUN**, nachdem das Speichermodul eingesetzt wurde.

Kapitel 8

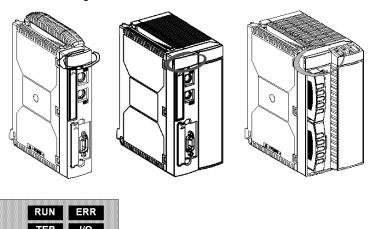
Prozessoren TSX P57/TSX H57: Diagnose

Gegenstand dieses Kapitels

In diesem Kapitel ist die Diagnose der Prozessoren des Typs TSX P57/TSX H57 beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:


Thema	Seite		
Anzeige	120		
Beim Austauschen eines Prozessors des Typs TSX P57/TSX H57 zu beachtende Vorsichtsmaßnahmen	122		
Auswechseln der Backup-Batterie des RAM-Speichers im TSX P57/TSX H57			
Austausch der Batterien einer PCMCIA-Speicherkarte			
Batterie-Lebensdauer für PCMCIA-Speicherkarten			
Vorgänge nach dem Drücken der RESET-Taste des Prozessors			
Fehlersuche anhand der Status-LEDs des Prozessors			
Nicht blockierende Fehler			
Blockierende Fehler			
Prozessor- bzw. Systemfehler	145		

FIP

Anzeige

Auf einen Blick

Fünf LED-Anzeigen auf der Vorderseite des Prozessors ermöglichen eine schnelle Diagnose des Status der Steuerung.

Beschreibung

In der folgenden Tabelle ist die Funktion jeder LED beschrieben.

LED-Anzeigen	Ein	Blinkend	Aus
RUN (grün)	Steuerung im Normalbetrieb, Ausführung des Programms	Steuerung in STOP oder blockierender Fehler der Software	Steuerung nicht konfiguriert: Applikation fehlt, ungültig oder nicht kompatibel
RUN (TSX H57) (grün)	SPS im Primär-Modus, vollständige Programmausführung	 2,5 s EIN, 500 ms AUS: SPS im Standby-Modus, nur die erste Section wird ausgeführt 500 ms EIN, 2,5 s AUS: SPS im Offline-Modus, keine Programmausführung 500 ms EIN, 500 ms AUS: SPS in STOP-Modus oder durch einen Softwarefehler blockiert 	Steuerung nicht konfiguriert: Applikation fehlt, ist ungültig oder nicht kompatibel
ERR (rot)	Prozessor- oder Systemfehler	 Steuerung nicht konfiguriert (Applikation fehlt, ungültig oder nicht kompatibel) Steuerung oder blockierender Fehler der Software Batteriefehler Speicherkarte X-Bus-Fehler 	Normaler Status, kein interner Fehler
E/A (rot)	Ein-/Ausgangsfehler eines Moduls, eines Kanals oder Konfigurationsfehler	X-Bus-Fehler	Normaler Status, kein interner Fehler
TER (gelb)	-	PG-Anschluss aktiv Die Blinkfrequenz ist verkehrsabhängig.	Anschluss inaktiv
FIP (gelb)	-	Anschluss Fipio-Bus aktiv Die Blinkfrequenz ist verkehrsabhängig.	Anschluss inaktiv

HINWEIS:

- Ein X-Bus-Fehler wird durch gleichzeitiges Blinken der LEDs ERR und I/O angezeigt.
- Die FIP-Anzeige ist nur in den Prozessoren TSX P57 x54 und TSX P57 x84 vorhanden.

Beim Austauschen eines Prozessors des Typs TSX P57/TSX H57 zu beachtende Vorsichtsmaßnahmen

Wichtig

A WARNUNG

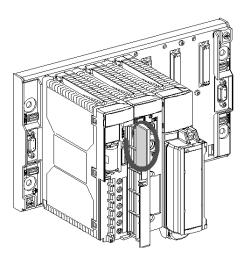
UNERWARTETER GERÄTEBETRIEB

Wenn der Prozessor TSX P57 durch einen anderen Prozessor ersetzt wird, der nicht leer ist (d. h. der Prozessor wurde bereits programmiert und enthält eine Anwendung), dann muss die Stromversorgung aller Steuereinheiten der SPS-Station unterbrochen werden.

Überprüfen Sie vor der Wiederherstellung der Stromversorgung der Steuereinheiten, dass der Prozessor die erforderliche Anwendung enthält.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Auswechseln der Backup-Batterie des RAM-Speichers im TSX P57/TSX H57

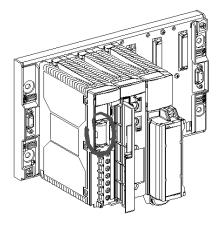

Einleitung

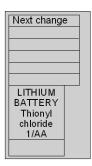
Diese Batterie im Versorgungsmodul TSX PSY... *(siehe Seite 264)* sichert den RAM-Speicher im Prozessor und die Echtzeituhr im Fall eines Stromausfalls. Die Batterie, die zusammen mit dem Versorgungsmodul geliefert wird, ist vom Benutzer einzusetzen.

Einsetzen der Batterie

Führen Sie folgende Schritte durch:

Schritt	Aktion
1	Öffnen Sie die Zugangsklappe, die sich auf der Vorderseite des Versorgungsmoduls befindet.
2	Legen Sie die Batterie in das dafür vorgesehene Batteriefach. Achten Sie darauf, dass Sie die Polaritäten entsprechend den eingravierten Angaben einhalten.
3	Schließen Sie die Zugangsklappe.




Auswechseln der Batterie

Die Batterie kann entweder jährlich vorbeugend ausgewechselt werden oder wenn die LED-Anzeige **BAT** aufleuchtet.

Halten Sie denselben Ablauf wie beim Einsetzen ein, und führen Sie die folgenden Schritte aus:

Schritt	Aktion
1	Öffnen Sie die Zugangsklappe zum Batteriefach.
2	Nehmen Sie die defekte Batterie aus dem Batteriefach heraus.
3	Setzen Sie die neue Batterie ein.
4	Schließen und verriegeln Sie die Zugangsklappe.

Wird während des Auswechselns der Batterie der Strom ausgeschaltet, wird der RAM-Speicher vom Prozessor gehalten, der lokal über eine eigene Sicherung verfügt.

HINWEIS: Damit Sie nicht vergessen, die Batterie auszuwechseln, sollten Sie sich das Datum notieren, an dem diese das nächste Mal ausgewechselt werden muss. Das Datum können Sie sich an der auf der Innenseite der Klappe vorgesehenen Stelle notieren.

Häufigkeit des Batteriewechsels

Lebensdauer der Backup-Batterie

Die Zeit, in der die Batterie ihre Sicherungsfunktion gegenüber dem RAM-Speicher im Prozessor und gegenüber dem Kalender aufrecht erhält, hängt von zwei Faktoren ab:

- Länge der Zeit, in der die Steuerung ohne Netzspannung ist und daher die Batterie benötigt
- Umgebungstemperatur, wenn die Steuerung ohne Netzspannung ist

Übersichtstabelle:

Umgebungstem	peratur bei OFF-Modus	≤ 30 °C	40 °C	50 °C	60 °C
Sicherungszeit	Steuerung 12 h/Tag spannungsfrei	5 Jahre	3 Jahre	2 Jahre	1 Jahr
	Steuerung: 1 h/Tag spannungsfrei	5 Jahre	5 Jahre	4,5 Jahre	4 Jahre

Prozessoreigene Sicherung

Die Prozessoren verfügen lokal über eine prozessoreigene Sicherung des RAM-Speichers und des Kalenders, die es ermöglichen:

die Batterie der Versorgung oder des Prozessors TSX P57/TSX H57 zu entnehmen.

Die Sicherungszeit hängt von der Umgebungstemperatur ab.

Vorausgesetzt, dass der Prozessor vorher unter Spannung war, variiert die garantierte Zeit auf folgende Art und Weise:

Umgebungstemperatur bei Trennung vom Netz	20 °C	30 °C	40 °C	50 °C
Sicherungszeit	2 h	45 min	20 min	8 min

Austausch der Batterien einer PCMCIA-Speicherkarte

Allgemeines

Die Speicherkarten:

- Standard-RAM TSX MRP P•
- RAM TSX MRP C• für Dateien und Anwendung und Flash EPROM TSX MCP C•
- Daten und Dateityp TSX MRP F•

sind mit den 2 Pufferbatterien TSX BAT M02 (Hauptbatterie) und TSX BAT M03 (Zusatzbatterie) ausgestattet, die ausgewechselt werden müssen.

Es sind zwei Methoden möglich:

- Eine präventive, die auf einem regelmäßigen Austausch der Batterien ohne vorherige Prüfung ihres Zustands basiert.
- Eine voraussehende, die auf dem von einem Systembit stammenden Signal basiert. Diese ist jedoch nur für bestimmte Speicherkarten möglich.

Vorbeugende Wartung

Diese Methode ist für alle Speicherkartenversionen und für alle Steuerungen gültig, die diese Karten verwenden (Premium, Quantum, Atrium). Wechseln Sie beide Batterien gemäß der Produktversion der PCMCIA-Karte, der Nutzung der SPS und der Gesamtnutzungszeit der Batterien (siehe Seite 130) aus. Welche Batterie zuerst ausgewechselt wird, ist ohne Bedeutung: Die Anwendung wird von der Speicherkarte aufrechterhalten. Vorgehensweise zum Auswechseln der Batterien: Siehe die mit den Speicherkarten verfügbaren Dienstanweisungen.

HINWEIS:

- Die Batterien dürfen nicht gleichzeitig aus dem Batteriefach entnommen werden. Eine Batterie gewährleistet die Sicherung der Anwendungen und der Daten, während die andere ausgetauscht wird.
- Installieren Sie die Batterien, wie in den folgenden Grafiken zu sehen ist, und beachten Sie die Polarität (+ und -).
- Die Speicherkarte darf nicht länger als 24 Stunden ohne ordnungsgemäß geladene Hauptbatterie verbleiben.
- Um die Hilfsbatterien zu sparen, können diese auch erst nach 1,5 Jahren ausgewechselt werden, denn das entspricht ihrer Nutzungsdauer. In diesem Fall ist bei bestimmten Speicherkarten daran zu denken, die Hilfsbatterie nicht erst alle 3 Jahre auszuwechseln.
- Die oben angegebene Nutzungsdauer wurde nach dem Worst-Case-Szenario berechnet: Umgebungstemperatur um die SPS von 60 °C, die SPS ist 21 % der zeit während des Jahres eingeschaltet (das entspricht einer 8-Stunden-Rotation pro Tag mit 30 Tagen Wartungsstopp pro Jahr).

Vorhersehende Methode

Es handelt sich um eine Wartung, die auf der Nutzung der Bits \\$S67 und \\$S75 und der ERR-LED an der Premium-Schnittstelle basiert. Diese Methode setzt voraus, dass die Hilfsbatterie präventiv alle 1,5 Jahre ausgewechselt wird. Sie ist nur möglich:

- mit Unity Pro ≥ 2.02.
 Unity Pro ist die vorherige Bezeichnung von Control Expert bis Version 13.1.
- wenn sich die Speicherkarte im oberen PCMCIA-Steckplatz von Premium- und Quantum-Prozessoren befindet.
- wenn sich die Speicherkarte im unteren PCMCIA-Steckplatz von Premium-Prozessoren der Baureihen TSX P57 4••, TSX P57 5•• und TSX P57 6•• sowie von Quantum-Prozessoren befindet.

Wenn das Systembit %S67 (Karte im oberen Steckplatz) oder %S75 (Karte im unteren Steckplatz) in den Status 1 wechselt oder wenn die ERR-LED auf der Vorderseite des Prozessors blinkt, zeigt dies an, dass die Hauptbatterie schwach ist. Sie haben 8 Tage, um die Batterie auszuwechseln, wie in der mit den Speicherkarten mitgelieferten Wartungsanleitung angegeben.

HINWEIS: Wenn die Steuerung länger als 8 Tage ausgeschaltet bleiben oder die Speicherkarte länger als 8 Tage aus dem Steckplatz entfernt werden muss und die Lebenszeit der Hauptbatterie überschritten wurde, sichern Sie die Anwendung in Control Expert.

Austauschen der Batterien

Gehen Sie vor wie folgt:

Schritt	Aktion
1	Entnehmen Sie die Karte aus ihrem Steckplatz (siehe Seite 114).
2	Lösen Sie die PCMCIA-Karte (siehe Seite 114) aus ihrem Halter (oder Caddie).
3	Halten Sie die PCMCIA-Karte so, dass Sie Zugriff auf das Batteriefach haben. Dieses befindet sich unten an der Karte ohne Steckverbinder.
4	Austausch der Batterie TSX BAT M02: Siehe Tabelle 1 Austausch der Batterie TSX BAT M03: Siehe Tabelle 2
5	Befestigen Sie die PCMCIA-Karte (siehe Seite 114) in ihrem Halter (oder Caddie).
6	Setzen Sie die Karte wieder in die Steuerung ein. (siehe Seite 114)

Vorgehensweise für die Batterie TSX BAT M02

Die folgende Tabelle zeigt die Vorgehensweise für den Austausch der Hauptbatterie:

Schritt	Aktion	Abbildung
1	Stellen Sie den Umschalter auf die Batterie TSX BAT M02 (Hauptbatterie/MAIN), um das Fach der Hauptbatterie öffnen zu können.	
2	Entnehmen Sie die verbrauchte Batterie aus ihrem Halter.	
3	Setzen Sie die neue Batterie unter Berücksichtigung der Polarität in den Halter ein.	
4	Setzen Sie den Halter mit der neuen Batterie in die Karte ein.	

Vorgehensweise für die Batterie TSX BAT M03

Die folgende Tabelle zeigt die Vorgehensweise für den Austausch der Hilfsbatterie:

Schritt	Aktion	Abbildung
1	Setzen Sie den Umschalter auf die Batterie TSX BAT M03 (Hilfsbatterie/AUX), um das Fach der Batterie öffnen zu können.	
2	Entnehmen Sie die verbrauchte Batterie aus ihrem Halter.	
3	Setzen Sie die neue Batterie unter Berücksichtigung der Polarität in den Halter ein.	+
4	Setzen Sie den Halter mit der neuen Batterie in die Karte ein.	

Batterie-Lebensdauer für PCMCIA-Speicherkarten

Zweck

Dieses Dokument enthält detaillierte Informationen über die Lebensdauer von Batterien in den PCMCIA-Speicherkarten. Die Einschätzung dieser Lebensdauer basiert auf den von den Komponentenherstellern bereitgestellten Daten.

Anwendungsbereich

Die Schätzwerte für die Lebensdauer sind von verschiedenen Parametern abhängig:

- RAM-PCMCIA-Speicherkarten,
- die drei verschiedenen Produktversionen (PV): PV1/2/3, PV4/5 und PV6,
- vier verschiedene Umgebungstemperaturen am Standort der SPS: 25/40/50/60 °C.
- die vier folgenden Nutzungsfälle der PCMCIAs: 100 %, 92 %, 66 % und 33 % der Zeit, in der die Steuerung eingeschaltet war. Diese Werte entsprechen den folgenden Konfigurationen bei den Kunden:
 - 100 %: Die SPS ist das gesamte Jahr oder während 51 Wochen in Betrieb.
 - 92 %: Die SPS ist das gesamte Jahr mit Ausnahme eines Monats in Betrieb (die Ausschaltung erfolgt zu Wartungszwecken).
 - 66 %: Die SPS ist das gesamte Jahr mit Ausnahme aller Wochenenden sowie eines Monats in Betrieb (die Ausschaltung während dieses Monats erfolgt zu Wartungszwecken).
 - 33 %: Die SPS ist das gesamte Jahr 12 Stunden am Tag mit Ausnahme aller Wochenenden sowie eines Monats in Betrieb (die Ausschaltung während dieses Monats erfolgt zu Wartungszwecken).
- einen Mindestwert und einen typischer Lebenszykluswert:
 - Die Mindestwerte werden von den ungünstigsten Eigenschaften abgeleitet, die von den Komponentenherstellern angegeben werden. Die tatsächliche Lebensdauer liegt in der Regel über diesem Wert.
 - Der typische Wert wird von den typischen Merkmalen der Komponente abgeleitet.

Lebensdauer der Hauptbatterie von PCMCIA-Speicherkarten der Produktversion 1/2/3 (in Jahren)
In der folgenden Tabelle ist die Lebensdauer der Hauptbatterie TSX BAT M01(PV1/2/3) für PCMCIA-Speicherkarten angegeben:

PV1/2/3	Für eine Umgebungstemperatur der SPS von 25 °C									
	100 % Betriebszeit		92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)			
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min		
TSX MCP C 224K	7,10	7,10	6,71	5,58	5,77	3,36	4,82	2,20		
TSX MCP C 512K	7,10	7,10	6,71	5,65	5,77	3,46	4,82	2,28		
TSX MCP C 002M	7,10	7,10	6,29	3,82	4,66	1,57	3,45	0,88		
TSX MRP P128K	7,10	7,10	6,71	5,58	5,77	3,36	4,82	2,20		
TSX MRP P224K	7,10	7,10	6,71	5,65	5,77	3,46	4,82	2,28		
TSX MRP P384K	7,10	7,10	6,71	4,99	5,77	2,60	4,82	1,59		
TSX MRP C448K	7,10	7,10	6,29	4,65	4,66	2,24	3,45	1,33		
TSX MRP C768K	7,10	7,10	6,29	4,65	4,66	2,24	3,45	1,33		
TSX MRP C001M	7,10	7,10	5,91	3,95	3,91	1,66	2,68	0,94		
TSX MRP C01M7	7,10	7,10	5,58	3,43	3,36	1,32	2,20	0,72		
TSX MRP C002M	7,10	7,10	5,91	3,34	3,91	1,26	2,68	0,69		
TSX MRP C003M	7,10	7,10	5,58	2,60	3,36	0,87	2,20	0,47		
TSX MRP C007M	7,10	7,10	4,56	1,59	2,16	0,46	1,27	0,24		
TSX MRP F004M	7,10	7,10	5,58	2,60	3,36	0,87	2,20	0,47		
TSX MRP F008M	7,10	7,10	4,56	1,59	2,16	0,46	1,27	0,24		

PV1/2/3	Für eine	Für eine Umgebungstemperatur der SPS von 40 °C								
	100 % Betriebszeit		(·		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)			
	Typisch	Min	Typisch Min		Typisch	Min	Typisch	Min		
TSX MCP C 224K	3,55	3,55	3,54	3,20	3,54	2,46	3,48	1,87		
TSX MCP C 512K	3,55	3,55	3,54	3,22	3,54	2,51	3,48	1,93		
TSX MCP C 002M	3,55	3,55	3,42	2,53	3,08	1,34	2,71	0,82		
TSX MRP P128K	3,55	3,55	3,54	3,20	3,54	2,46	3,48	1,87		
TSX MRP P224K	3,55	3,55	3,54	3,22	3,54	2,51	3,48	1,93		
TSX MRP P384K	3,55	3,55	3,54	3,00	3,54	2,02	3,48	1,41		
TSX MRP C448K	3,55	3,55	3,42	2,87	3,08	1,80	2,71	1,20		

PV1/2/3	Für eine l	Für eine Umgebungstemperatur der SPS von 40 °C								
	100 % Betriebszeit		92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)			
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min		
TSX MRP C768K	3,55	3,55	3,42	2,87	3,08	1,80	2,71	1,20		
TSX MRP C001M	3,55	3,55	3,30	2,59	2,74	1,40	2,21	0,87		
TSX MRP C01M7	3,55	3,55	3,20	2,35	2,46	1,15	1,87	0,69		
TSX MRP C002M	3,55	3,55	3,30	2,31	2,74	1,11	2,21	0,65		
TSX MRP C003M	3,55	3,55	3,20	1,93	2,46	0,80	1,87	0,45		
TSX MRP C007M	3,55	3,55	2,84	1,31	1,75	0,44	1,16	0,24		
TSX MRP F004M	3,55	3,55	3,20	1,93	2,46	0,80	1,87	0,45		
TSX MRP F008M	3,55	3,55	2,84	1,31	1,75	0,44	1,16	0,24		

PV1/2/3	Für eine	Umgebung	stemperatu	r der SPS vo	n 50 °C			
				92 % Betriebszeit (30 Tage Wartung)		riebszeit Fage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	2,35	2,35	2,42	2,25	2,69	2,02	3,10	1,75
TSX MCP C 512K	2,35	2,35	2,42	2,26	2,69	2,05	3,10	1,81
TSX MCP C 002M	2,35	2,35	2,36	1,90	2,42	1,20	2,47	0,80
TSX MRP P128K	2,35	2,35	2,42	2,25	2,69	2,02	3,10	1,75
TSX MRP P224K	2,35	2,35	2,42	2,26	2,69	2,05	3,10	1,81
TSX MRP P384K	2,35	2,35	2,42	2,15	2,69	1,71	3,10	1,34
TSX MRP C448K	2,35	2,35	2,36	2,09	2,42	1,55	2,47	1,15
TSX MRP C768K	2,35	2,35	2,36	2,09	2,42	1,55	2,47	1,15
TSX MRP C001M	2,35	2,35	2,31	1,93	2,20	1,25	2,05	0,85
TSX MRP C01M7	2,35	2,35	2,25	1,80	2,02	1,04	1,75	0,67
TSX MRP C002M	2,35	2,35	2,31	1,77	2,20	1,01	2,05	0,64
TSX MRP C003M	2,35	2,35	2,25	1,54	2,02	0,75	1,75	0,44
TSX MRP C007M	2,35	2,35	2,07	1,12	1,51	0,42	1,11	0,23
TSX MRP F004M	2,35	2,35	2,25	1,54	2,02	0,75	1,75	0,44
TSX MRP F008M	2,35	2,35	2,07	1,12	1,51	0,42	1,11	0,23

PV1/2/3	Für eine	Umgebung	stemperatu	r der SPS vo	n 60 °C			
				92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		iebszeit (12 30 Tage
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	1,57	1,57	1,63	1,56	1,91	1,54	2,40	1,50
TSX MCP C 512K	1,57	1,57	1,63	1,56	1,91	1,56	2,40	1,54
TSX MCP C 002M	1,57	1,57	1,61	1,38	1,77	1,01	2,00	0,74
TSX MRP P128K	1,57	1,57	1,63	1,56	1,91	1,54	2,40	1,50
TSX MRP P224K	1,57	1,57	1,63	1,56	1,91	1,56	2,40	1,54
TSX MRP P384K	1,57	1,57	1,63	1,51	1,91	1,36	2,40	1,19
TSX MRP C448K	1,57	1,57	1,61	1,47	1,77	1,25	2,00	1,04
TSX MRP C768K	1,57	1,57	1,61	1,47	1,77	1,25	2,00	1,04
TSX MRP C001M	1,57	1,57	1,58	1,40	1,65	1,05	1,72	0,78
TSX MRP C01M7	1,57	1,57	1,56	1,33	1,54	0,90	1,50	0,63
TSX MRP C002M	1,57	1,57	1,58	1,31	1,65	0,87	1,72	0,60
TSX MRP C003M	1,57	1,57	1,56	1,18	1,54	0,67	1,50	0,42
TSX MRP C007M	1,57	1,57	1,47	0,92	1,23	0,40	1,00	0,23
TSX MRP F004M	1,57	1,57	1,56	1,18	1,54	0,67	1,50	0,42
TSX MRP F008M	1,57	1,57	1,47	0,92	1,23	0,40	1,00	0,23

Lebensdauer der Hauptbatterie von PCMCIA-Speicherkarten der Produktversion 4/5 (in Jahren) In der folgenden Tabelle ist die Lebensdauer der Hauptbatterie TSX BAT M02 (PV4/5) für PCMCIA-Speicherkarten angegeben:

PV4/5	Für eine Umgebungstemperatur der SPS von 25 °C							
	100 % Betriebszeit		92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	7,22	7,22	7,15	6,27	7,02	4,48	6,76	3,23
TSX MCP C 512K	7,22	7,22	7,15	6,33	7,02	4,59	6,76	3,35
TSX MCP C 002M	7,22	7,22	6,83	4,69	5,90	2,25	4,96	1,33
TSX MRP P128K	7,22	7,22	7,15	6,27	7,02	4,48	6,76	3,23
TSX MRP P224K	7,22	7,22	7,15	6,33	7,02	4,59	6,76	3,35
TSX MRP P384K	7,22	7,22	7,15	5,77	7,02	3,57	6,76	2,36
TSX MRP C448K	7,22 7,22		6,83	5,47	5,90	3,12	4,96	1,99

PV4/5	Für eine Umgebungstemperatur der SPS von 25 °C								
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		iebszeit (12 30 Tage	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MRP C768K	7,22	7,22	6,83	5,47	5,90	3,12	4,96	1,99	
TSX MRP C001M	7,22	7,22	6,54	4,82	5,09	2,37	3,91	1,41	
TSX MRP C01M7	7,22	7,22	6,27	4,30	4,48	1,91	3,23	1,10	
TSX MRP C002M	7,22	7,22	6,54	4,20	5,09	1,83	3,91	1,04	
TSX MRP C003M	7,22	7,22	6,27	3,41	4,48	1,29	3,23	0,71	
TSX MRP C007M	7,22	7,22	5,39	2,21	3,02	0,70	1,91	0,37	
TSX MRP F004M	7,22	7,22	6,27	3,41	4,48	1,29	3,23	0,71	
TSX MRP F008M	7,22	7,22	5,39	2,21	3,02	0,70	1,91	0,37	

PV4/5	Für eine	Umgebung	stemperatu	r der SPS vo	n 40 °C			
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		riebszeit Fage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	4,63	4,63	4,72	4,32	5,09	3,61	5,59	2,94
TSX MCP C 512K	4,63	4,63	4,72	4,35	5,09	3,68	5,59	3,04
TSX MCP C 002M	4,63	4,63	4,58	3,51	4,48	2,00	4,30	1,28
TSX MRP P128K	4,63	4,63	4,72	4,32	5,09	3,61	5,59	2,94
TSX MRP P224K	4,63	4,63	4,72	4,35	5,09	3,68	5,59	3,04
TSX MRP P384K	4,63	4,63	4,72	4,08	5,09	2,99	5,59	2,20
TSX MRP C448K	4,63	4,63	4,58	3,93	4,48	2,68	4,30	1,87
TSX MRP C768K	4,63	4,63	4,58	3,93	4,48	2,68	4,30	1,87
TSX MRP C001M	4,63	4,63	4,45	3,58	4,00	2,10	3,49	1,35
TSX MRP C01M7	4,63	4,63	4,32	3,29	3,61	1,73	2,94	1,06
TSX MRP C002M	4,63	4,63	4,45	3,23	4,00	1,66	3,49	1,01
TSX MRP C003M	4,63	4,63	4,32	2,74	3,61	1,21	2,94	0,69
TSX MRP C007M	4,63	4,63	3,89	1,91	2,60	0,67	1,80	0,36
TSX MRP F004M	4,63	4,63	4,32	2,74	3,61	1,21	2,94	0,69
TSX MRP F008M	4,63	4,63	3,89	1,91	2,60	0,67	1,80	0,36

PV4/5	Für eine	Umgebung	stemperatu	r der SPS vo	n 50 °C			
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		riebszeit Tage	33 % Betriebszeit (1: Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	2,58	2,58	2,69	2,56	3,12	2,50	3,89	2,39
TSX MCP C 512K	2,58	2,58	2,69	2,56	3,12	2,53	3,89	2,45
TSX MCP C 002M	2,58	2,58	2,64	2,25	2,88	1,61	3,22	1,16
TSX MRP P128K	2,58	2,58	2,69	2,56	3,12	2,50	3,89	2,39
TSX MRP P224K	2,58	2,58	2,69	2,56	3,12	2,53	3,89	2,45
TSX MRP P384K	2,58	2,58	2,69	2,47	3,12	2,18	3,89	1,88
TSX MRP C448K	2,58	2,58	2,64	2,41	2,88	2,01	3,22	1,63
TSX MRP C768K	2,58	2,58	2,64	2,41	2,88	2,01	3,22	1,63
TSX MRP C001M	2,58	2,58	2,60	2,28	2,68	1,67	2,74	1,23
TSX MRP C01M7	2,58	2,58	2,56	2,15	2,50	1,42	2,39	0,98
TSX MRP C002M	2,58	2,58	2,60	2,13	2,68	1,38	2,74	0,94
TSX MRP C003M	2,58	2,58	2,56	1,90	2,50	1,05	2,39	0,66
TSX MRP C007M	2,58	2,58	2,40	1,46	1,97	0,62	1,58	0,35
TSX MRP F004M	2,58	2,58	2,56	1,90	2,50	1,05	2,39	0,66
TSX MRP F008M	2,58	2,58	2,40	1,46	1,97	0,62	1,58	0,35

PV4/5	Für eine	ür eine Umgebungstemperatur der SPS von 60 °C							
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		iebszeit (12 30 Tage	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MCP C 224K	1,75	1,75	1,84	1,78	2,21	1,88	2,95	2,00	
TSX MCP C 512K	1,75	1,75	1,84	1,78	2,21	1,90	2,95	2,04	
TSX MCP C 002M	1,75	1,75	1,82	1,62	2,09	1,33	2,55	1,06	
TSX MRP P128K	1,75	1,75	1,84	1,78	2,21	1,88	2,95	2,00	
TSX MRP P224K	1,75	1,75	1,84	1,78	2,21	1,90	2,95	2,04	
TSX MRP P384K	1,75	1,75	1,84	1,73	2,21	1,70	2,95	1,63	
TSX MRP C448K	1,75	1,75	1,82	1,71	2,09	1,59	2,55	1,44	
TSX MRP C768K	1,75	1,75	1,82	1,71	2,09	1,59	2,55	1,44	
TSX MRP C001M	1,75	1,75	1,80	1,64	1,98	1,37	2,24	1,11	

PV4/5	Für eine l	Für eine Umgebungstemperatur der SPS von 60 °C							
	100 % Betriebszeit		92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)		
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MRP C01M7	1,75	1,75	1,78	1,57	1,88	1,20	2,00	0,91	
TSX MRP C002M	1,75	1,75	1,80	1,56	1,98	1,17	2,24	0,87	
TSX MRP C003M	1,75	1,75	1,78	1,44	1,88	0,92	2,00	0,62	
TSX MRP C007M	1,75	1,75	1,70	1,17	1,56	0,57	1,40	0,34	
TSX MRP F004M	1,75	1,75	1,78	1,44	1,88	0,92	2,00	0,62	
TSX MRP F008M	1,75	1,75	1,70	1,17	1,56	0,57	1,40	0,34	

Lebensdauer der Hauptbatterie von PCMCIA-Speicherkarten der Produktversion 6 (in Jahren)

In der folgenden Tabelle ist die Lebensdauer der Hauptbatterie TSX BAT M02 (PV6) für PCMCIA-Speicherkarten angegeben:

PV6	Für eine	Umgebung	stemperatu	r der SPS vo	n 25 °C			
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		riebszeit Tage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MCP C 224K	7,2	7,2	7,2	6,3	7,0	4,5	6,8	3,2
TSX MCP C 512K	7,2	7,2	7,2	6,5	7,0	5,1	6,8	3,9
TSX MCP C 002M	7,2	7,2	6,8	5,8	5,9	3,6	5,0	2,4
TSX MRP P128K	7,2	7,2	7,2	6,3	7,0	4,5	6,8	3,2
TSX MRP P224K	7,2	7,2	7,2	6,5	7,0	5,1	6,8	3,9
TSX MRP P384K	7,2	7,2	7,2	6,5	7,0	5,1	6,8	3,9
TSX MRP C448K	7,2	7,2	6,8	5,8	5,9	3,6	5,0	2,4
TSX MRP C768K	7,2	7,2	6,8	5,8	5,9	3,6	5,0	2,4
TSX MRP C001M	7,2	7,2	6,5	5,2	5,1	2,8	3,9	1,7
TSX MRP C01M7	7,2	7,2	6,3	4,7	4,5	2,3	3,2	1,4
TSX MRP C002M	7,2	7,2	6,5	5,2	5,1	2,8	3,9	1,7
TSX MRP C003M	7,2	7,2	6,3	4,7	4,5	2,3	3,2	1,4
TSX MRP C007M	7,2	7,2	5,4	3,5	3,0	1,3	1,9	0,7
TSX MRP F004M	7,2	7,2	6,3	4,7	4,5	2,3	3,2	1,4
TSX MRP F008M	7,2	7,2	5,4	3,5	3,0	1,3	1,9	0,7

PV6	Für eine	Für eine Umgebungstemperatur der SPS von 40 °C							
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		riebszeit Tage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)		
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MCP C 224K	4,6	4,6	4,7	4,3	5,1	3,6	5,6	2,9	
TSX MCP C 512K	4,6	4,6	4,7	4,4	5,1	4,0	5,6	3,5	
TSX MCP C 002M	4,6	4,6	4,6	4,1	4,5	3,0	4,3	2,2	
TSX MRP P128K	4,6	4,6	4,7	4,3	5,1	3,6	5,6	2,9	
TSX MRP P224K	4,6	4,6	4,7	4,4	5,1	4,0	5,6	3,5	
TSX MRP P384K	4,6	4,6	4,7	4,4	5,1	4,0	5,6	3,5	
TSX MRP C448K	4,6	4,6	4,6	4,1	4,5	3,0	4,3	2,2	
TSX MRP C768K	4,6	4,6	4,6	4,1	4,5	3,0	4,3	2,2	
TSX MRP C001M	4,6	4,6	4,4	3,8	4,0	2,4	3,5	1,6	
TSX MRP C01M7	4,6	4,6	4,3	3,5	3,6	2,0	2,9	1,3	
TSX MRP C002M	4,6	4,6	4,4	3,8	4,0	2,4	3,5	1,6	
TSX MRP C003M	4,6	4,6	4,3	3,5	3,6	2,0	2,9	1,3	
TSX MRP C007M	4,6	4,6	3,9	2,8	2,6	1,2	1,8	0,7	
TSX MRP F004M	4,6	4,6	4,3	3,5	3,6	2,0	2,9	1,3	
TSX MRP F008M	4,6	4,6	3,9	2,8	2,6	1,2	1,8	0,7	

PV6	Für eine	Für eine Umgebungstemperatur der SPS von 50 °C							
	100 % Betriebszeit			92 % Betriebszeit (30 Tage Wartung)		riebszeit Tage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)		
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MCP C 224K	2,6	2,6	2,7	2,6	3,1	2,5	3,9	2,4	
TSX MCP C 512K	2,6	2,6	2,7	2,6	3,1	2,7	3,9	2,7	
TSX MCP C 002M	2,6	2,6	2,6	2,5	2,9	2,2	3,2	1,9	
TSX MRP P128K	2,6	2,6	2,7	2,6	3,1	2,5	3,9	2,4	
TSX MRP P224K	2,6	2,6	2,7	2,6	3,1	2,7	3,9	2,7	
TSX MRP P384K	2,6	2,6	2,7	2,6	3,1	2,7	3,9	2,7	
TSX MRP C448K	2,6	2,6	2,6	2,5	2,9	2,2	3,2	1,9	
TSX MRP C768K	2,6	2,6	2,6	2,5	2,9	2,2	3,2	1,9	
TSX MRP C001M	2,6	2,6	2,6	2,4	2,7	1,9	2,7	1,5	

PV6	Für eine l	Für eine Umgebungstemperatur der SPS von 50 °C						
	100 % Betriebszeit		92 % Betriebszeit (30 Tage Wartung)		66 % Betriebszeit (WE, 30 Tage Wartung)		33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)	
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min
TSX MRP C01M7	2,6	2,6	2,6	2,3	2,5	1,6	2,4	1,2
TSX MRP C002M	2,6	2,6	2,6	2,4	2,7	1,9	2,7	1,5
TSX MRP C003M	2,6	2,6	2,6	2,3	2,5	1,6	2,4	1,2
TSX MRP C007M	2,6	2,6	2,4	1,9	2,0	1,1	1,6	0,7
TSX MRP F004M	2,6	2,6	2,6	2,3	2,5	1,6	2,4	1,2
TSX MRP F008M	2,6	2,6	2,4	1,9	2,0	1,1	1,6	0,7

PV6	Für eine l	Für eine Umgebungstemperatur der SPS von 60 °C							
	100 % Be			92 % Betriebszeit (30 Tage Wartung)		riebszeit Fage	33 % Betriebszeit (12 Std., WE, 30 Tage Wartung)		
	Typisch	Min	Typisch	Min	Typisch	Min	Typisch	Min	
TSX MCP C 224K	1,8	1,8	1,8	1,8	2,2	1,9	3,0	2,0	
TSX MCP C 512K	1,8	1,8	1,8	1,8	2,2	2,0	3,0	2,2	
TSX MCP C 002M	1,8	1,8	1,8	1,7	2,1	1,7	2,5	1,6	
TSX MRP P128K	1,8	1,8	1,8	1,8	2,2	1,9	3,0	2,0	
TSX MRP P224K	1,8	1,8	1,8	1,8	2,2	2,0	3,0	2,2	
TSX MRP P384K	1,8	1,8	1,8	1,8	2,2	2,0	3,0	2,2	
TSX MRP C448K	1,8	1,8	1,8	1,7	2,1	1,7	2,5	1,6	
TSX MRP C768K	1,8	1,8	1,8	1,7	2,1	1,7	2,5	1,6	
TSX MRP C001M	1,8	1,8	1,8	1,7	2,0	1,5	2,2	1,3	
TSX MRP C01M7	1,8	1,8	1,8	1,6	1,9	1,3	2,0	1,1	
TSX MRP C002M	1,8	1,8	1,8	1,7	2,0	1,5	2,2	1,3	
TSX MRP C003M	1,8	1,8	1,8	1,6	1,9	1,3	2,0	1,1	
TSX MRP C007M	1,8	1,8	1,7	1,4	1,6	0,9	1,4	0,6	
TSX MRP F004M	1,8	1,8	1,8	1,6	1,9	1,3	2,0	1,1	
TSX MRP F008M	1,8	1,8	1,7	1,4	1,6	0,9	1,4	0,6	

Minimale Lebensdauer der Hauptbatterie in einer ausgeschalteten SPS

In einer ausgeschalteten SPS beträgt die minimale Lebensdauer der Hauptbatterie in den PCMCIA-Karten der Produktversion 6 (sechs) Monate.

Lebensdauer der Hilfsbatterie

In den PCMCIA-Karten befindet sich die Hilfsbatterie TSX BATM 03. Unabhängig von den Nutzungsbedingungen und der Umgebungstemperatur beträgt die Lebensdauer der Hilfsbatterie:

- 5 Jahre in PV1/2/3
- 1,7 Jahre in PV4/5
- 5 Jahre in PV6

Vorgänge nach dem Drücken der RESET-Taste des Prozessors

Allgemein

Alle Prozessoren sind an der Vorderseite mit einer RESET-Taste ausgestattet, die bei Betätigung im RUN- bzw. STOPP-Modus zum Auslösen eines Kaltstarts der Steuerung mit dem auf der Speicherkarte bzw. im internen RAM enthaltenen Anwendungsprogramm führt. Der Start im RUN- oder STOPP-Modus wird bei der Konfiguration festgelegt.

Betätigen der RESET-Taste nach Erkennen eines Fehlers durch den Prozessor

Sobald der Prozessor einen Fehler erkennt, wird das Alarmrelais von Rack 0 (mit TSX 57-Prozessor) deaktiviert (Kontakt offen), die Ausgänge der Module gehen in Fehlerposition über oder werden – je nach der in der Konfiguration vorgenommenen Auswahl – in ihrer aktuellen Position gehalten. Durch de Betätigung der RESET-Taste wird die Steuerung in den STOP-Modus gezwungen, und sie führt einen Kaltstart durch.

HINWEIS: Bei Betätigung der RESET-Taste und während des Kaltstarts der Steuerung ist die Terminalverbindung nicht mehr aktiv.

Fehlersuche anhand der Status-LEDs des Prozessors

Allgemeines

Die LED-Anzeigen am Prozessor informieren den Benutzer über den Betriebsmodus der SRS und eventuelle Fehler.

Die von der Steuerung ermittelten Fehler betreffen:

- Schaltkreise der Steuerung und/oder deren Module interne Fehler
- von der Steuerung gesteuerte Prozesse bzw. Verkabelung externe Fehler
- Funktionieren der von der Steuerung ausgeführten Applikation interne bzw. externe Fehler

Fehlerermittlung

Die Fehlersuche erfolgt während des Starts (Autotest) bzw. während des Betriebs (Fehlersuche für die Mehrzahl der Hardware-Fehler), während des Austauschs mit den Modulen bzw. während der Ausführung einer Programmanweisung.

Bei bestimmten schwerwiegenden Fehlern ist ein Neustart der Steuerung erforderlich, bei anderen entscheidet der Benutzer je nach gewünschter Applikationsstufe über einen Neustart.

Es werden drei Fehlertypen unterschieden:

- nicht blockierende Fehler
- blockierende Fehler
- Prozessor- bzw. Systemfehler

Nicht blockierende Fehler

Allgemeines

Es handelt sich um eine Störung, die durch einen Eingangs-/Ausgangsfehler am X-Bus, am Fipio-Bus oder bei Ausführung einer Anweisung hervorgerufen wird. Die Störung kann vom Benutzerprogramm behandelt werden und verändert den Status der Steuerung nicht.

Nicht blockierende Fehler im Zusammenhang mit den Eingängen/Ausgängen

Ein nicht blockierender Fehler im Zusammenhang mit den Eingängen/Ausgängen wird folgendermaßen angezeigt:

- Die E/A-Status-Anzeige-LED des Prozessors leuchtet
- Die E/A-Status-Anzeige-LEDs der fehlerhaften Module leuchten (an X-Bus und an Fipio-Bus)
- Dem Kanal zugehörige Fehlerbits und -wörter:
 - O Eingänge/Ausgänge am X-Bus:
 - Bit %I<r>.<m>.<c>.ERR = 1 zeigt einen fehlerhaften Kanal an (impliziter Austausch) Wort %MW<r>.<m>.<c>.2 zeigt die Art des Kanalfehlers an (expliziter Austausch)
 - Eingänge/Ausgänge am Fipio-Bus:
 Bit %I\2.<e>\0.<m>.<c>.ERR = zeigt einen fehlerhaften Kanal an (impliziter Austausch)
 Wort %MW\2.<e>\0.<m>.<c>.2 zeigt die Art des Kanalfehlers an (expliziter Austausch)

• Zum Modul gehörende Fehlerbits und -wörter:

O Modul am X-Bus:

Bit %I<r>.<m>.MOD.ERR = 1 zeigt ein fehlerhaftes Modul an (impliziter Austausch) Wort %MW<r>.<m>.MOD.2 zeigt die Art des Modulfehlers an (expliziter Austausch)

Modul am Fipio-Bus:

Bit %I\2.<e>\0.0.MOD.ERR = 1 zeigt ein fehlerhaftes Modul an (impliziter Austausch) Wort %MW\2.<e>\0.0.MOD.2 zeigt die Art des Modulfehlers an (expliziter Austausch)

• Systembits:

%S10: E/A-Störung (an X-Bus und Fipio-Bus)

%S16: E/A-Störung (an X-Bus und Fipio-Bus) in der aktuellen Task

%S40 bis %S47: E/A-Fehler in den Racks mit der Adresse 0 bis 7 am X-Bus

Diagnosetabelle

Status-LE	Status-LED		Systembits	Fehler
RUN	ERR	I/O		
i	i	Ein	%S10	Ein-/Ausgangsfehler: Kanalversorgung gestört, Kanal getrennt, Modul nicht mit der Konfiguration konform, außer Betrieb, Modulversorgung gestört
i	i	Ein	%S16	Eingangs-/Ausgangsfehler in einer Task
i	i	Ein	%S40 bis %S47	Eingangs-/Ausgangsstörung auf der Ebene eines Racks (%S40: Rack 0,%S47: Rack 7)

Legende:

A: LED Ein

i: Status unbestimmt

Mit der Programmausführung verbundene nicht blockierende Fehler

Ein nicht blockierender Fehlers, der mit der Ausführung des Programms zusammenhängt, wird angezeigt, indem eines oder mehrere der Systembits %S15, %S18, %S20 auf 1 gesetzt werden.

Der Test und das Setzen dieser Systembits auf 0 erfolgt durch den Benutzer.

Diagnosetabelle

Status-LE	Status-LED		Systembits	Fehler
RUN	ERR	I/O		
Ein	i	i	%S15=1	Zeichenkettenverarbeitungsfehler
Ein	i	i	%S18=1	Kapazitätsüberlauf, Gleitkommafehler oder Division durch 0.
Ein	i	i	%S20=1	Index-Überlauf

Legende:

A: LED Ein

i: Status unbestimmt

HINWEIS: Die Diagnosefunktion des Programms, auf die über die Programmiersoftware oder das Bit %S78 zugegriffen werden kann, ermöglicht, dass bestimmte mit der Programmausführung verbundene nicht blockierende Fehler in blockierende Fehler umgewandelt werden. Die Art des Fehlers wird im Systemwort %SW 125 angegeben.

Blockierende Fehler

Allgemeines

Diese durch das Anwendungsprogramm hervorgerufenen Fehler führen dazu, dass das Programm nicht weiter ausgeführt werden kann. Sie führen jedoch nicht zu Fehlern im System. Bei solch einem Fehler hält das Anwendungsprogramm sofort an und geht in den HALT-Status über (die Tasks der aktuellen Anweisung werden ebenfalls angehalten).

Es gibt daher 2 Möglichkeiten zum Neustart der Anwendung:

- über den Befehl INIT der Programmiersoftware
- über den RESET-Knopf des Prozessors

Die Anwendung befindet sich nun in einem Initialzustand: Die Daten haben ihre Initialwerte, die Tasks werden am Zyklusende angehalten, das Bild der Eingänge aktualisiert und die Ausgänge werden in Fehlerposition gebracht. Der RUN-Befehl ermöglicht einen Neustart der Anwendung.

Die Anzeige eines blockierenden Fehlers erfolgt durch die blinkenden Status-LEDs (ERR und RUN), und je nach Art des Fehlers wird das Systembit %S11 auf 1 gesetzt. Die Art des Fehlers wird im Systemwort %SW 125 angegeben.

Diagnosetabelle

Status-LED	Status-LEDs		System	Bits Fehler
RUN	ERR	I/O		
С	С	i	%S11=1	Watchdog-Überlauf (Overrun)
С	С	i		Ausführung der Anweisung HALT
С	С	i		Ausführung eines ungelösten JUMP

Legende:

C: Blinkend

i: unbestimmt

Prozessor- bzw. Systemfehler

Allgemeines

Diese schwerwiegenden Fehler, die entweder den **Prozessor** (Hardware bzw. Software) oder die **Verdrahtung des X-Bus** betreffen, erlauben keinen ordnungsgemäßen Betrieb des Systems. Sie führen zu einem Anhalten der Steuerung im ERROR-Modus, der einen Kaltstart erfordert. Der nächste Kaltstart wird im STOP-Modus forciert, damit vermieden wird, dass die Steuerung erneut einem Fehler unterliegt.

HINWEIS: Selbst wenn in der Konfiguration der Steuerung ein automatischer Start im RUN-Modus ausgewählt wurde, wird der Neustart im STOP-Modus und nicht im RUN-Modus forciert.

Diagnosetabelle

Status-LEDs			Systemwort %SW124	Fehler
RUN	ERR	I/O		
-	Е	Е	H'80'	Watchdog-Fehler bzw. Verdrahtungsfehler am X-Bus
-	Е	E	H'81'	Verdrahtungsfehler am X-Bus
-	E	E		Fehler des Systemcodes, nicht vorgesehene Unterbrechung Stapelüberlauf der Systemtasks Stapelüberlauf der PL7-Tasks

Legende:

E: Ein

-: unbestimmt

Diagnose Prozessorfehler:

Wird die Steuerung im Fehlermodus angehalten, kann sie nicht mehr mit einem Diagnosegerät kommunizieren. Auf die Informationen zu den Fehlern kann erst nach einem Kaltstart zugegriffen werden (siehe Systemwort %SW124). Im Allgemeinen sind diese Informationen vom Benutzer nicht zu verwenden, lediglich die Informationen H'80' und H'81' sind für die Feststellung eines Verdrahtungsfehlers an X-Bus zu verwenden.

Kapitel 9

Prozessor TSX P57 0244

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 0244

Prozessor TSX P57 0244

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P 57 0244 aufgeführt.

Technische Daten			TSX P57 0244
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		1
	Maximale Anzahl	1	
	Maximale Anzahl	der Steckplätze	10
	Maximale Anzahl	der simultanen Kommunikations-EF	16
Funktionen	Maximale Anzahl	Digitale E/A im Rack	256
	der Kanäle	Analoge E/A im Rack	12
		Spezifisches Modul (Zählen, Achssteuerung usw.)	4
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	1
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	-
		AS-i-Feldbus	1
	Sicherbarer Kalender		Ja
Speicher	Interner, sicherbarer RAM		96 KB
	PCMCIA-Speiche	rkarte (maximale Kapazität)	128 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		32
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Applikationscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,10 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,10 Kins/ms (1)

Technische Daten	TSX P57 0244	
Ausführungszeit	Eine boolesche Grundanweisung	0,19/0,25 μs (2)
	Eine numerische Grundanweisung	0,25/0,50 μs (2)
	Eine Gleitkomma-Anweisung	1,75/3,30 µs (2)
System-Overhead	Master-Task	1 ms
	Fast-Task	0,30 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 10 Prozessor TSX P57 104

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 104

Prozessor TSX P57 104

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P 57 104 enthalten.

Technische Daten	TSX P57 104		
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12E-Racks		2
	Maximale Anzahl	4	
	Maximale Anzahl	der Steckplätze	27
	Maximale Anzahl	der simultanen Kommunikations-EF	16
Funktionen	Maximale Anzahl	Digitale E/A im Rack	512
	der Kanäle	Analoge E/A im Rack	24
		Spezifisches Modul (Zählen, Achssteuerung usw.)	8
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	1
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	-
		AS-i-Feldbus	2
	Sicherbarer Kalender		Ja
Speicher	Interner, sicherbarer RAM		96 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		224 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		32
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Applikationscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,10 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,10 Kins/ms (1)

Technische Daten	TSX P57 104	
Ausführungszeit	Eine boolesche Grundanweisung	0,19/0,25 μs (2)
	Eine numerische Grundanweisung	0,25/0,50 μs (2)
	Eine Gleitkomma-Anweisung	1,75/3,30 µs (2)
System-Overhead	Master-Task	1 ms
	Fast-Task	0,30 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 11 Prozessor TSX P57 154

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 154

Prozessoren vom Typ TSX P 57.154

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 154 enthalten.

Technische Daten			TSX P 57.154
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		2
	Maximale Anzahl	4	
	Maximale Anzahl	der Steckplätze	27
	Maximale Anzahl	der simultanen Kommunikations-EF	16
Funktionen	Maximale Anzahl	Digitale E/A im Rack	512
	der Kanäle	Analoge E/A im Rack	24
		Spezifisches Modul (Zählen, Achssteuerung usw.)	8
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	1
		Fipio-Master (integriert): Anz. der Geräte	63
		Feldbus von Drittanbietern	0
		AS-i-Feldbus	2
	Sicherbarer Kalender		Ja
Speicher	Interner, sicherbarer RAM		96 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		224 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		32
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Applikationscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,10 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,10 Kins/ms (1)

Technische Daten	TSX P 57.154	
Ausführungszeit	it Eine boolesche Grundanweisung	
	Eine numerische Grundanweisung	0,25/0,50 μs (2)
	Eine Gleitkomma-Anweisung	1,75/3,30 µs (2)
System-Overhead	Master-Task	1 ms
	Fast-Task	0,3 ms

- (1) Kins: 1024 Anweisungen (Liste)
- (2) Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 12 Prozessor TSX P57 1634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 1634

Prozessor TSX P57 1634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P 57 1634 aufgeführt.

Technische Daten			TSX P57 1634
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		2
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	4
	Maximale Anzahl	der Steckplätze	27
	Maximale Anzahl	der simultanen Kommunikations-EF	16
Funktionen	Maximale Anzahl	Digitale E/A im Rack	512
	der Kanäle	Analoge E/A im Rack	24
		Spezifisches Modul (Zählen, Achssteuerung usw.)	8
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (integriertes Ethernet)	1
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	-
		AS-i-Feldbus	2
	Sicherbarer Kalender		Ja
Speicher	Interner, sicherbarer RAM		96 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		224 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		32
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Applikationscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,10 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,10 Kins/ms (1)

Technische Daten	TSX P57 1634	
Ausführungszeit	Eine boolesche Grundanweisung	0,19/0,25 µs (2)
	Eine numerische Grundanweisung	0,25/0,50 μs (2)
	Eine Gleitkomma-Anweisung	1,75/3,30 µs (2)
System-Overhead	Master-Task	1 ms
	Fast-Task	0,3 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 13 Prozessor TSX P57 204

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 204

Prozessor TSX P57 204

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 204 enthalten.

Technische Daten	TSX P57 204		
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8
	Maximale Anzahl der TSX RKY 4EX/6EX/8EX-Racks		16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	32
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	80
		Spezifisches Modul (Zählen, Achssteuerung usw.)	24
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	2
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	1
		AS-i-Feldbus	4
	Sicherbarer Kalender		Ja
	Regelkanäle		10
	Regelkreise		30
Speicher	Interner, sicherbarer RAM		160 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		768 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		64

Technische Daten	TSX P57 204		
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,70 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,50 Kins/ms (1)
Ausführungszeit	Eine boolesche Grundanweisung		0,19/0,21 µs (2)
	Eine numerische Grundanweisung		0,25/0,42 µs (2)
	Eine Gleitkomma-A	Anweisung	1,75/3,0 µs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,30 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 14 Prozessor TSX P57 254

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 254

Prozessor TSX P57 254

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 254 enthalten.

Technische Daten	TSX P57 254		
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8
	Maximale Anzahl der TSX RKY 4EX/6EX/8EX-Racks		16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	32
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	80
		Expert	24
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	2
		Fipio-Master (integriert), Anzahl der Geräte	127
		Feldbus von Drittanbietern	1
		AS-i-Feldbus	4
	Sicherbarer Kalender		Ja
	Regelkanäle		10
	Regelkreise		30
Speicher	Interner, sicherbarer RAM		192 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		768 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		64

Technische Daten	TSX P57 254		
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,70 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,50 Kins/ms (1)
Ausführungszeit	Eine boolesche Gr	rundanweisung	0,19/0,21 µs (2)
	Eine numerische (Grundanweisung	0,25/0,42 µs (2)
	Eine Gleitkomma-	Anweisung	1,75/3,0 µs (2)
System-Overhead	MAST-Task Ohne Verwendung des Fipio-Busses		1 ms
	3		1 ms
			0,35 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 15 Prozessor TSX P57 2634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 2634

Prozessoren TSX P 57 2634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P 57 2634 aufgeführt.

Technische Daten			TSX P 57 2634
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	Maximale Anzahl der TSX RKY 4EX/6EX/8EX-Racks	
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	32
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	80
		Spezifisches Modul (Zählen, Achssteuerung usw.)	24
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethway, Fipway, Modbus Plus und integriertes Ethernet)	2
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	1
		AS-i-Feldbus	4
	Sicherbarer Kalender		Ja
	Regelkanäle		10
	Regelkreis		30
Speicher	Interner, sicherbar	Interner, sicherbarer RAM	
	PCMCIA-Speicherkarte (maximale Kapazität)		768 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitu	ng (1 prioritär)	64

Technische Daten			TSX P 57 2634
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	4,76 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	3,57 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	3,70 Kins/ms (1)
		65 % boolesch + 35 % numerisch	2,50 Kins/ms (1)
Ausführungszeit	Eine boolesche Gr	undanweisung	0,19/0,21 µs (2)
	Eine numerische G	rundanweisung	0,25/0,42 µs (2)
	Eine Gleitkomma-A	1,75/3,0 µs	
System-Overhead	Master-Task		1 ms
	Fast-Task	0,30 ms	

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 16 Prozessor TSX P57 304

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 304

Prozessor TSX P57 304

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 304 enthalten.

Technische Daten			TSX P57 304
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	48
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	128
		Expert	32
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	3
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	3
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		15
	Regelkreise		45
Speicher	Interner, sicherbar	er RAM	192 KB
	PCMCIA-Speicher	karte (maximale Kapazität)	1792 KB
Applikationsstruktur	pplikationsstruktur Master-Task		1
	Fast-Task		1
	Ereignisverarbeitu	ng (1 prioritär)	64

Technische Daten			TSX P57 304
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	6,67 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	4,76 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	4,55 Kins/ms (1)
		65 % boolesch + 35 % numerisch	3,13 Kins/ms (1)
Ausführungszeit	Eine boolesche Gr	undanweisung	0,12/0,17 µs (2)
	Eine numerische Grundanweisung		0,17/0,33 µs (2)
	Eine Gleitkomma-Anweisung		1,75/3,0 µs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,35 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 17 Prozessor TSX P57 354

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 354

Prozessor TSX P57 354

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 354 enthalten.

Technische Daten			TSX P57 354
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	48
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	128
		Applikations-	32
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	3
		Fipio-Master (integriert): Anz. der Geräte	127
		Feldbus von Drittanbietern	3
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		15
	Regelkreise		45
Speicher	Interner, sicherbarer RAM		208 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		1792 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitu	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX P57 354
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	6,67 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	4,76 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	4,55 Kins/ms (1)
		65 % boolesch + 35 % numerisch	3,13 Kins/ms (1)
Ausführungszeit	Eine boolesche Gru	undanweisung	0,12/0,17 µs (2)
	Eine numerische G	rundanweisung	0,17/0,33 μs (2)
	Eine Gleitkomma-Anweisung		1,75/3,0 µs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,35 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 18 Prozessor TSX P57 3634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 3634

Prozessor TSX P57 3634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 3634 enthalten.

Technische Daten	TSX P57 3634		
Maximale Konfiguration	Maximale Anzahl o	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl o	ler TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl o	ler Steckplätze	111
	Maximale Anzahl d	ler simultanen Kommunikations-EF	48
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	128
		Expert	32
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus, integriertes Ethernet)	3
		Fipio-Master (integriert)	-
		Feldbus von Drittanbietern	3
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		15
	Regelkreise		45
Speicher	Interner, sicherbarer RAM		192 KB
	PCMCIA-Speicher	karte (maximale Kapazität)	1792 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitur	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX P57 3634
Ausführungsgeschwindigkeit des Anwendungscodes:	Interner RAM	100 % boolesch	6,67 Kins/ms (1)
		65 % boolesch + 35 % numerisch	4,76 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	4,55 Kins/ms (1)
		65 % boolesch + 35 % numerisch	3,13 Kins/ms (1)
Ausführungszeit	Eine boolesche Grundanweisung		0,12/0,17 μs (2)
	Eine numerische Grundanweisung		0,17/0,33 μs (2)
	Eine Gleitkomma-Anweisung		1,75/3,0 µs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,35 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 19 Prozessor TSX P57 454

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 454

Prozessor TSX P57 454

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 454 enthalten.

Technische Daten			TSX P57 454
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8
	Maximale Anzahl	ler TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	ler Steckplätze	111
	Maximale Anzahl	ler simultanen Kommunikations-EF	64
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	256
		Expert	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	4
		Fipio-Master (integriert): Anz. der Geräte	127
		Feldbus von Drittanbietern	4
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		20
	Regelkreise		60
Speicher	Interner, sicherbare	er RAM	440 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		2048 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitur	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX P57 454
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	15,5 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	11,4 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	15,5 Kins/ms (1)
		65 % boolesch + 35 % numerisch	11,4 Kins/ms (1)
Ausführungszeit	Eine boolesche Gru	indanweisung	0,039/0,047 µs (2)
	Eine numerische Grundanweisung		0,047/0,064 µs (2)
	Eine Gleitkomma-Anweisung		0,71/0,87 µs (2)
System-Overhead	Master-Task		1 ms
	Fast-Task		0,08 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 20 Prozessor TSX P57 4634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 4634

Prozessor TSX P57 4634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 4634 enthalten.

Technische Daten			TSX P57 4634
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	64
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	256
		Expert	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethernet TCP-IP, Fipway(1), Modbus Plus, integriertes Ethernet)	4
		Feldbus von Drittanbietern	4
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		20
	Regelkreise		60
Speicher	Interner, sicherbarer RAM		440 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		2048 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Ereignisverarbeitung (1 prioritär)		64

Technische Daten			TSX P57 4634
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	15,5 Kins/ms (1)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	11,4 Kins/ms (1)
	PCMCIA-Karte	100 % boolesch	15,5 Kins/ms (1)
		65 % boolesch + 35 % numerisch	11,4 Kins/ms (1)
Ausführungszeit	Eine boolesche Grundanweisung		0,039/0,047 µs (2)
	Eine numerische G	rundanweisung	0,047/0,064 µs (2)
	Eine Gleitkomma-Anweisung		0,71/0,87 µs (2)
System-Overhead	Master-Task		1 ms
	Fast-Task		0,08 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 21 Prozessor TSX P57 554

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 554

Prozessor TSX P57 554

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 554 enthalten.

Technische Daten	TSX P57 554		
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	80
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	512
		Applikations-	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (ETHWAY, Fipway, Modbus Plus)	4
		Fipio-Master (integriert): Anz. der Geräte	127
		Feldbus von Drittanbietern	5
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		30
	Regelkreise		90
Speicher	Interner, sicherbarer RAM		1024 KB (1)
	PCMCIA-Speicherkarte (maximale Kapazität)		7168 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Hilfs-Tasks		4
	Ereignisverarbeitu	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX P57 554
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	19,80 Kins/ms (2)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	14,20 Kins/ms (2)
	PCMCIA-Karte	100 % boolesch	19,80 Kins/ms (2)
		65 % boolesch + 35 % numerisch	14,20 Kins/ms (2)
Ausführungszeit	Eine boolesche Grundanweisung		0,0375/0,045 μs
	Eine numerische Grundanweisung		0,045/0,06 μs
	Eine Gleitkomma-Anweisung		0,48/0,56 μs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,07 ms

^{(1) 1} Ziffer, wenn die Applikation im internen RAM ist, 2 Ziffer, wenn die Applikation in der Speicherkarte ist.

(2) Kins: 1024 Anweisungen (Liste)

Kapitel 22 Prozessor TSX P57 5634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 5634

Prozessor TSX P57 5634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 5634 enthalten.

Technische Daten			TSX P57 5634
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	der TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	ler Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	80
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	512
		Applikations-	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethernet TCP-IP, Fipway(1), Modbus Plus, integriertes Ethernet)	4
		Feldbus von Drittanbietern	5
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		30
	Regelkreise		90
Speicher	Interner, sicherbarer RAM		1024 KB (2)
	PCMCIA-Speicherkarte (maximale Kapazität)		7168 KB
	Maximale Speiche	Maximale Speichergröße	
Applikationsstruktur	Master-Task		1
	Fast-Task	Fast-Task	
	Hilfs-Tasks		4
	Ereignisverarbeitu	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX P57 5634
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	19,80 Kins/ms (3)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	14,20 Kins/ms (3)
	PCMCIA-Karte	100 % boolesch	19,80 Kins/ms (3)
		65 % boolesch + 35 % numerisch	14,20 Kins/ms (3)
Ausführungszeit	Eine boolesche Grundanweisung		0,0375/0,045 µs
	Eine numerische Grundanweisung		0,045/0,06 μs
	Eine Gleitkomma-Anweisung		0,48/0,56 μs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,07 ms

- (1) Die PCMCIA-Karte TSX FPP20 FIPWAY kann nicht im Steckplatz der PCMCIA-Karte des Prozessors verwendet werden.
- (2) 1 Ziffer, wenn die Applikation im internen RAM ist, 2 Ziffer, wenn die Applikation in der Speicherkarte ist.

(3) Kins: 1024 Anweisungen (Liste)

Kapitel 23 Prozessor TSX P57 6634

Allgemeine technische Daten der Prozessoren vom Typ TSX P57 6634

Prozessor TSX P57 6634

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX P57 6634 enthalten.

Technische Daten	TSX P57 6634		
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8
	Maximale Anzahl	ler TSX RKY 4EX/6EX/8EX-Racks	16
	Maximale Anzahl	ler Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	96
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	512
		Applikations-	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethernet TCP-IP, Fipway(1), Modbus Plus, integriertes Ethernet)	4
		Feldbus von Drittanbietern	5
		AS-i-Feldbus	8
	Sicherbarer Kalender		Ja
	Regelkanäle		30
	Regelkreise		90
Speicher	Interner, sicherbarer RAM		2048 KB
	PCMCIA-Speicherkarte (maximale Kapazität)		7168 KB
	Maximale Speichergröße		6976 KB
Applikationsstruktur	Master-Task		1
	Fast-Task		1
	Hilfs-Tasks	Hilfs-Tasks	
	Ereignisverarbeitung (1 prioritär)		128

Technische Daten			TSX P57 6634
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	19,80 Kins/ms (3)
des Anwendungscodes:		65 % boolesch + 35 % numerisch	14,20 Kins/ms (3)
	PCMCIA-Karte	100 % boolesch	19,80 Kins/ms (3)
		65 % boolesch + 35 % numerisch	14,20 Kins/ms (3)
Ausführungszeit	Eine boolesche Grundanweisung		0,0375/0,045 µs
	Eine numerische Grundanweisung		0,045/0,06 μs
	Eine Gleitkomma-Anweisung		0,48/0,56 μs
System-Overhead	Master-Task		1 ms
	Fast-Task		0,07 ms

- (1) Die PCMCIA-Karte TSX FPP20 FIPWAY kann nicht im Steckplatz der PCMCIA-Karte des Prozessors verwendet werden.
- (2) 1 Ziffer, wenn die Applikation im internen RAM ist, 2 Ziffer, wenn die Applikation in der Speicherkarte ist.
- (3) Kins: 1024 Anweisungen (Liste)

Kapitel 24

Prozessoren TSX H57 24M

Allgemeine technische Daten der Prozessoren vom Typ TSX H57 24M

Prozessor TSX H57 24M

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TTSX H57 24M enthalten.

Technische Daten			TSX H57 24M
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8
	Maximale Anzahl	Maximale Anzahl der TSX RKY 4EX/6EX/8EX-Racks	
	Maximale Anzahl	ler Steckplätze	111
	Maximale Anzahl	ler simultanen Kommunikations-EF	32
Funktionen	Maximale Anzahl	Digitale E/A im Rack	1024
	der Kanäle	Analoge E/A im Rack	80
		Spezifische Module (Zählen, Achssteuerung, Bewegung, Wiegen)	0
		aktiv auf TSX SCP 114 oder TSX SCY •601	24
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethernet TCP-IP)	2
		Feldbus von Drittanbietern	0
		AS-i-Feldbus	0
	Sicherbarer Kalender		Ja
	Regelkanäle		10
	Regelkreise		30
Speicher	Interner, sicherbarer RAM		192 Kilobyte
	PCMCIA-Speicherkarte (maximale Kapazität)		768 Kilobyte
Applikationsstruktur	Mast-Task		1
	Fast-Task		1
	Ereignisverarbeitu	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX H57 24M
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	15,75 Kins/ms
des Anwendungscodes:		65 % boolesch + 35 % numerisch	11,40 Kins/ms
	PCMCIA-Karte	100 % boolesch	15,75 Kins/ms
		65 % boolesch + 35 % numerisch	11,40 Kins/ms
Ausführungszeit	Eine boolesche Grundanweisung		0,039/0,057 μs
	Eine numerische Grundanweisung		0,054/0,073 μs
	Eine Gleitkomma-Anweisung		0,55/0,63 μs
System-Overhead	Mast-Task		1 ms
	Fast-Task (0,08 ms

HINWEIS: Die PCMCIA-Kommunikationskarte kann nicht im Steckplatz der PCMCIA-Karte des Prozessors verwendet werden.

Kapitel 25

Prozessoren TSX H57 44M

Allgemeine technische Daten der Prozessoren vom Typ TSX H57 44M

Prozessor TSX H57 44M

In der folgenden Tabelle sind die allgemeinen technischen Daten des Prozessors TSX H57 44M enthalten.

Technische Daten			TSX H57 44M
Maximale Konfiguration	Maximale Anzahl	Maximale Anzahl der TSX RKY 12EX-Racks	
	Maximale Anzahl	Maximale Anzahl der TSX RKY 4EX/6EX/8EX-Racks	
	Maximale Anzahl	der Steckplätze	111
	Maximale Anzahl	der simultanen Kommunikations-EF	64
Funktionen	Maximale Anzahl	Digitale E/A im Rack	2048
	der Kanäle	Analoge E/A im Rack	256
		Spezifische Module (Zählen, Achssteuerung, Bewegung, Wiegen)	0
		aktiv auf TSX SCP 114 oder TSX SCY •601	64
	Max. Anzahl der Anschlusspunkte	Integrierter Uni-Telway (PG-Anschluss)	1
		Netz (Ethernet TCP-IP)	4
		Feldbus von Drittanbietern	0
		AS-i-Feldbus	0
	Sicherbarer Kalender		Ja
	Regelkanäle		20
	Regelkreise		60
Speicher	Interner, sicherbarer RAM		440 Kilobyte
	PCMCIA-Speicher	karte (maximale Kapazität)	2048 Kilobyte
Applikationsstruktur	Mast-Task		1
	Fast-Task		1
	Ereignisverarbeitu	Ereignisverarbeitung (1 prioritär)	

Technische Daten			TSX H57 44M
Ausführungsgeschwindigkeit	Interner RAM	100 % boolesch	15,75 Kins/ms
des Anwendungscodes:		65 % boolesch + 35 % numerisch	11,40 Kins/ms
	PCMCIA-Karte	100 % boolesch	15,75 Kins/ms
		65 % boolesch + 35 % numerisch	11,40 Kins/ms
Ausführungszeit	Eine boolesche Grundanweisung		0,039/0,057 μs
	Eine numerische G	Grundanweisung	0,054/0,073 μs
	Eine Gleitkomma-Anweisung		0,55/0,63 μs
System-Overhead			1 ms
			0,08 ms

HINWEIS: Die PCMCIA-Kommunikationskarte kann nicht im Steckplatz der PCMCIA-Karte des Prozessors verwendet werden.

Kapitel 26

Premium-Prozessor TSX P57/TSX H57: Allgemeine technische Daten

Inhalt dieses Kapitels

In diesem Kapitel sind die technischen Daten der Geräte aufgeführt, die bei der Installation einer Station des Typs TSX P57/TSX H57 verwendet werden können.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Eigenschaften der Premium-Prozessoren	182
Elektrische Kenndaten der Prozessoren TSX P57/TSX H57 und der anschließbaren oder integrierbaren Geräte	183
Definition und Zählung der anwendungsspezifischen Kanäle	186

Eigenschaften der Premium-Prozessoren

Technische Daten

Ein Premium-Prozessor besteht aus:

- einem Prozessor für die allgemeine Nutzung
- einem Prozessor für die Überprüfung der Befehlsverarbeitung

In der folgenden Tabelle sind die Hauptmerkmale der verschiedenen Prozessoren aufgeführt.

Prozessor	Hauptprozessor	Frequenz des Hauptprozessors (MHz)	Steuerungsprozessor	Frequenz des Steuerungsprozessors (MHz)
TSX P57 CA0244M	INTEL oder AMD 486	48	SONIX	48
TSX P57 CD0244M	INTEL oder AMD 486	48	SONIX	48
TSX PCI57 204M	INTEL oder AMD 486	72	SONIX	48
TSX PCI57 354M	INTEL oder AMD 486	72	SONIX	48
TSX P57 0244M	INTEL oder AMD 486	48	SONIX	48
TSX P57 104M	INTEL oder AMD 486	48	SONIX	48
TSX P57 1634M	INTEL oder AMD 486	48	SONIX	48
TSX P57 154M	INTEL oder AMD 486	48	SONIX	48
TSX P57 204M	INTEL oder AMD 486	72	SONIX	48
TSX P57 2634M	INTEL oder AMD 486	72	SONIX	48
TSX P57 254M	INTEL oder AMD 486	72	SONIX	48
TSX P57 304M	INTEL oder AMD 486	72	SONIX	48
TSX P57 3634M	INTEL oder AMD 486	72	SONIX	48
TSX P57 354M	INTEL oder AMD 486	72	SONIX	48
TSX P57 4634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 454M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 5634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 554M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 6634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX H57 24M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX H57 44M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66

Elektrische Kenndaten der Prozessoren TSX P57/TSX H57 und der anschließbaren oder integrierbaren Geräte

Allgemeines

Die Prozessoren können bestimmte Geräte ohne eigene Stromversorgung aufnehmen. Es ist daher notwendig, den Stromverbrauch dieser Geräte bei der Berechnung des globalen Verbrauchs zu berücksichtigen.

- Geräte ohne Selbstspeisung, die an den PG-Anschluss angeschlossen werden können:
 - o Einstellgerät: T FTX 117 ADJUST
 - O Schaltgerät TSX P ACC01 zum Anschluss an den Bus Uni-Telway
- Geräte ohne Selbstspeisung, die in den Prozessor integriert werden können:
 - PCMCIA-Speicherkarten
 - O TSX FPP 10/20-PCMCIA-Kommunikationskarten
 - O TSX SCP 111/112/114-PCMCIA-Kommunikationskarte
 - O TSX MBP 100-PCMCIA-Kommunikationskarte

Verbrauch (Prozessoren + PCMCIA-Speicherkarten)

In dieser Tabelle finden Sie den Verbrauch des Versorgungsmoduls TSX PSY/TSX H57 bei 5 VDC:

Prozessor + PCMCIA-Speicherkarte	Typischer Verbrauch	Maximaler Verbrauch
TSX P57 0244	750 mA	1050 mA
TSX P57 104	750 mA	1050 mA
TSX P57 154	830 mA	1160 mA
TSX P57 1634	1550 mA	2170 mA
TSX P57 204	750 mA	1050 mA
TSX P57 254	830 mA	1160 mA
TSX P57 2634	1550 mA	2170 mA
TSX P57 304	1000 mA	1400 mA
TSX P57 354	1080 mA	1510 mA
TSX P57 3634	1800 mA	2520 mA
TSX P57 454	1580 mA	2210 mA
TSX P574634	1780 mA	2490 mA
TSX P57 554	1580 mA	2210 mA
TSX P57 5634	1780 mA	2490 mA
TSX P57 6634	1780 mA	2490 mA
TSX H57 24M	1780 mA	2492 mA
TSX H57 44M	1780 mA	2492 mA

Verlustleistung (Prozessoren + PCMCIA-Speicherkarten)

In dieser Tabelle finden Sie die Verlustleistung der TSX P57/TSX H57-Prozessoren:

Prozessor + PCMCIA- Speicherkarte	typisch	maximal
TSX P57 0244	3,7 W	5.2 W
TSX P57 104	3,7 W	5,2 W
TSX P57 154	4,1 W	5,8 W
TSX P57 1634	7,7 W	10,8 W
TSX P57 204	3,7 W	5,2 W
TSX P57 254	4,1 W	5,8 W
TSX P57 2634	7,7 W	10,8 W
TSX P57 304	5,0 W	7,0 W
TSX P57 354	5,4 W	7,5 W
TSX P57 3634	9 W	12,6 W
TSX P57 454	7,9 W	11 W
TSX P57 4634	8,9 W	12,5 W
TSX P57 554	7,9 W	11 W
TSX P57 5634	8,9 W	12,5 W
TSX P57 6634	8,9 W	12,5 W
TSX H57 24M	9,1 W	12,7 W
TSX H57 44M	9,1 W	12,7 W

Verbrauch der an die Prozessoren anschließbaren oder in diese integrierbaren Geräte Verbrauch:

Verbrauch bei 5 VDC des Versorgungsmo	Typisch	Maximal	
An den PG-Anschluss (TER)	TFTX 117 ADJUST	310 mA	340 mA
anschließbare Geräte ohne eigene Stromversorgung	TSXPACC01	150 mA	250 mA
In den Prozessor integrierbare PCMCIA-	TSXFPP10	330 mA	360 mA
Kommunikationskarte	TSXFPP20 (1)	330 mA	360 mA
	TSXSCP111	140 mA	300 mA
	TSXSCP112	120 mA	300 mA
	TSXSCP114	150 mA	300 mA
	TSXMBP100	220 mA	310 mA

(1) nicht in den Prozessor TSX P57 5634/6634 integrierbar

Verlustleistung der an die Prozessoren anschließbaren oder in diese integrierbaren Geräte Verlustleistung:

Verlustleistung		Typisch	Maximal
An den PG-Anschluss (TER) anschließbare Geräte ohne eigene Stromversorgung	TFTX 117 ADJUST	1,5 W	1,7 W
	TSXPACC01	0,5 W	1,25 W
In den Prozessor integrierbare PCMCIA-Kommunikationskarte	TSXFPP10	1,65 W	1,8 W
	TSXFPP20 (1)	1,65 W	1,8 W
	TSXSCP111	0,7 W	1,5 W
	TSXSCP112	0,6 W	1,5 W
	TSXSCP114	0,75 W	1,5 W
	TSXMBP100	1,1 W	1,55 W

(1) nicht in den Prozessor TSX P57 5634 integrierbar

Definition und Zählung der anwendungsspezifischen Kanäle

Übersichtstabelle

Anwendungsspezifische Funktionen

Anwendung		Modul/Karte	Anwendungsspezifische Kanäle	Anzahl
Zählung		TSXCTY2A	Ja	2
		TSXCTY2C	Ja	2
		TSXCTY4A	Ja	4
Bewegungsste	uerung	TSXCAY21	Ja	2
		TSXCAY41	Ja	4
		TSXCAY22	Ja	2
		TSXCAY42	Ja	4
		TSXCAY33	Ja	3
Einzelschrittsteuerung		TSXCFY11	Ja	1
		TSXCFY21	Ja	2
Wiegen		TSXISPY101	Ja	1
Kommunikation	serielle	TSXSCP11. im Prozessor	Nein	0(*)
Verbindung		TSXJNP11 im TSXSCY21	Ja	1
		TSXJNP11 im TSXSCY21	Ja	1
		TSXSCY 21 (integrierter Kanal)	Ja	1
	Fipio-Agent	TSXFPP10 im Prozessor	Nein	0(*)
	Fipio-Master	Im Prozessor integriert	Nein	0(*)
Ethernet		Im Prozessor integriert	Nein	0(*)

^(*) Obwohl es sich bei diesen Kanälen um anwendungsspezifische Kanäle handelt, sind diese nicht für die Berechnung der vom Prozessor unterstützten Maximalanzahl anwendungsspezifischer Kanäle zu berücksichtigen.

HINWEIS: Nur die über die Programmiersoftware konfigurierten Kanäle werden gezählt.

Kapitel 27

Prozessorleistung

Gegenstand dieses Kapitels

In diesem Kapitel wird die Prozessorleistung beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
MAST-Task-Zykluszeit: Einführung	188
MAST-Task-Zykluszeit: Programmverarbeitung (Ttp)	189
Zykluszeit der MAST-Task: Interne Ein-/Ausgangsverarbeitung	190
Berechnungsbeispiel für die Zykluszeiten eines MAST-Tasks bei folgenden Bedingungen:	193
FAST-Task Zykluszeit n	195
Antwortzeit bei einem Ereignis	196

MAST-Task-Zykluszeit: Einführung

Erklärendes Schema

In folgender Abbildung wird die Zykluszeit der MAST-Task definiert.

i.V. = Interne Verarbeitung

MAST-TASK-ZYKLUSZEIT = Programmverarbeitungszeit (Ttp) +Interne Verarbeitungszeit an Eingängen und Ausgängen (Tti)

MAST-Task-Zykluszeit: Programmverarbeitung (Ttp)

Definition der Verarbeitungszeit des Programms (Ttp)

Ttp = Ausführungszeit des Applikationscodes (Texca)

Ausführungszeit des Applikationscodes (Texca)

Texca = Summe der Zeiten für jede vom Applikationsprogramm in jedem Zyklus ausgeführte Anweisung

Die Ausführungszeiten für jede Anweisung sowie der zu deren Überprüfung verwendete Applikationstyp sind im Referenzhandbuch angegeben.

In folgender Tabelle sind die Ausführungszeiten für 1K-Anweisungen (1.024 Anweisungen) in Millisekunden (ms) angegeben.

Prozessoren	Ausführungszeit des Applikationscodes Texca (1)			
	Interner RAM	Interner RAM		
	100 % boolesch	65 % boolesch + 35 % numerisch	100 % boolesch	65 % boolesch + 35 % numerisch
TSX P57 0244 TSX P57 104/1634 TSX P57 154	0,21 ms	0,28 ms	0,32 ms	0,49 ms
TSX P57 204/254/2634 TSX PCI 57 204	0,21 ms	0,28 ms	0,27 ms	0,40 ms
TSX P57 304/354/3634 TSX PCI 57 354	0,15 ms	0,21 ms	0,22 ms	0,32 ms
TSX P57 454/4634 TSX H57 24M/44M	0,06 ms	0,09 ms	0,06 ms	0,09 ms
TSX P57 554/5634/6634	0,05 ms	0,07 ms	0,05 ms	0,07 ms

(1) bei allen in jedem Steuerungszyklus ausgeführten Anweisungen

Zykluszeit der MAST-Task: Interne Ein-/Ausgangsverarbeitung

Definition der internen Verarbeitungszeit der Ein- und Ausgänge (Ipt)

lpt = System-Overhead-Zeit für MAST-Task (Most)

- + max [Zeit des Kommunikationssystems beim Empfang (rcomT); Verwaltungszeit am Eingang der impliziten E/A %I (mTi%I)]
- + [Zeit des Kommunikationssystems beim Senden (scomT); Verwaltungszeit am Ausgang der impliziten E/A %Q (mTo%Q)]

System-Overhead-Zeit für MAST-Task (Most)

Übersichtstabelle:

Prozessoren	Zeit ohne Fipio-Anwendung	Zeit mit Fipio-Anwendung
TSX 57 0244	1 ms	-
TSX 57 104	1 ms	-
TSX 57 1634	1 ms	-
TSX 57 154	1 ms	(1)
TSX P57 204 TSX PCI 57 204	1 ms	-
TSX P57 254	1 ms	(1)
TSX P57 2634	1 ms	-
TSX P57 304	1 ms	-
TSX P57 354 TSX PCI 57 354 TSX P57 3634	1 ms	(1) (1) -
TSX P57 454 TSX P57 4634 TSX H57 24M/44M	1 ms	(1) - -
TSX P57 554	1 ms	(1)
TSX P57 5634/6634	1 ms	-

⁽¹⁾ Informationen verfügbar in Control Expert

HINWEIS: Informationen sind ebenfalls verfügbar in Unity Pro ab Version V2.0 (Unity Pro ist der älteste Name von Control Expert für die Versionen ≤ V13.1).

Verwaltungszeit am Ein- und Ausgang der impliziten E/A %I und %Q

>mTi%I = 60 Mikrosekunden + Summe der IN-Zeiten jedes Moduls

>mTo% = 60 Mikrosekunden + Summe der OUT-Zeiten jedes Moduls

Verwaltungszeit am Eingang (IN) und am Ausgang (OUT) für jedes Modul:

Modultyp	Verwaltungszeit		
	Am Eingang (IN)	Am Ausgang (OUT)	Gesamt (IN+OUT)
8-Kanal-Digitaleingänge	27 μs	-	27 μs
16-Kanal-Digitaleingänge (alle Module außer TSX DEY 16FK)	27 μs	-	27 μs
32-Kanal-Digitaleingänge	48 µs	-	48 µs
64-Kanal-Digitaleingänge	96 µs	-	96 µs
Digital-Schnelleingänge (8 verwendete Kanäle) (Modul TSX DEY 16FK/TSXDMY 28FK)	29 μs	16 µs	45 μs
Digital-Schnelleingänge (16 verwendete Kanäle) (Modul TSX DEY 16FK/TSXDMY 28FK/28RFK)	37 μs	22 µs	59 μs
8-Kanal-Digitalausgänge	26 μs	15 µs	41 µs
16-Kanal-Digitalausgänge	33 µs	20 µs	53 µs
32-Kanal-Digitalausgänge	47 μs	30 µs	77 µs
64-Kanal-Digitalausgänge	94 µs	60 µs	154 µs
Analogeingänge (pro Gruppe mit 4 Kanälen)	84 µs	-	84 µs
Analogausgänge (4 Kanäle)	59 µs	59 µs	118 µs
Zählung (TSX CTY 2A/4A), pro Kanal	55 μs	20 µs	75 µs
Zählung (TSX CTY 2C), pro Kanal	65 µs	21 µs	86 µs
Einzelschrittsteuerung (TSX CFY), kanalweise	75 µs	20 µs	95 μs
Achsensteuerung (TSX CAY), kanalweise	85 µs	22 µs	107 μs

HINWEIS: Bei der Angabe für die Zeiten der digitalen E/A-Module wird davon ausgegangen, dass alle Kanäle des Moduls derselben Task zugeordnet sind.

Beispiel: Verwendung eines Moduls TSX DEY 32 D2 K

- Sind die 32 Kanäle derselben Task zugeordnet, ist von der Zeit "32-Kanal-Digitaleingänge" auszugehen.
- Sind nur 16 Kanäle derselben Task zugeordnet, ist von der Zeit "16-Kanal-Digitaleingänge" auszugehen und nicht von der durch zwei geteilten Zeit von "32-Kanal-Digitaleingänge".

Zeit des Kommunikationssystems

Die Kommunikation (ausgenommen der Telegramm-Austausch) wird während der Phasen der "internen Verarbeitung" der MAST-Task folgendermaßen verwaltet:

- für den Nachrichtenempfang (rcomT) am Eingang
- für das Nachrichtensenden (scomT) an den Ausgängen

Die Zykluszeit der MAST-Task wird demnach vom Kommunikationsverkehr beeinflusst. Die pro Zyklus verstrichene Kommunikationszeit schwankt in Abhängigkeit folgender Faktoren ganz erheblich:

- Vom Prozessor erzeugter Datenverkehr: Anzahl der gleichzeitig aktiven Kommunikations-EFs.
- Von anderen Geräten für den Prozessor erzeugter Verkehr bzw. der Verkehr für die Geräte, für die der Prozessor als Master die Router-Funktion übernimmt.

Diese Zeit gilt nur in den Zyklen, in denen eine neue Nachricht zu verwalten ist.

Zeiten für Senden/Empfangen:

Prozessoren	Zeiten für Senden/Empfangen
TSX P57 0244/104/1634/154	2 ms
TSX P57 204/254/2634 TSX PCI 57 204	1,5 ms
TSX P57 304/354/3634 TSX PCI 57 354 TSX P57 454/4634 TSX H57 24M/44M	1,5 ms 1,5 ms 0,6 ms 0,6 ms
TSX 57 554/5634/6634	0,4 ms

(1) einschließlich der Verarbeitung durch die Protokolltreiber

HINWEIS: Alle diese Zeiten sind in ein und demselben Zyklus nicht kumulierbar. Solange der Kommunikationsverkehr gering ist, findet die Übertragung in demselben Zyklus wie die Ausführung der Anweisung statt. Dies trifft für den Empfang der Antwort jedoch nicht zu.

Beispiel mit angeschlossenem Endgerät (mit Programmiersoftware) und geöffneter Animationstabelle

Prozessoren	Durchschnittliche Zeit pro Zyklus	Maximale Zeit pro Zyklus
TSX P57 0244/104/1634/154	2 ms	3 ms
TSX P57 204/254/2634 TSX PCI 57 204	2 ms	3 ms
TSX P57 304/354/3634 TSX PCI 57 354 TSX P57 454/4634 TSX H57 24M/44M	2 ms 2 ms 1 ms	3 ms 3 ms 1,5 ms
TSX P57 554/5634/6634	0,6 ms	1 ms

Berechnungsbeispiel für die Zykluszeiten eines MAST-Tasks bei folgenden Bedingungen:

Kontext

Gegeben sei eine Applikation mit folgenden technischen Daten:

- Prozessor TSX P57 204
- Ausführung des Programms im internen RAM der Steuerung
- 10.000 Anweisungen des Typs 65% boolesch + 35% digital
- eine Kommunikations-EF des Typs SEND_REQ (für den TSX P57 204 beträgt die Laufzeit 0,75 ms)
- 128 Digitaleingänge, aufgeteilt auf 7 TSX DEY 16D2-Module + 1 TSX DEY 16FK-Modul
- 80 Digitalausgänge, aufgeteilt auf 5 TSX DSY 16T2-Module
- 32 Analogeingänge, aufgeteilt auf 2 TSX AEY 1600-Module
- 16 Analogausgänge, aufgeteilt auf 4 TSX ASY 410-Module
- 2 Zählkanäle, aufgeteilt auf 1 TSX CTY 2A-Modul

Berechnung der verschiedenen Zeiten

Ausführungszeit des Applikationscodes (TEXCA):

- ohne Kommunikations-EF: 10 x 0,28 = 2,8 ms
- mit einer Kommunikations-EF des Typs SEND_REQ = (10 x 0,28) +0,75 = 3,55 ms

System-Overhead-Zeit (TosM) = 1 ms

Verwaltungszeit am Ein- und Ausgang der impliziten E/A %I und %Q:

Referenznummer Module	Modultyp	Anzahl der Module	Verwaltungszeit am Eingang (IN)	Verwaltungszeit am Ausgang (OUT)
TSX DEY 16D2	16-Kanal- Digitaleingänge	7	189 Mikrosekunden	-
TSX DEY 16 FK	16-Kanal- Digitaleingänge (Schnelleingänge)	1	37 Mikrosekunden	22 Mikrosekunden
TSX DSY 16T2	16-Kanal- Digitalausgänge	5	165 Mikrosekunden	100 Mikrosekunden
TSX AEY 1600	Analogeingänge	2 (32 Kanäle)	672 Mikrosekunden	-
TSX ASY 410	Analogausgänge	4 (16 Kanäle)	236 Mikrosekunden	236 Mikrosekunden
TSX CTY 2A	Zählen	1 (2 Kanäle)	110 Mikrosekunden	40 Mikrosekunden
Verwaltungszeit gesamt		1409 Mikrosekunden	398 Mikrosekunden	

Verwaltungszeit am Eingang: Tge%I = 60 Mikrosekunden +1409 Mikrosekunden = 1469 Mikrosekunden = 1,47 ms.

Verwaltungszeit am Ausgang: Tgs%Q = 60 Mikrosekunden + 398 Mikrosekunden = 458 Mikrosekunden = 0.46 ms.

Zeit des Kommunikationssystems

- Request-Ausgabe: Tcome = 1,5 ms
- Empfang der Antwort: Tcomr = 1,5 ms

Zykluszeit ohne Ausführung des Kommunikations-OF

$$TcyM = Texca + TosM + Tge%I + Tgs%Q$$

= 2,8 ms + 1 ms + 1,47 ms + 0,46 ms = 5,73 ms

Zykluszeit mit Ausführung des Kommunikations-OF und Request-Ausgabe

```
TcyM = Texca + TosM +Tge%I + max [Zeit für Senden des Requests (Tcome), Tgs%Q] = 3,55 ms + 1 ms + 1,47 ms + max [1,5 ms; 0,46 ms] = 7,52 ms
```

Zykluszeit mit Empfang der Antwort

```
TcyM = Texca + TosM + max [Zeit für Empfang der Antwort (Tcomr), Tge%I] + Tgs%Q = 2.8 \text{ ms} + 1 \text{ ms} + \text{max} [1.5 \text{ ms}; 1.47 \text{ ms}] + 0.46 \text{ ms} = 5.76 \text{ ms}
```

FAST-Task Zykluszeit n

Definition

FAST-Zykluszeit = Verarbeitungszeit des Programms (Ttp) + interne Verarbeitungszeit an Ein- und Ausgängen (Tti).

Definition für die Verarbeitungszeit des Programms (Ttp)

Ttp = Ausführungszeit des Applikationscodes bezogen auf FAST (Texca).

Ausführungszeit des Applikationscodes: Siehe *Definition der Verarbeitungszeit des Programms* (*Ttp*), *Seite 189*.

Definition der internen Verarbeitungszeit an Ein- und Ausgängen (Tti)

Tti = System-Overhead-Zeit für FAST-Task (TosF) + Verwaltungszeit an den Ein- und Ausgängen der impliziten E/A %I und %Q.

System-Overhead-Zeit für FAST-Task (TosF)

Prozessoren	System-Overhead-Zeit für FAST-Task
TSX P57 0244/104/1634/154	0,30 ms
TSX P57 204/254/2634	0,30 ms
TSX PCI 57 204	0,30 ms
TSX P57 304/354/3634	0,35 ms
TSX PCI 57 354	0,35 ms
TSX P57 454/4634	0.08 ms
TSX H57 24M/44M	0,07 ms
TSX P57 554/5634/6634	0,07 ms

Verwaltungszeit am Ein- und Ausgang der impliziten E/A %I und %Q: siehe Verwaltungszeit am Ein- und Ausgang der impliziten E/A %I und %Q, Seite 191.

Antwortzeit bei einem Ereignis

Allgemeines

Definition: Zeit zwischen einer Flanke an einem Ereigniseingang und der entsprechenden Flanke an einem Ausgang, der vom Programm des Ereignis-Tasks gesetzt wird.

Beispiel: Programm mit 100 booleschen Anweisungen und einem TSX DSY 32TK2-Eingangsmodul

Prozessoren	Minimum	Typisch	Maximal
TSX P57 0244/104/1634/154	1,9 ms	2,8 ms	5,0 ms
TSX P57 204/254/2634 TSX PCI 57 204	1,9 ms	2,4 ms	4,2 ms
TSX P57 304/354/3634 TSX PCI 57 354	1,8 ms	2,2 ms	3,7 ms
TSX P57 454/4634 TSX H57 24M/44M	1,6 ms	2,0 ms	3,7 ms
TSX P57 554/5634/6634	1,4 ms	1,6 ms	3,7 ms

Teil III

Atrium-Prozessoren

Gegenstand dieses Kapitels

In diesem Abschnitt werden die Atrium-Prozessoren und ihre Funktion beschrieben.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
28	Atrium-Prozessoren: Überblick	199
29	Atrium-Prozessoren: Installation	211
30	Atrium-Prozessoren: Diagnose	237
31	Prozessor TSX PCI 57 204	247
32	Prozessor TSX PCI 57 354	249
33	Atrium-Prozessoren: Allgemeine technische Daten	251

Kapitel 28

Atrium-Prozessoren: Überblick

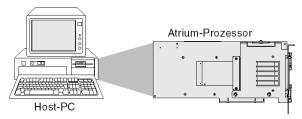
Ziel dieses Kapitels

Ziel dieses Kapitels ist es, Ihnen die Atrium-Prozessoren vorzustellen.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Allgemeine Informationen	200
Physikalische Beschreibung der Atrium-Prozessoren	201
Kalender	203
Abmessungen der Atrium-Prozessorkarten	204
Grundelemente einer Atrium-Karte	206
Optionale Elemente einer Atrium-Karte	207
Katalog der Atrium-Prozessoren	210


Allgemeine Informationen

Auf einen Blick

Die Atrium-Prozessoren, die in einen Host-PC integriert sind, der unter Windows 2000 oder Windows XP läuft und über einen 32-Bit-PCI-Bus verfügt, verwalten über die Programmiersoftware die komplette Steuerungsstation, die aus Racks, digitalen Eingangs-/Ausgangsmodulen, analogen Eingangs-/Ausgangsmodulen und spezifischen Modulen besteht. Diese können auf ein oder mehrere Racks, die mit dem X-Bus verbunden sind, verteilt sein.

HINWEIS: Der Atrium-Prozessor kommuniziert über den PCI-Bus mit dem PC, in den er installiert ist. Dazu muss das **PCIWAY 2000 oder XP**-Kommunikationslaufwerk installiert werden.

Abbildung

Zwei Prozessortypen werden angeboten, um Ihren unterschiedlichen Bedürfnissen gerecht zu werden:

- Prozessor TSX PCI 204: Prozessor mit identischer Kapazität und Leistung wie der Prozessor TSX P57 204.
- Prozessor TSX PCI 354: Prozessor mit identischer Kapazität und Leistung wie der Prozessor TSX 57 354.

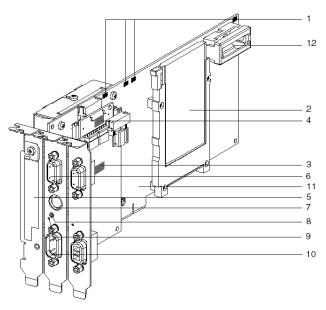
Merkmale des Host-PC

Um einen Atrium-Prozessor aufnehmen zu können, muss der Host-PC:

- unter Windows 2000 oder Windows XP laufen,
- über einen 32-Bit-PCI-Bus mit 33 MHz (1) verfügen,
- über zwei oder drei (2) freie Steckplätze auf dem PCI-Bus (nebeneinander liegend und mit einem Rastermaß von 20,32 mm + 7 mm) mit ausreichendem Platz in Höhe und Länge verfügen.

Der Zuschnitt der Prozessorkarte TSX PCI 57 entspricht genau dem Zuschnitt einer 32-Bit-PC PCI-Karte.

• Den PCI-Normen (Signale, Versorgung usw.) entsprechen.


HINWEIS: Unter dem Begriff "Host-PC" versteht man einen handelsüblichen Industrie-PC der Schneider-Gruppe oder eines anderen Herstellers, der die oben genannten Funktionsmerkmale aufweist.

- (1) Die Betriebsfrequenz des PCI-Busses muss unbedingt über 25 MHz liegen.
- (2) 3 Steckplätze für den Fall, dass die optionale 24-V-Stromversorgung hinzugefügt wird.

Physikalische Beschreibung der Atrium-Prozessoren

Abbildung

Verschiedene Elemente des Prozessormoduls TSX PCI 57

Abbildung

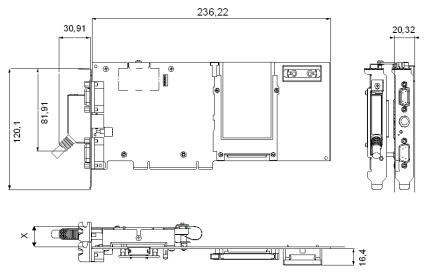
In dieser Tabelle sind die Elemente eines Prozessormoduls beschrieben:

Nummer	Funktion
1	LED-Anzeigen RUN, TER, BAT, I/O und FIP (wobei die letztgenannte LED nur im Modell TSX PCI 57 354 vorhanden ist).
2	Steckplatz für eine Speichererweiterungskarte im PCMCIA-Format, Typ 1.
3	Mikroschalter für die Codierung der Rackadresse im X-Bus.
4	Mikroschalter für die Codierung des Modulsteckplatzes im Rack.
5	Steckplatz für eine Kommunikationskarte im PCMCIA-Format, Typ 3.
6	9-polige SUB D-Buchse, die den X-Bus mit einem erweiterbaren Rack verbindet.
7	PG-Anschluss (TER -Stecker (8-poliger DIN-Ministecker)): Zum Anschluss eines FTX- oder eines PC-kompatiblen Terminals oder um die Steuerung über das Isolierungsgehäuse TSX P ACC 01 an den Uni-Telway-Bus anzuschließen. Über diesen Stecker erfolgt die Versorgung (5 V) der angeschlossenen Peripheriegeräte (im Rahmen der Leistungsfähigkeit des Versorgungsmoduls).
8	 Taste RESET (mit Bleistiftspitze betätigen), löst bei Betätigung einen Kaltstart der Steuerung aus. Prozessor im Normalbetrieb: Kaltstart im Modus STOP oder RUN, abhängig vom konfigurierten Verfahren, Prozessorfehler: Forcierter Start im Modus STOP.
	Die Betätigung der Taste RESET muss mit einem isolierenden Gegenstand erfolgen.
9	LED-Anzeige "ERR"
10	9-poliger SUB-D-Stecker zum Anschluss eines Fipio-Masterbusses. Dieser Stecker ist nur beim Prozessor TSX PCI 57 354 vorhanden.
11	32-Bit-PCI-Stecker zum Anschluss eines Host-PCs
12	Platz für eine Batterie, die den Erhalt des RAM-Speichers im Prozessor sicherstellt.

HINWEIS: Der PG-Anschluss **TER** bietet standardmäßig den Uni-Telway-Master-Kommunikationsmodus und per Konfiguration den Uni-Telway-Slave-Modus oder den ASCII-Modus an.

Kalender

Auf einen Blick

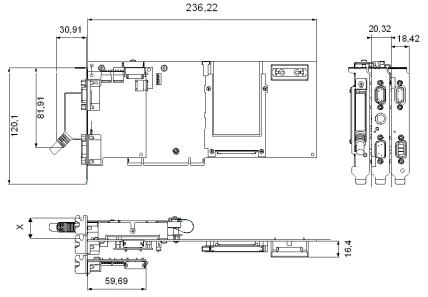

Die Atrium-Prozessoren verfügen über eine Kalenderfunktion.

Siehe Echtzeituhr, Seite 89 im Abschnitt Prozessor Premium TSX P57/TSX H57.

Abmessungen der Atrium-Prozessorkarten

Atrium-Prozessor TSX PCI 57

Die folgenden Abbildungen zeigen die Abmessungen der Atrium-Prozessorkarten in Millimetern.



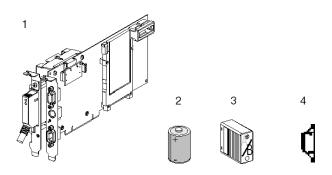
X = Rastermaß von 20,32 bis 27,32 mm

HINWEIS: Ein TSX PCI 57-Prozessor verwendet zwei Positionen auf dem PCI-Bus des PCs. Diese Positionen müssen aufeinander folgen und ein Rastermaß von 20,32 mm bis 27,32 mm aufweisen.

Atrium-Prozessor mit optionaler 24-V-Stromversorgung

Die folgenden Abbildungen zeigen die Abmessungen der Atrium-Prozessorkarten in Millimetern.

X = Rastermaß von 20,32 bis 27,32 mm


HINWEIS: Ein mit der optionalen 24-V-Stromversorgungskarte ausgestatteter TSX PCI 57-Prozessor verwendet drei Steckplätze auf dem PCI-Bus des PCs. Diese Positionen müssen aufeinander folgen und ein Rastermaß von 20,32 mm bis 27,32 mm aufweisen.

HINWEIS: Wenn der Prozessor über eine optionale Spannungsversorgungskarte versorgt wird, wird der Prozessor nicht ausgeschaltet, wenn der PC ausgeschaltet wird, sondern wenn die optionale Spannungsversorgungskarte ausgeschaltet wird.

Grundelemente einer Atrium-Karte

Abbildung

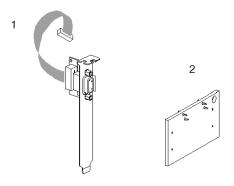
In der folgenden Abbildung werden die verschiedenen Grundelemente einer Atrium-Prozessorkarte dargestellt.

Tabelle der Elemente mit entsprechenden Beschreibungen

Die folgende Tabelle enthält die Bezeichnungen der verschiedenen Elemente, aus denen sich eine TSX PCI 57-Prozessorkarte zusammensetzt, sowie entsprechende Beschreibungen:

Kennzeichnung	Element	Beschreibung
1	Atrium- Prozessorkarte	Die Karte umfasst eine mechanische Unterbaugruppe, die das Einsetzen einer PCMCIA-Kommunikationskarte des Typs 3 ermöglicht.
2	Batterie	Mit der Batterie wird der RAM-Speicher des Prozessors gesichert. Sie wird am dafür vorgesehenen Steckplatz auf der Prozessorkarte montiert.
3	Abschlusswiderstand	Abschlusswiderstand des Typs TSX TLYEX /B (siehe Seite 406).
4	Abnehmbare Klappe	Abnehmbare Klappe für eine PCMCIA-Kommunikationskarte des Typs 3, speziell für den Atrium-Prozessor. Die mechanische Befestigung einer Kommunikationskarte am Atrium-Prozessor erfordert die Verwendung dieser Klappe (ausführliche Informationen finden Sie in der mit jeder Kommunikationskarte ausgelieferten Montage- und Serviceanleitung).

Optionale Elemente einer Atrium-Karte


Optionale Elemente

Die zwei folgenden Elemente sind optional:

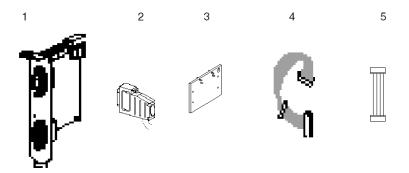
- Eine TSX PCI ACC1-Frontabdeckung. Dieses Zubehörteil wird verwendet, um den Atrium-Prozessor in einen X-Bus-Leitungsabschnitt zu integrieren.
- Eine 24-V-Stromversorgung, TSX PSI 2010. Diese Karte wird an die Atrium-Prozessorkarte angeschlossen und gewährleistet die Stromversorgung des Prozessors, wenn der PC ausgeschaltet wird. Sie ermöglicht außerdem die Integration des Atrium-Prozessors in einen X-Bus-Leitungsabschnitt.

TSX PCI ACC1-Frontabdeckung

Das nachfolgende Schema zeigt die verschiedenen Komponenten der TSX PCI ACC1:

Tabelle der Elemente mit entsprechenden Beschreibungen

Die nachfolgende Tabelle enthält die Bezeichnungen und Beschreibungen der verschiedenen Komponenten der TSX PCI ACC1:


Nummer	Element	Beschreibung
1	Frontabdeckung	Frontabdeckung mit einem 9-poligen SUB-D-Stecker für den Anschluss eines X-Bus-Verlängerungskabels TSX CBYOK <i>(siehe Seite 402)</i> und einem Kabelbaum für den Anschluss an den Prozessor. Dieses Zubehörteil wird verwendet, um den Prozessor in einen X-Bus-Leitungsabschnitt zu integrieren.
2	Tochterkarte	Zwei Typen von Tochterkarten: Eine Tochterkarte, die die Schnittstelle zwischen der oben genannten Frontabdeckung und der Prozessorkarte herstellt; dieses Zubehör ist mit der oben beschriebenen Frontabdeckung zu verwenden. Diese Tochterkarte wird anstelle des Abschlusswiderstands A/ montiert, der standardmäßig in den Prozessor integriert ist. Eine Tochterkarte, die den Anschluss an ein IBY-Modul ermöglicht.

HINWEIS: Zusätzlich zu den oben aufgeführten Elementen ist im Lieferumfang der Atrium-Karte Folgendes enthalten:

- Disketten mit den PCIWAY-Treibern und dem Softwareprodukt OFS
- Eine Bedienungsanleitung zur Installation des Atrium-Prozessors

24-V-Stromversorgung TSX PSI 2010

Das nachfolgende Schema zeigt die verschiedenen Komponenten der TSX PSI 2010:

Tabelle der Elemente mit entsprechenden Beschreibungen

Die nachfolgende Tabelle enthält die Bezeichnungen und Beschreibungen der verschiedenen Komponenten der TSX PSI 2010:

Nummer	Element	Beschreibung
1	24-V-Stromversorgungskarte	Eine Stromversorgungskarte, ausgestattet mit: einem 9-poligen SUB-D-Stecker für den Anschluss eines TSX CBY ••0K-X-Bus-Verlängerungskabels und eines Steckverbinders für die externe 24-V-Stromversorgung.
2	Steckbuchse	Eine Steckbuchse für den Anschluss an die externe 24-V- Stromversorgung.
3	Abschlusswiderstand	Eine Tochterkarte, die als Schnittstelle zwischen der Stromversorgungskarte und der Atrium-Prozessorkarte fungiert. Diese Tochterkarte wird anstelle des Abschlusswiderstands A/montiert, der standardmäßig in den Prozessor integriert ist.
4	X-Bus-Kabelbaum	Ein X-Bus-Kabelbaum für den Anschluss der Tochterkarte an den X-Bus-Steckverbinder der Stromversorgungskarte.
5	Stromversorgungskabelbaum	Ein Stromversorgungskabelbaum für den Anschluss der Stromversorgungskarte an die Stromversorgung der Atrium- Prozessorkarte.

Katalog der Atrium-Prozessoren

Katalog

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Prozessoren TSX PCI 57 204 und TSX PCI 57 354 enthalten.

Referenz		TSX PCI 57 204	TSX PCI 57 354
Anzahl der Racks	TSX RKY 12 EX	8	8
	TSX RKY 4EX/6EX/8EX	16	16
Anzahl der	Mit TSX RKY 12 EX	87	87
Modulsteckplätze	Mit TSX RKY 4EX/6EX/8EX	111	111
Anzahl der Kanäle	Digitale E/A	1024	1024
	Analoge E/A	80	128
	Spezifisches Modul (Zählen, Achssteuerung usw.)	24	32
Anzahl der	Netz (Fipway, ETHWAY/TCP_IP, Modbus Plus)	1	3
Anschlüsse	Fipio-Master, Anzahl der Geräte	-	127
	Feldbus (InterBus-S, Profibus)	1	3
	AS-i-Geber/Stellglied	4	8
Speichergröße	Intern	160 KB	224 KB
	Erweiterung	768 KB	1792 KB

Kapitel 29

Atrium-Prozessoren: Installation

Gegenstand dieses Kapitels

In diesem Kapitel wird die Installation der **Atrium**-Prozessoren und der **PCMCIA**-Erweiterungskarte beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Vorsichtsmaßnahmen während des Einbaus	212
Technischer Einbau des Atrium-Prozessors in den PC	213
Logischer Einbau des Atrium-Prozessors in den X-Bus	214
Vorbereitungen vor der Installation	217
Konfigurieren der Adresse des Atrium-Prozessors auf dem X-Bus	218
Konfigurieren der E/A-Basisadresse des Prozessors auf dem PCI-Bus	219
Installieren der Atrium-Prozessorkarte in den PC	220
Einsetzen der 24-V-Stromversorgungskarte	222
Integration des Atrium-Prozessors in einem Leitungsabschnitt des X-Busses	225
Installation/Deinstallation der Speichererweiterungskarte in den Atrium-Prozessor	228
Speicherkarten für die Atrium-Prozessoren	230
Installation/Deinstallation der Kommunikationskarte beim Atrium-Prozessor	231
Vorgehensweise beim Einstecken/Herausziehen einer PCMCIA-Speicherkarte in/aus eine/r Atrium-SPS	234
Beim Auswechseln eines Atrium-Prozessors zu beachtende Vorsichtsmaßnahmen	235

Vorsichtsmaßnahmen während des Einbaus

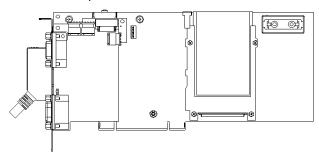
Allgemein

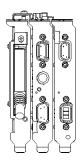
Vermeiden Sie elektrostatische Entladungen, da sie erhebliche Schäden an der Elektronik verursachen können. Beachten Sie folgende Regeln:

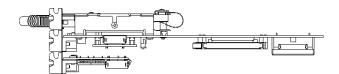
A VORSICHT

ELEKTROSTATISCHE ENTLADUNG

- Halten Sie die Karte an den Rändern fest. Berühren Sie niemals die Steckkontakte oder die sichtbaren Schaltkreise.
- Nehmen Sie die Karte erst aus der antistatischen Schutzverpackung, wenn Sie sie in den PC einbauen möchten.
- Achten Sie darauf, während der Arbeit mit der Karte möglichst stets geerdet zu sein.
- Legen Sie die Karte nicht auf einer metallenen Oberfläche ab.
- Vermeiden Sie unnötige Bewegungen, da durch Kleidung, Teppichböden und Möbelstücke statische Elektrizität erzeugt wird.


Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.


Technischer Einbau des Atrium-Prozessors in den PC


Atrium-Prozessor TSX PCI 57

Der Prozessor TSX PCI 57 belegt physisch zwei oder drei aufeinander folgende Steckplätze 1, 2 und 3 (mit optionaler 24-V-Spannungsversorgung) auf dem PCI-Bus, verwendet aber elektrisch nur einen einzigen Steckplatz, nämlich Steckplatz 1. Die Steckplätze 2 und 3 werden nur vom mechanischen Teil der PCMCIA-Kommunikationskarte und für die 24-V-Versorgung benutzt.

Übersichtsschaltplan:

Logischer Einbau des Atrium-Prozessors in den X-Bus

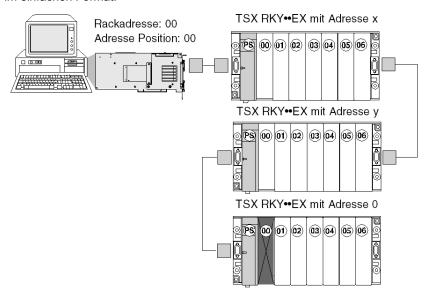
Logischer Einbau in den X-Bus

Der Atrium-Prozessor belegt dieselbe logische Position wie ein Prozessor TSX P57/TSX H57 (Rackadresse 0, Position 00 oder 01).

Das Rack TSX RKY EX mit der Adresse 0 ist zwangsläufig für die Aufnahme eines Versorgungsmoduls bestimmt. Die Position, die normalerweise von einem Prozessor Typ TSX P57/TSX H57 belegt ist, bleibt frei (virtuelle Position des Atrium-Prozessors).

Die Premium-Steuerungen verfügen über zwei Arten der Versorgung (Standard- oder Doppelformat), wobei die freie Position im Rack mit der Adresse 0 vom Typ der verwendeten Versorgung abhängt.

HINWEIS:

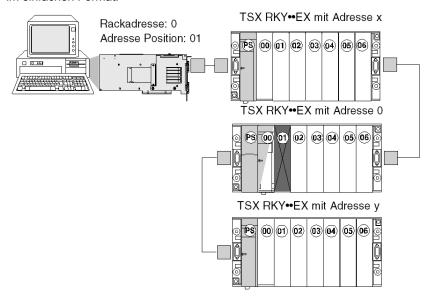

- Die Position, die der Adresse des Atrium-Prozessors entspricht (ist im Rack physisch frei), darf nicht von einem anderen Modul benutzt werden.
- Damit der Atrium-Prozessor seine Adresse im X-Bus kennt, müssen Sie seine Adresse im X-Bus mit den auf der Prozessorkarte vorhandenen Mikroschaltern konfigurieren.

Verwendung eines Versorgungsmoduls im Standardformat:

In diesem Fall ist die Montageanweisung für das Rack mit der Adresse 0 wie folgt:

- Das Versorgungsmodul belegt systematisch die Position PS.
- Die Position 00 (virtuelle Position des Prozessors) muss frei bleiben.
- Die anderen Module werden ab Position 01 eingesetzt.

Die folgende Abbildung zeigt die Montageanweisung bei Verwendung eines Versorgungsmoduls im einfachen Format.



Verwendung eines Versorgungsmoduls (Doppelformat):

In diesem Fall ist die Montageanweisung für das Rack mit der Adresse 0 wie folgt:

- Das Versorgungsmodul belegt systematisch die Position PS und 00.
- Position 01 (die virtuelle Position des Prozessors) muss frei bleiben.
- Die anderen Module sind ab Position 02 zu implementieren.

Die folgende Abbildung zeigt die Montageanweisung bei Verwendung eines Versorgungsmoduls im einfachen Format.

Vorbereitungen vor der Installation

Allgemeines

Bevor die Prozessorkarte in den PC eingesetzt wird, sind bestimmte Vorbereitungen zu treffen:

- Setzen Sie ggf. die Batterie in das dafür vorgesehene Batteriefach ein (siehe Seite 240).
- Setzen Sie ggf. die PCMCIA-Speicherkarte ein (siehe Seite 228).
- Konfigurieren Sie die Adresse des Prozessors auf dem X-Bus (siehe Seite 218).
- Konfigurieren Sie die E/A-Basisadresse des Prozessors auf dem PCI-Bus (siehe Seite 219).

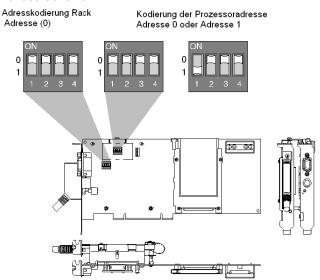
Konfigurieren der Adresse des Atrium-Prozessors auf dem X-Bus

Allgemeines

Diese Adresse muss der Adresse entsprechen, die im Konfigurationsfenster der Programmiersoftware eingestellt wird. Diese Konfiguration erfolgt mittels der Mikroschalter auf der Prozessorkarte.

Rackadresse: Der virtuelle Steckplatz des Prozessors befindet sich immer im Rack mit der Adresse 0.

Steckplatz des Prozessors: Der virtuelle Steckplatz des Prozessors ist abhängig von der Art des im Rack installierten Versorgungsmoduls:


- Versorgung im einfachen Format: Virtueller Steckplatz des Prozessors = 00
- Versorgung im doppelten Format: Virtueller Steckplatz des Prozessors = 01

Standardkonfiguration:

- Rackadresse = 0
- Steckplatz des Moduls = 00

Abbildung

Erklärendes Schema:

Konfigurieren der E/A-Basisadresse des Prozessors auf dem PCI-Bus

TSX PCI 57-Prozessor auf PCI-Bus

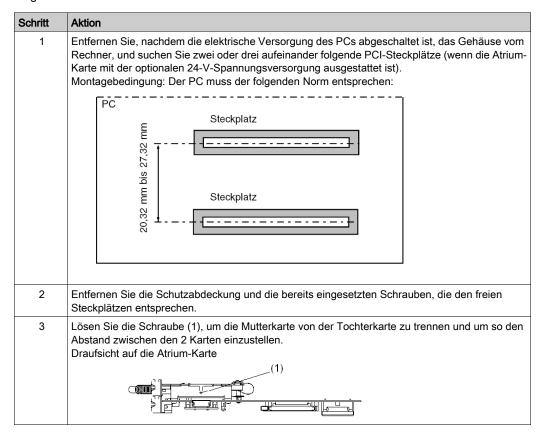
Seitens des Benutzers ist keine bestimmte Operation erforderlich. Der Prozessor ist ein "Plug & Play"-Gerät. Das bedeutet, dass das Betriebssystem des PC die E/A-Adresse und den Interrupt (IRQ) automatisch festlegt.

Installieren der Atrium-Prozessorkarte in den PC

Vorbedingungen

Im Vorfeld müssen bestimmte Adressierungsvorgänge (siehe Seite 217) ausgeführt werden.

▲ GEFAHR


ELEKTRISCHER SCHLAG

Bevor der Prozessor im PC installiert werden kann, ist der PC unbedingt vorher auszuschalten.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Prozedur

In der folgenden Tabelle ist die Vorgehensweise beschrieben, wie die Prozessorkarte im PC eingesetzt wird.

Schritt	Aktion
4	Installieren Sie die Karte in den vorgesehenen freien Steckplätzen und passen Sie den Abstand zwischen den 2 Karten an.
5	Befestigen Sie die Karte mit den zuvor entfernten Schrauben (Schritt 2) im PC.
6	Ziehen Sie die Schraube (1) wieder an (siehe Schritt 3).
7	Bringen Sie das Gehäuse wieder am Rechner an, und schließen Sie alle Kabel und Zubehörteile ohne Netzspannung an: ■ X-Bus-Kabel und Leitungsabschluss TSX TLYEX /B Achtung: Der Prozessor geht in einen Systemfehler über, wenn der Leitungsabschluss /B nicht installiert ist: □ am TSX PCI 57-Prozessor, wenn er nicht über ein X-Bus-Kabel TSX CBY mit einem Rack verbunden ist In diesem Fall müssen Sie den Leitungsabschluss /B unbedingt an den X-Bus-Ausgang des Prozessors anschließen. □ am verfügbaren Anschluss des letzten Racks der Station, wenn der Prozessor über ein X-Bus-Kabel TSX CBY mit einem Rack verbunden ist In diesem Fall müssen Sie unbedingt den Leitungsabschluss /B installieren. Mithilfe dieses Mechanismus kann angezeigt werden, dass der X-Bus nicht angepasst ist.
	Fipio-Buskabel und PCMCIA-Kommunikationskarte, falls erforderlich. Achtung: Lösen Sie vor dem Einstecken der PCMCIA-Karte die mechanische Sicherungsschraube am oberen Teil des PCMCIA-Kartensteckplatzes. Bringen Sie die mechanische Verriegelung nach der Installation der PCMCIA-Karte wieder an, und ziehen Sie die Schraube fest.
8	Schalten Sie die Spannungsversorgung des PC ein und installieren Sie die verschiedenen Software-Pakete: PCIWAY-Treiber entsprechend dem installierten Betriebssystem: WINDOWS 2000 oder Windows XP (siehe Servicehandbuch, das mit dem Prozessor geliefert wird) Datenserver OFS, falls erforderlich Programmiersoftware

Einsetzen der 24-V-Stromversorgungskarte

Allgemein

Diese Karte kann auf zwei unterschiedliche Weisen verwendet werden:

- Als einzelne 24-V-Gleichstromversorgung
- Als 24-V-Stromversorgung sowie als Integration des Atrium-Prozessors in einen Leitungsabschnitt des X-Busses

A GEFAHR

ELEKTRISCHER SCHLAG

Stellen Sie sicher, dass der PC und somit der Atrium-Prozessor ausgeschaltet sind, wenn Sie diese Zubehörteile einbauen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Einsetzen der 24-V-Stromversorgungskarte

Führen Sie folgende Schritte durch:

Schritt	Aktion	Abbildung
1	Nachdem Sie die Prozessor-Karte in den PC eingesetzt haben, setzen Sie die Stromversorgungskarte in den dafür vorgesehenen Steckplatz ein (siehe Abbildung rechts), und verbinden Sie das Flachbandkabel mit dem J4-Stecker der Prozessorkarte.	
2	Schließen Sie die Steckbuchse über ein Kabel an die externe Stromversorgung an. Beachten Sie dabei die Anschlussbelegung (siehe Abbildung rechts). Schließen Sie die 3 Drähte des Stromversorgungskabels an. Achten Sie dabei auf die Polarität.	Masse 0 V + 24 V

35006162 12/2018

Schritt	Aktion	Abbildung
3	Setzen Sie den Stecker in die Abdeckung ein, und befestigen Sie die Kabel (siehe Abbildung rechts). Schließen Sie dann die Abdeckung, indem Sie sie fest nach unten drücken.	
4	Schließen Sie das Stromversorgungskabel an den Stromversorgungsanschluss der Karte an.	

Einsetzen und Integrieren in einem X-Bus-Leitungsabschnitt

Führen Sie folgende Schritte durch:

Schritt	Aktion	Abbildung
1	Entfernen Sie den Leitungsabschluss A/ am Prozessor.	
2	Setzen Sie anstelle des Leitungsabschlusses A/ die Tochterkarte ein.	

Schritt	Aktion	Abbildung
3	Nachdem Sie die Prozessor-Karte in den PC eingesetzt haben, setzen Sie die Stromversorgungskarte in den dafür vorgesehenen Steckplatz ein (siehe Abbildung rechts), und verbinden Sie das Flachbandkabel mit dem J4-Stecker der Prozessorkarte.	
4	Schließen Sie den Kabelbaum an den Steckverbinder der in Schritt 2 eingesetzten Tochterkarte an. Das Kabel ist mit 3 Steckern ausgestattet. Der mittlere Stecker muss verbunden werden, wenn eine TSX IBX 100-Karte verwendet wird. 1. ohne TSX IBX 100-Karte Stromversorgungskarte Atrium-Prozessor 2. mit TSX IBX 100-Karte Atrium-Prozessor IBX-Karte	
5	Führen Sie die Schritte 2, 3 und 4 aus, die oben im Abschnitt über das Einsetzen der 24-V- Stromversorgungskarte beschrieben sind.	

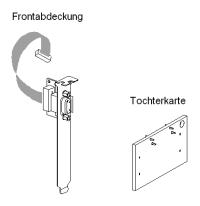
Topologiebeispiel

Siehe: Integrieren des Atrium-Prozessors in einem X-Bus-Leitungsabschnitt. (siehe Seite 227)

Integration des Atrium-Prozessors in einem Leitungsabschnitt des X-Busses

Allgemeines

Standardmäßig ist der Atrium-Prozessor auf die Integration am Leitungsanfang des X-Busses ausgelegt, daher enthält er den Abschlusswiderstand A/.


Wenn Sie den Prozessor innerhalb eines Leitungsabschnitts des X-Busses integrieren möchten, ist diese Verwendungsart durch zwei TSX PCI ACC1-Zubehörteile möglich:

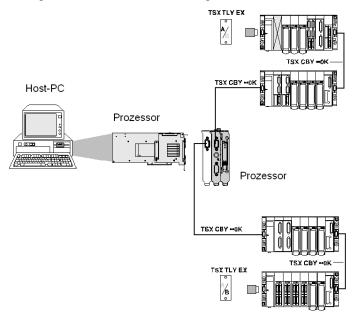
- eine Frontabdeckung, ausgestattet mit:
 - o einem 9-poligen SUB-D-Stecker für den Anschluss eines X-Bus-Kabels TSX CBY•,
 - o einem Kabelbaum für den Anschluss des 9-poligen SUB-D-Steckers an die Prozessorkarte,
- einer Tochterkarte, ausgestattet mit zwei Steckverbindern, die die Funktion als Schnittstelle zwischen der Prozessorkarte und dem 9-poligen SUB-D-Stecker der oben beschriebenen Frontabdeckung ermöglichen. Diese Tochterkarte wird anstelle des Abschlusswiderstands A/ montiert, der standardmäßig auf der Prozessorkarte installiert ist.

Hinweis: Die optionale 24-V-Stromversorgung TSX PSI 2010 ermöglicht ebenfalls die Realisierung dieser Funktion.

Abbildung

Frontabdeckung und Tochterkarte:

Installationsverfahren


Führen Sie folgende Schritte durch:

Schritt	Aktion	Abbildung
1	Entfernen Sie den am Prozessor installierten Abschlusswiderstand A/.	
2	Setzen Sie anstelle des Abschlusswiderstands A/ die Tochterkarte ein.	
3	Nachdem Sie die Prozessorkarte in den PC eingesetzt haben, befestigen Sie die Frontabdeckung am freien Steckplatz unmittelbar rechts neben der Prozessorkarte, wie in der folgenden Abbildung dargestellt.	
4	Schließen Sie den Kabelbaum an den Steckverbinder der in Schritt 2 eingesetzten Tochterkarte an.	

35006162 12/2018

Topologiebeispiel

Beispielhafte Darstellung der Topologie einer Atrium-Station, wobei der Prozessor innerhalb eines Leitungsabschnitts des X-Busses integriert ist:

HINWEIS: Da sich der Prozessor nicht mehr am Leitungsanfang befindet, müssen in diesem Fall die Abschlusswiderstände **TSX TLY EX A/** und **/B** jeweils in den Racks am Leitungsabschluss installiert werden.

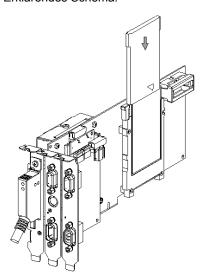
Installation/Deinstallation der Speichererweiterungskarte in den Atrium-Prozessor

Prinzip

Um die Speicherkarte im Atrium-Prozessor zu installieren, sind die folgenden Schritte auszuführen:

Schritt	Aktion
1	Setzen Sie die PCMCIA-Karte in den zu diesem Zweck vorgesehenen Steckplatz ein.
2	Schieben Sie die Karte bis zum Anschlag ein. Hinweis: Wenn die Karte nicht richtig herum eingesetzt wird, steht sie deutlich aus der Abdeckung hervor. Um zu prüfen, ob die Karte richtig herum eingesetzt wurde, prüfen Sie, ob die Oberkante mit dem Rand der Abdeckung abschließt und dass sie richtig auf dem Anschluss sitzt.
3	Setzen Sie die Karte bei spannungslos geschaltetem PC ein.

A VORSICHT


ZERSTÖRUNG DER SPEICHERKARTE

Die Speichererweiterungskarte muss in die spannungslos geschaltete Prozessorkarte eingebaut werden, und zwar bevor diese in den PC eingesetzt wird.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

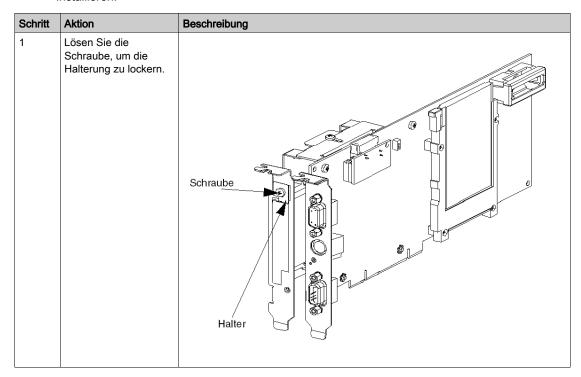
Abbildung

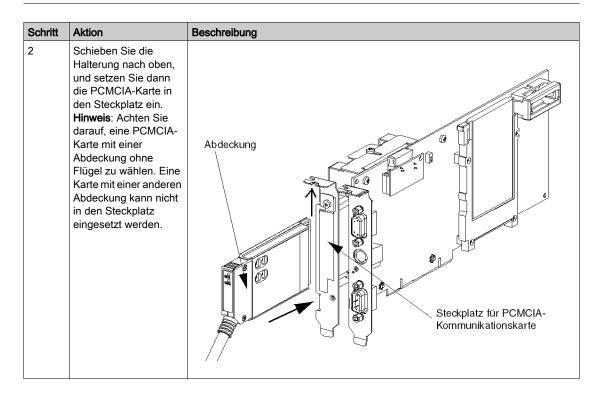
Erklärendes Schema:

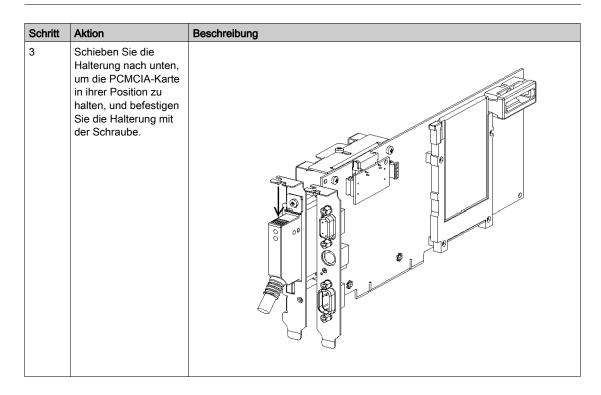
HINWEIS: Wenn das im PCMCIA-Speichermodul enthaltene Programm die Option **RUN AUTO** enthält, startet der Prozessor automatisch im Modus RUN, nachdem das Speichermodul eingesetzt und der PC eingeschaltet wurde.

Speicherkarten für die Atrium-Prozessoren

Allgemeines


Siehe Standard-Speicherkarten für SPS, Seite 105 und Speicherkarten des Typs Applikation/Dateien und des Typs Speicherung von Dateien, Seite 108.


35006162 12/2018


Installation/Deinstallation der Kommunikationskarte beim Atrium-Prozessor

Prinzip

Führen Sie folgende Schritte durch, um die Kommunikationskarte im Atrium-Prozessor zu installieren.

A VORSICHT

ZERSTÖRUNG DER KOMMUNIKATIONSKARTE

Die Kommunikationskarte muss in die Prozessorkarte ohne Netzspannung eingebaut werden, bevor diese in den PC eingesetzt wird.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Vorgehensweise beim Einstecken/Herausziehen einer PCMCIA-Speicherkarte in/aus eine/r Atrium-SPS

Allgemein

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

PCMCIA-Speicherkarten dürfen nicht unter Spannung in einen Atrium-Prozessor gesteckt oder herausgezogen werden. Diese Vorgänge beschädigen zwar weder den Prozessor noch andere Geräte, führen aber zu unvorhersehbarem Verhalten des Prozessors.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG

Stellen Sie sicher, dass die richtige Benutzeranwendung auf der Speicherkarte vorhanden ist, bevor Sie sie in die SPS einstecken.

Enthält das in der PCMCIA-Speicherkarte enthaltene Programm die Option RUN AUTO, startet der Prozessor nach Einlegen der Karte und Anlegen von Spannung an den PC automatisch im RUN-Modus.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

35006162 12/2018

Beim Auswechseln eines Atrium-Prozessors zu beachtende Vorsichtsmaßnahmen

Wichtig

▲ WARNUNG

UNERWARTETER GERÄTEBETRIEB

Wird ein Atrium-Prozessor durch einen anderen, nicht leeren Prozessor ersetzt (ein bereits programmierter Prozessor, der eine Applikation enthält), ist die Spannungsversorgung aller an die Steuerungsstation angeschlossenen Peripheriegeräte auszuschalten.

Überprüfen Sie vor der Wiederherstellung der Stromversorgung der Steuereinheiten, dass der Prozessor die erforderliche Anwendung enthält.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

35006162 12/2018

Kapitel 30

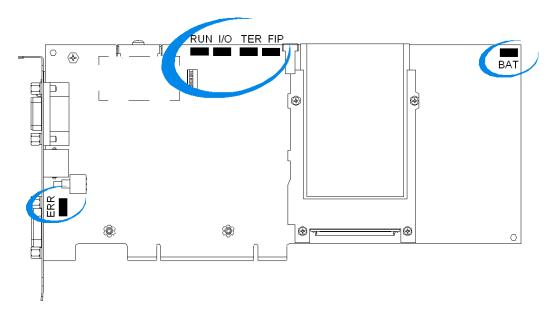
Atrium-Prozessoren: Diagnose

Gegenstand dieses Kapitels

In diesem Kapitel ist die Diagnose der Atrium-Prozessoren beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:


Thema	Seite
Beschreibung der Anzeige-LEDs der Atrium-Prozessoren	238
Auswechseln der Backup-Batterie des RAM-Speichers bei Atrium	240
Vorgänge nach dem Drücken der RESET-Taste des Prozessors	
Verhalten des Atrium-Prozessors nach einem Vorgang auf dem PC	244
Fehlersuche ausgehend von den Zustands-LEDs des Prozessors	245

Beschreibung der Anzeige-LEDs der Atrium-Prozessoren

Kennzeichnung der LEDs

Sechs LEDs (RUN, TER, BAT, I/O, FIP und ERR), die sich auf der Prozessorkarte befinden, ermöglichen eine schnelle Diagnose des Status der Steuerungsstation.

Anzeige-LEDs auf der TSX PCI 57-Karte:

Unter Berücksichtigung des geringen freien Platzes auf der Frontabdeckung ist nur die LED ERR sichtbar, wenn der PC, der den Prozessor aufnimmt, geschlossen ist.

Um den Benutzerkomfort zu steigern, wird der Status der LEDs RUN, I/O, ERR und FIP über ein Tool in der Taskleiste von Windows 2000 oder Windows XP des PC, der die Prozessorkarte enthält, angezeigt. Dieses Funktionsmerkmal steht nur zur Verfügung, wenn der Host-PC in Betrieb ist (PCIWAY installiert).

35006162 12/2018

Beschreibung

In der folgenden Tabelle ist die Funktion jeder LED beschrieben:

Anzeige- LED	Ein	Blinkend ⊗	Aus
BAT (rot)	 keine Batterie Batterie verbraucht Batterie falsch eingesetzt falscher Batterietyp 	-	Normalbetrieb
RUN (grün)	Steuerung im Normalbetrieb, Ausführung des Programms	Steuerung in STOP oder blockierender Fehler der Software	 Steuerung nicht konfiguriert: Anwendung fehlt, ungültig oder nicht kompatibel Steuerungsfehler: Prozessor- oder Systemfehler
TER (gelb)	-	PG-Anschluss aktiv. Die Blinkfrequenz ist verkehrsabhängig.	Anschluss inaktiv
I/O (rot)	Ein-/Ausgangsfehler eines Moduls, eines Kanals oder Konfigurationsfehler	X-Bus-Fehler	Normaler Status, kein interner Fehler
FIP (gelb)	-	Anschluss Fipio-Bus aktiv. Die Blinkfrequenz ist verkehrsabhängig.	Anschluss inaktiv
ERR (rot)	Prozessor- oder Systemfehler	 Steuerung nicht konfiguriert (Anwendung fehlt, ungültig oder nicht kompatibel) Steuerung mit blockierendem Software- Fehler Batteriefehler Speicherkarte X-Bus-Fehler 	Normaler Status, kein interner Fehler

HINWEIS:

- Ein X-Bus-Fehler wird durch gleichzeitiges Blinken der LEDs ERR und I/O angezeigt.
- Die FIP-LED ist nur am Prozessor TSX PCI 57 354 vorhanden.

Auswechseln der Backup-Batterie des RAM-Speichers bei Atrium

Einleitung

Diese Batterie beim Atrium-Prozessormodul sichert den RAM-Speicher im Prozessor und die Echtzeituhr im Fall eines Stromausfalls. Die Batterie, die zusammen mit dem Prozessor geliefert wird, ist vom Benutzer einzusetzen.

HINWEIS: Bei einem Atrium-Prozessor ist es unnötig, eine Batterie in die Stromversorgung des Racks einzusetzen, in das für gewöhnlich der Prozessor eingesetzt wird (Rackadresse 0).

Erstmaliges Einsetzen der Batterie

Beim Einsetzen der Batterie führen Sie folgende Schritte aus:

Schritt	Aktion
1	Entfernen Sie die Abdeckung, indem Sie diese auf beiden Seiten etwas zusammendrücken.
2	Legen Sie die Batterie in ihre Aufnahme. Beachten Sie die angegebenen Polaritäten.
3	Setzen Sie die Abdeckung wieder ein, um die Batterie in ihrer Position zu halten.

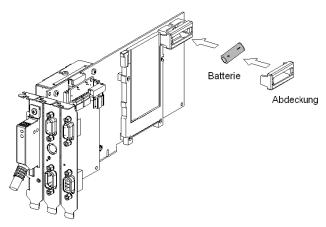
Auswechseln der Batterie

Die Batterie kann entweder jährlich vorbeugend ausgewechselt werden oder wenn die LED-Anzeige **BAT** aufleuchtet. Diese LED-Anzeige ist jedoch bei geschlossenem PC nicht sichtbar. Es steht Ihnen ein Systembit %S8 zur Verfügung, das von dem Applikationsprogramm verwendet werden kann, um einen Alarm zu generieren, der ertönt, wenn die Batterie ausgewechselt werden muss.

Um die Batterie auszuwechseln, führen Sie folgende Schritte aus:

Schritt	Aktion
1	Schalten Sie den PC aus.
2	Entfernen Sie die verschiedenen Kabel, die an den Prozessor angeschlossen sind.
3	Öffnen Sie den PC.
4	Nehmen Sie die Karte aus ihrem Steckplatz heraus.
5	Nehmen Sie die Abdeckung ab.
6	Nehmen Sie die defekte Batterie aus ihrem Steckplatz heraus.
7	Setzen Sie die neue Batterie ein, und beachten Sie beim Einsetzen die Polaritäten.
8	Setzen Sie die Abdeckung wieder ein.
9	Setzen Sie die Karte wieder in ihren Steckplatz ein, schließen Sie den PC, schließen Sie die externen Elemente an, und schalten Sie den PC wieder ein.

A VORSICHT


RAM-DATENVERLUST

Der Batteriewechsel sollte den für den ausgeschalteten PC aufgeführten Grenzwert nicht überschreiten. Eine Überschreitung dieses Grenzwerts kann dazu führen, dass Daten im RAM-Speicher verloren gehen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Abbildung

Einsetzen der Batterie in den TSX PCI 57:

Häufigkeit des Batteriewechsels

Lebensdauer der Backup-Batterie

Der Zeitraum, für den die Batterie die Sicherung des RAM-Speichers im Prozessor und der Echtzeituhr sicherstellt, hängt von zwei Faktoren ab:

- Länge der Zeit, in der die Steuerung ohne Netzspannung ist und daher die Batterie benötigt
- Umgebungstemperatur, wenn die SPS ohne Netzspannung ist

Übersichtstabelle:

Umgebungstemperatur bei OFF-Modus		≤ 30°C	40°C	50°C	60°C
Sicherungszeit	Steuerung 12 h/Tag spannungsfrei	5 Jahre	3 Jahre	2 Jahre	1 Jahr
	Steuerung: 1 h/Tag spannungsfrei	5 Jahre	5 Jahre	4,5 Jahre	4 Jahre

Prozessoreigene Sicherung

Die Prozessoren verfügen lokal über eine prozessoreigene Sicherung des RAM-Speichers und des Kalenders, die das Entnehmen von:

• der Batterie des Atrium-Prozessors ermöglicht.

Die Sicherungszeit hängt von der Umgebungstemperatur ab.

Vorausgesetzt, dass der Prozessor vorher unter Spannung war, variiert die garantierte Zeit auf folgende Art und Weise:

Umgebungstemperatur bei Trennung vom Netz	20°C	30°C	40°C	50°C
Sicherungszeit	2 h	45 min	20 min	8 min

Vorgänge nach dem Drücken der RESET-Taste des Prozessors

Allgemeines

Alle Prozessoren sind an der Vorderseite mit einem RESET-Knopf ausgestattet, der bei Betätigung im RUN- bzw. STOP-Modus (1) zum Auslösen eines Kaltstarts der Steuerung führt (je nach dem auf der Speicherkarte bzw. im internen RAM enthaltenen Applikationsprogramm).

RESET infolge einer Prozessorstörung

Bei Auftreten einer Prozessorstörung wird das Alarmrelais von Rack 0 (2) deaktiviert (Kontakt offen), die Ausgänge der Module gehen in Fehlerposition über oder werden – je nach der in der Konfiguration vorgenommenen Auswahl – in ihrer aktuellen Position gehalten. Die Betätigung des RESET-Knopfes führt zu einem Kaltstart der in den STOP-Modus forcierten Steuerung.

- (1) Der Start im RUN- oder STOP-Modus wird in der Konfiguration festgelegt.
- (2) Bei dem Prozessor erfolgt keine Steuerung dieses Relais.

HINWEIS: Bei Betätigung der RESET-Taste und während des Kaltstarts der SPS ist die Terminalverbindung nicht mehr aktiv.

Verhalten des Atrium-Prozessors nach einem Vorgang auf dem PC

Allgemeines

In folgender Tabelle werden die verschiedenen Vorgänge auf dem PC und deren jeweilige Auswirkungen auf den Atrium-Prozessor beschrieben.

Vorgang auf dem PC	Verhalten des Atrium-Prozessors
Unbeabsichtigtes Abschalten und anschließendes Wiedereinschalten des PCs, in dem der Atrium-Prozessor installiert ist.	Warmstart, wenn sich der Anwendungskontext nicht geändert hat (1).
Kurzeinbrüche der Stromversorgung des PC	Da der Atrium-Prozessor nicht über Filterungsmechanismen für Kurzeinbrüche verfügt, führt jeder nicht durch das interne Versorgungsmodul des PC gefilterte Kurzeinbruch zu einem Warmstart des Prozessors, sofern sich der Anwendungskontext nicht geändert hat.
Softwaremäßiger Neustartbefehl: Restart	Diese Aktion hat keine Auswirkungen auf den aktuellen Status des Atrium- Prozessors (wenn sich der Prozessor im Status RUN befindet, bleibt er im Status RUN). Er löst weder einen Warmstart noch einen Kaltstart des Prozessors aus.
Softwaremäßiger Stoppbefehl: Shut down	Warmstart des Atrium-Prozessors im Moment des Neustarts des PC, wenn sich der Anwendungskontext nicht geändert hat. Hinweis: Wenn die 24-V-Spannungsversorgung vorhanden und angeschlossen ist, hat dieser Befehl keine Auswirkungen auf den aktuellen Status des Atrium-Prozessors (trotzdem Verlust der PCI-Verbindung).

(1) Wenn die 24-V-Spannungsversorgung vorhanden und eingeschaltet ist, hat das Ausschalten des PC keine Auswirkungen auf die Funktionsweise des Atrium-Prozessors.

HINWEIS: Eine Programmblockierung des PC hat keine Auswirkung auf den aktuellen Zustand des Prozessors (identisches Verhalten wie bei einem Programm-RESET des PC).

Fehlersuche ausgehend von den Zustands-LEDs des Prozessors

Allgemeines

Siehe:

- Fehlersuche anhand der Status-LEDs des Prozessors, Seite 141,
- Nicht blockierende Fehler, Seite 142,
- Blockierende Fehler, Seite 144,
- Prozessor- bzw. Systemfehler, Seite 145.

35006162 12/2018

Kapitel 31 Prozessor TSX PCI 57 204

Allgemeine technische Daten des Prozessors TSX P57 204

Prozessor TSX PCI 57 204

In der folgenden Tabelle sind die allgemeinen technischen Daten der Prozessoren TSX PCI 57 204 aufgeführt.

Technische Daten			TSX PCI 57 204	
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8	
	Maximale Anz	ahl der TSX RKY 4EX/6EX/8EX-Racks	16	
	Maximale Anz	ahl der Steckplätze	111	
Funktionen	Maximale Anzahl der Kanäle	Digitale E/A im Rack	1024	
		Analoge E/A im Rack	80	
	Ranale	Applikationsspezifische Funktion	24	
	Maximale	Integrierter Uni-Telway (PG-Anschluss)	1	
	Anzahl der Anschlüsse	Netz (ETHWAY, Fipway, Modbus Plus)	2	
	Alischiusse	Fipio-Master (integriert)	-	
		Feldbus von Drittanbietern	1	
		AS-i-Feldbus	4	
	Regelungskan	äle	10	
	Regelkreise		30	
	Sicherbare Echtzeituhr		ja	
Speicher	Interner, siche	terner, sicherbarer RAM		
	PCMCIA-Speicherkarte (maximale Kapazität)		768 KB	
Applikationsstruktur	Master-Task		1	
	Fast-Task	1		
	Ereignisverarb	64		
Ausführungsgeschwindigkeit	Interner RAM	100% boolesch	4,76 Kins/ms (1)	
des Applikationscodes:		65% boolesch + 35% numerisch	3,57 Kins/ms (1)	
	PCMCIA-	100% boolesch	3,70 Kins/ms (1)	
	Karte	65% boolesch + 35% numerisch	2,50 Kins/ms (1)	

Technische Daten		TSX PCI 57 204	
Ausführungszeit Eine boolesche Grundanweisung		0,19/0,21 µs (2)	
	Eine numerische Grundanweisung		
	Eine Gleitkomma-Anweisung	1,75/3,0 µs	
Overhead-System	Master-Task	1 ms	
	Fast-Task	0,30 ms	

⁽¹⁾ Kins: 1.024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 32 Prozessor TSX PCI 57 354

Allgemeine technische Daten des Prozessors TSX PCI 57 354

Prozessor TSX PCI 57 354

Die folgende Tabelle enthält die allgemeinen technischen Daten des Prozessors TSX PCI 57 354.

Technische Daten			TSX PCI 57 354	
Maximale Konfiguration	Maximale Anzahl der TSX RKY 12EX-Racks		8	
	Maximale Ar	16		
	Maximale Ar	Maximale Anzahl der Steckplätze		
Funktionen	Maximale Anzahl der Kanäle	Digitale E/A im Rack	1024	
		Analoge E/A im Rack	128	
		Applikationsspezifische Funktion	32	
	Maximale Anzahl der Anschlüsse	Integrierter Uni-Telway (PG-Anschluss)	1	
		Netz (ETHWAY, Fipway, Modbus Plus)	3	
		Fipio-Master (integriert), Anzahl der Geräte	127	
		Feldbus von Drittanbietern	3	
		AS-i-Feldbus	8	
	Regelkanäle		15	
	Regelkreis		45	
	Sicherbarer Kalender		Ja	
Speicher	Interner, sicherbarer RAM		224 KB	
	PCMCIA-Spe	1792 KB		
Applikationsstruktur	Master-Task		1	
	Fast-Task	1		
	Ereignisverarbeitung (1 prioritär)		64	
Ausführungsgeschwindigkeit	Interner	100 % boolesch	6,67 Kins/ms (1)	
des Anwendungscodes:	RAM	65 % boolesch + 35 % numerisch	4,76 Kins/ms (1)	
	PCMCIA- Karte	100 % boolesch	4,55 Kins/ms (1)	
		65 % boolesch + 35 % numerisch	3,13 Kins/ms (1)	

Technische Daten	TSX PCI 57 354	
Ausführungszeit	Eine boolesche Grundanweisung	0,12/0,17 µs (2)
	Eine numerische Grundanweisung	0,17/0,33 µs (2)
	Eine Gleitkomma-Anweisung	1,75/3,30 µs (2)
System-Overhead	Master-Task	1 ms
	Fast-Task	0,35 ms

⁽¹⁾ Kins: 1024 Anweisungen (Liste)

⁽²⁾ Der erste Wert entspricht der Ausführungszeit, wenn sich die Applikation im internen RAM des Prozessors befindet, der zweite Wert entspricht der Ausführungszeit, wenn die Applikation auf einer PCMCIA-Karte gespeichert ist.

Kapitel 33

Atrium-Prozessoren: Allgemeine technische Daten

Inhalt dieses Kapitels

In diesem Kapitel finden Sie die technischen Daten von Geräten, die bei der Inbetriebnahme einer Atrium-Station eingesetzt werden.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Eigenschaften der Atrium-Prozessoren	252
Elektrische Kenndaten der Atrium-Prozessoren sowie der anschließbaren und integrierbaren Geräte	253
Definition und Zählung der anwendungsspezifischen Kanäle	256
Leistung der Prozessoren	257

Eigenschaften der Atrium-Prozessoren

Technische Daten

Ein Atrium-Prozessor besteht aus:

- einem Prozessor für die allgemeine Nutzung
- einem Prozessor für die Überprüfung der Befehlsverarbeitung

In der folgenden Tabelle sind die Hauptmerkmale der verschiedenen Prozessoren aufgeführt.

Prozessor	Hauptprozessor	Frequenz des Hauptprozessors (MHz)	Steuerungsprozessor	Frequenz des Steuerungsprozessors (MHz)
TPC X57 0244	INTEL oder AMD 486	48	SONIX	48
TSX PCI 57 204	INTEL oder AMD 486	72	SONIX	48
TPC X57 204	INTEL oder AMD 486	72	SONIX	48
TSX PCI 57 354	INTEL oder AMD 486	72	SONIX	48

Elektrische Kenndaten der Atrium-Prozessoren sowie der anschließbaren und integrierbaren Geräte

Allgemeines

Die Prozessoren können bestimmte Geräte ohne eigene Stromversorgung aufnehmen. Es ist daher notwendig, den Stromverbrauch dieser Geräte bei der Berechnung des globalen Verbrauchs zu berücksichtigen.

- Geräte ohne Selbstspeisung, die an den PG-Anschluss angeschlossen werden können:
 - Einstellgerät: T FTX 117 ADJUST
 - O Schaltgerät TSX P ACC01 zum Anschluss an den Bus Uni-Telway
- Geräte ohne Selbstspeisung, die in den Prozessor integriert werden können:
 - PCMCIA-Speicherkarten
 - TSX FPP 10/20-PCMCIA-Kommunikationskarten
 - TSX SCP 111/112/114-PCMCIA-Kommunikationskarte
 - O PCMCIA-Kommunikationskarte TSX MBP 100

Besonderheit der Atrium-Prozessoren

Diese Prozessoren verfügen über eine eigene 5-VDC-Stromversorgung, die von der 12-VDC-Stromversorgung des Host-PCs erzeugt wird. Aus diesem Grund muss die 12-VDC-Stromversorgung des Host-PCs eine ausreichende Leistung erbringen, damit ein Atrium-Prozessor eingesetzt werden kann.

Verbrauch (Prozessoren + PCMCIA-Karten)

In der folgenden Tabelle wird der Verbrauch bei 12 VDC des Host-PCs aufgeführt:

Prozessor + PCMCIA-Speicherkarte	Typischer Verbrauch	Maximaler Verbrauch
TSX PCI 57 204	625 mA	1250 mA
TSX PCI 57 354	760 mA	1520 mA

Verlustleistung (Prozessoren + PCMCIA-Karten)

In dieser Tabelle finden Sie die Verlustleistung der Atrium-Prozessoren:

Prozessor + PCMCIA-Speicherkarte	Typischer Verbrauch	Maximaler Verbrauch
TSX PCI 57 204	7,5W	15 W
TSX PCI 57 354	9,1W	18,3 W

Verbrauch der an den Prozessor anschließbaren und in diesen einsetzbaren Geräte

Verbrauch:

Verbrauch bei 12 VDC des Host-PCs			Maximal
An den PG-Anschluss (TER) anschließbare Geräte	TFTX 117 ADJUST	144 mA	157 mA
ohne eigene Stromversorgung	TSXPACC01	69 mA	116 mA
In den Prozessor integrierbare PCMCIA-	TSXFPP10	153 mA	167 mA
Kommunikationskarte	TSXFPP20	153 mA	167 mA
	TSXSCP111	65 mA	139 mA
	TSXSCP112	56 mA	139 mA
	TSXSCP114	69 mA	139 mA
	TSXMBP100	102 mA	144 mA

Verlustleistung der an den Prozessor anschließbaren und in diesen einsetzbaren Geräte

Verlustleistung:

Verlustleistung			Maximal
An den PG-Anschluss (TER) anschließbare Geräte	TFTX 117 ADJUST	1,7 W	1,9 W
ohne eigene Stromversorgung	TSXPACC01	0,8 W	1,4 W
In den Prozessor integrierbare PCMCIA-	TSXFPP10	1,8 W	2,0 W
Kommunikationskarte	TSXFPP20	1,8 W	2,0 W
	TSXSCP111	0,8 W	1,7 W
	TSXSCP112	0,7 W	1,7 W
	TSXSCP114	0,8 W	1,7 W
	TSXMBP100	1,2 W	1,7 W

Technische Daten der optionalen 24-V-Stromversorgungskarte

Tabelle der Kenndaten:

Eigenschaften			Wert
Primär	Spannung	Nennspannung	24 VDC
		Grenzwert (Welligkeit eingeschlossen)	19,2 - 30 VDC (bis zu 36 V möglich)
	Strom	Eingangssollwert I eff	1,1 A bei 24 V DC
	Anlegen von	I Rufstrom	100 A bei 24 V DC
	Initialspannung bei 25 °C	I2t bei Einschalten	3 A2s
		t bei Einschalten	0,04 As
	Dauer Mikrounterbrechung	24 V	7 ms
	Integrierter Schutz	Durch träge Sicherung	2 A
Sekundär	Leistung	Gesamtnutzleistung, typisch	4 W
	15-VDC-Ausgang	Nennspannung	15,5 V
Isolierung	Dielektrische Spannungsfestigkeit	Primärkreis/Sekundärkreis	nicht isoliert, 0 V intern mit der Masse des PC verbunden
Normen- Konformität			IEC 1131-2

Definition und Zählung der anwendungsspezifischen Kanäle

Übersichtstabelle

Anwendungsspezifische Funktionen

Anwendung		Modul/Karte	Anwendungsspezifische Kanäle	Anzahl
Zählung		TSXCTY2A	Ja	2
		TSXCTY2C	Ja	2
		TSXCTY4A	Ja	4
Bewegungsste	uerung	TSXCAY21	Ja	2
		TSXCAY41	Ja	4
		TSXCAY22	Ja	2
		TSXCAY42	Ja	4
		TSXCAY33	Ja	3
Einzelschrittsteuerung		TSXCFY11	Ja	1
		TSXCFY21	Ja	2
Wiegen		TSXISPY101	Ja	1
Kommunikation	n serielle	TSXSCP11. im Prozessor	Nein	0(*)
Verbindung		TSXJNP11 im TSXSCY21	Ja	1
		TSXJNP11 im TSXSCY21	Ja	1
		TSXSCY 21 (integrierter Kanal)	Ja	1
	Modem	TSXMDM10	Ja	1
	Fipio-Agent	TSXFPP10 im Prozessor	Nein	0(*)
	Fipio-Master	Im Prozessor integriert	Nein	0(*)

^(*) Obwohl es sich bei diesen Kanälen um anwendungsspezifische Kanäle handelt, sind diese nicht für die Berechnung der vom Prozessor unterstützten Maximalanzahl anwendungsspezifischer Kanäle zu berücksichtigen.

HINWEIS: Nur die über die Programmiersoftware konfigurierten Kanäle werden gezählt.

Leistung der Prozessoren

Allgemeines

Siehe Prozessorleistung, Seite 187.

Teil IV

Stromversorgungsmodule TSX PSY

Gegenstand dieses Abschnitts

In diesem Abschnitt werden Stromversorgungsmodule des Typs TSX PSY ... und deren Implementierung beschrieben.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
34	Stromversorgungsmodule TSX PSY: Übersicht	261
35	Stromversorgungsmodule TSX PSY: Installation	269
36	Stromversorgungsmodule TSX PSY: Diagnose	287
37	Stromversorgungsmodule TSX PSY : Hilfsfunktionen	293
38	Versorgungsmodule TSX PSY: Leistung und Verbrauchsbilanz	299
39	Stromversorgungsmodul TSX PSY 2600	311
40	Stromversorgungsmodul TSX PSY 5500	313
41	Stromversorgungsmodul TSX PSY 8500	315
42	Stromversorgungsmodul TSX PSY 1610	317
43	Stromversorgungsmodul TSX PSY 3610	319
44	Stromversorgungsmodul TSX PSY 5520	321

Kapitel 34

Stromversorgungsmodule TSX PSY...: Übersicht

Gegenstand dieses Kapitels

Gegenstand dieses Kapitels ist es, Ihnen die Versorgungsmodule TSX PSY vorzustellen.... .

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Allgemeine Informationen	262
Stromversorgungsmodule: Beschreibung	264
Katalog der Stromversorgungsmodule TSX PSY	266

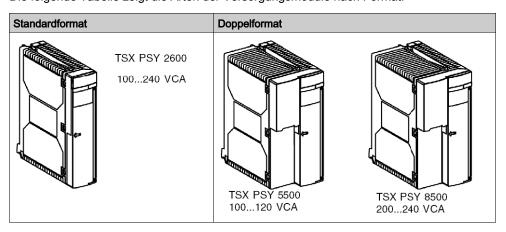
Allgemeine Informationen

Auf einen Blick

Die Stromversorgungsmodule **TSX PSY...** sind für die Speisung der Racks **TSX RKY...** und der in ihnen enthaltenen Module vorgesehen. Das Versorgungsmodul wird in Abhängigkeit vom Stromnetz (Gleichstrom oder Wechselstrom) und der erforderlichen Leistung (Standardformat oder doppeltes Format) definiert.

Es gibt verschiedene Arten von Versorgungsmodulen:

- Stromversorgungsmodule für ein Wechselstromnetz
- Stromversorgungsmodule für ein Gleichstromnetz


Hilfsfunktionen der Stromversorgungsmodule

Jedes Stromversorgungsmodul verfügt über Hilfsfunktionen:

- Anzeigeblock
- Alarmrelais
- Platz für eine Batterie zum Speichern der Daten im RAM-Speichers des Prozessors
- Versenkt eingebaute Taste (mit einem Bleistift zu betätigen), die einen Stromausfall simuliert und einen Warmstart der Anwendung auslöst
- 24-VDC-Sensorversorgung (nur an Modulen im Wechselstromnetz)

Stromversorgungsmodule für ein Wechselstromnetz

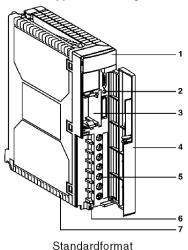
Die folgende Tabelle zeigt die Arten der Versorgungsmodule nach Format:

Stromversorgungsmodule für ein Gleichstromnetz

Die folgende Tabelle zeigt die Arten der Versorgungsmodule nach Format:

Standardformat	Doppelformat
TSX PSY 1610 24 VCC nicht isoliert	TSX PSY 3610 24 VCC nicht isoliert TSX PSY 5520 24-48 VCC isoliert

Stromversorgungsmodule: Beschreibung


Einleitung

Die Versorgungsmodule sind in folgenden Formaten erhältlich:

- Standardformat für die Module TSX PSY 2600 und TSX PSY 1610
- Doppelformat für die Module TSX PSY 5500/3610/5520/8500

Abbildung

In diesen Abbildungen sind die einzelnen Elemente eines Versorgungsmoduls im Standardformat und im Doppelformat dargestellt:

Beschreibung

In dieser Tabelle sind die Elemente eines Versorgungsmoduls beschrieben:

Nummer	Funktion
1	 Anzeigebaustein, bestehend aus: einer LED-Anzeige OK (grün), die leuchtet, wenn die korrekte Spannung anliegt, einer LED-Anzeige BAT (rot), die leuchtet, wenn die Batterie defekt ist oder fehlt, einer LED-Anzeige 24 V (grün), die leuchtet, wenn der Spannungssensor vorhanden ist. Diese LED-Anzeige ist nur bei den Stromversorgungsmodulen TSX PSY 2600/5500/8500 für Wechselstromnetze vorhanden.
2	Versenkt eingebaute Taste RESET (mit einem spitzen Gegenstand wie einem Bleistift zu betätigen), die einen Warmstart der Applikation auslöst.
3	Platz für eine Batterie, die die Sicherung des internen RAM -Speichers im Prozessor gewährleistet.
4	Klappe zum Schutz der Vorderseite des Moduls.
5	 Klemmenleiste mit Schrauben zum Anschluss des Stromversorgungsnetzes, des Alarmrelaiskontakts, der Sensorversorgung für die Stromversorgungsmodule TSX PSY 2600/5500/8500 für Wechselstrom.
6	Öffnung für die Durchführung einer Kabelklemme
7	Sicherung unter dem Modul zum Schutz von: 24 VR-Spannung am Versorgungsmodul TSX PSY 3610 für Gleichstrom Primärspannung am Versorgungsmodul TSX PSY 1610 für Gleichstrom Hinweis: Bei den Versorgungsmodulen TSX PSY 2600/5500/5520/8500 befindet sich die
8	Sicherung zum Schutz der Primärspannung im Inneren des Moduls und ist nicht zugänglich. Spannungswähler 110/220. Er ist nur bei den Stromversorgungsmodulen TSX PSY 5500/8500 für Wechselstromnetze vorhanden. Der Spannungswähler ist werkseitig auf 220 eingestellt.

Katalog der Stromversorgungsmodule TSX PSY ...

Katalog der Stromversorgungsmodule für Wechselstromnetz

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Stromversorgungsmodule TSX PSY ... 2600/5500/8500 enthalten.

Referenzen	TSX PSY 2600	TSX PSY 5500	TSX PSY 8500
Kenndaten der Eingänge			
Nennspannungen	200 - 240 VAC	100 - 120 VAC / 200 - 240 VAC	100 - 120 VAC / 200 - 240 VAC
Grenzwerte	85 - 264 VAC	85 - 140 VAC / 190 - 264 VAC	85 - 140 VAC / 190 - 264 VAC
Grenzfrequenz	47 - 63 Hz	47 - 63 Hz	47 - 63 Hz
Zulässige Dauer von Mikro- Netzausfällen	kleiner oder gleich 10 ms	kleiner oder gleich 10 ms	kleiner oder gleich 10 ms
Scheinleistung	50 VAC	150 VAC	150 VAC
Nenn-Eingangsstrom	0,5 A bei 100 V 0,3 A bei 240 V	1,7 A bei 100 V 0,5 A bei 240 V	1,7 A bei 100 V 0,5 A bei 240 V
Kenndaten der Ausgänge			
Gesamtleistung	26 W	50 W	80 W
Ausgangsspannungen	5 V, 24 VR (1) 24 VC (2)	5 V, 24 VR (1) 24 VC (2)	5 V, 24 VC (2)
Nennstrom 5 V	5 A	7 A	15 A
Nennstrom 24 VR	0,6 A	0,8 A	nicht geliefert
Nennstrom 24 VC	0,5 A	0,8 A	1,6 A
Hilfsfunktionen			
Alarmrelais	ja (1 potentialfreier Schließer auf Klemmenleiste)		
Anzeige	ja, durch LED an der Vorderseite		
Backup-Batterie	ja (Statusüberwachung durch LED an der Vorderseite des Moduls)		
Normen-Konformität	IEC 1131-2		

- (1) 24 V-Spannung für die Stromversorgung der in den Relaisausgangsmodulen installierten Relais.
- (2) 24 V-Spannung für die Stromversorgung der Sensoren.

Katalog der Stromversorgungen für Gleichstromnetz

In der folgenden Tabelle sind die wichtigsten Daten (maximale Werte) der Stromversorgungsmodule TSX PSY ... 1610/3610/5520 enthalten.

Referenzen	TSX PSY 1610	TSX PSY 3610	TSX PSY 5520		
Kenndaten der Eingänge					
Nennspannungen	24 VDC, nicht isoliert	24 VDC, nicht isoliert	24 - 48 VDC, isoliert		
Grenzwerte	19,2 - 30 VDC	19,2 - 30 VDC	19,2 - 60 VDC		
Zulässige Dauer von Mikro- Netzausfällen	kleiner oder gleich 1 ms	kleiner oder gleich 1 ms	kleiner oder gleich 1 ms		
Nenn-Eingangsstrom	≤ 1,5 A	≤ 2,7 A	≤ 3 A/24 V 1,5 A/48 V		
Kenndaten der Ausgänge					
Gesamtleistung	26 W	50 W	80 W		
Ausgangsspannung	5 V, 24 VR (1)	5 V, 24 VR (1)	5 V, 24 VR (1)		
Nennstrom 5 V	5 A	7 A	7 A		
Nennstrom 24	0,6 A	0,8 A	0,8 A		
Hilfsfunktionen	Hilfsfunktionen				
Alarmrelais	ja (1 potentialfreier Schließer auf Klemmenleiste)				
Anzeige	ja, durch LED an der Vorderseite				
Backup-Batterie	ja (Statusüberwachung durch LED an der Vorderseite des Moduls)				
Normen-Konformität	IEC 1131-2				

(1) 24 V-Spannung für die Stromversorgung der in den Relaisausgangsmodulen installierten Relais.

Kapitel 35

Stromversorgungsmodule TSX PSY ...: Installation

Gegenstand dieses Kapitels

In diesem Kapitel wird die Installation der Stromversorgungsmodule TSX PSY ... beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Einbau/Montage der Stromversorgungsmodule TSX PSY	270
Anschlussanweisungen für die Stromversorgungsmodule TSX PSY	271
Anschluss der Stromversorgungsmodule für Wechselstromnetze	273
Anschluss der Gleichstromversorgungsmodule von einem potentialfreien Gleichstromnetz mit 24 oder 48 VDC	275
Anschluss der Stromversorgungsmodule für Gleichstrom an ein Wechselstromnetz	277
Überwachung der Stromversorgung von Gebern und Vorstellgliedern	281
Definition der Schutzelemente am Leitungsanfang	284

Einbau/Montage der Stromversorgungsmodule TSX PSY

Montage

Die Montage des Stromversorgungsmoduls TSX PSY ist identisch mit der Montage der Prozessormodule und allgemein mit der Montage anderer Module identisch (*Prozessormodule montieren, Seite* 102).

Einbau

In dieser Tabelle finden Sie die Beschreibung des Montageprinzips der Stromversorgungsmodule:

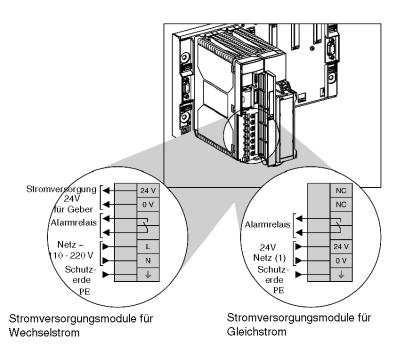
Typ des Stromversorgungsmoduls	Beschreibung	Abbildung
Standardformat TSX PSY 2600/1610	Sie werden in die erste Position von jedem Rack TSX RKY eingesetzt und belegen die Position PS .	
Doppelformat: TSX PSY 3610/5500/5520/8500	Sie werden in die beiden ersten Positionen jedes Racks TSX RKY eingesetzt und belegen die Positionen PS und 00.	

HINWEIS: Jedes Stromversorgungsmodul besitzt einen Schutzmechanismus, der seinen Einbau nur in den oben angegebenen Positionen erlaubt.

HINWEIS: Das Stromversorgungsmodul TSX PSY 8500 liefert keine 24 VR Spannung. Aus diesem Grund kann ein Rack, das mit diesem Stromversorgungsmodul ausgerüstet ist, bestimmte Module wie die Module für die Relaisausgänge und Wägemodule nicht aufnehmen.

Anschlussanweisungen für die Stromversorgungsmodule TSX PSY

Allgemeines


Die Stromversorgungsmodule TSX PSY •••, die in jedem Rack eingesetzt sind, sind mit einer nicht steckbaren Klemmenleiste versehen, die mit einer Abdeckung geschützt ist und für den Anschluss der Netzspannung, des Alarmrelais, der Schutzerde und, für Stromversorgungsmodule für Wechselstromnetz, der Versorgung der 24-VDC-Sensoren vorgesehen ist.

Dieser Klemmenblock ist mit Klemmen mit unverlierbaren Schrauben versehen, die maximal 2 Drähte mit einem Leiterquerschnitt von 1,5 mm² mit Kabelschuhen oder einen Draht mit einem Leiterquerschnitt von 2,5 mm² aufnehmen können (maximales Anzugsmoment der Klemmenschraube: 0.8 Nm).

Die Drähte werden nach unten aus dem Block geführt. Sie können mit einer Kabelklemme fixiert werden.

Abbildung

In diesem Schema ist der Schraubklemmenblock dargestellt:

(1) 24 V - 48 V Wechselstrom für Stromversorgungsmodul TSX PSY 5520.

A GEFAHR

ELEKTRISCHER SCHLAG - FALSCHE VERSORGUNGSSPANNUNG

Bei den Stromversorgungsmodulen TSX PSY 5500/8500 ist der Spannungswählschalter in Abhängigkeit von der verwendeten Netzspannung einzustellen (110 oder 220 VAC).

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Eine Schutz- und Trennvorrichtung zum Abschalten der Stromversorgung ist der Steuerungsstation vorzuschalten.

Bei Auswahl der Schutzvorrichtungen muss der Benutzer den Rufstrom berücksichtigen, der in den Tabellen mit den technischen Daten jedes Stromversorgungsmoduls angegeben ist.

HINWEIS: Die Stromversorgungsmodule für Gleichstromnetz TSX PSY 1610/2610/5520 haben einen starken Rufstrom. Es ist daher nicht ratsam, diese in Gleichstromnetzen zu benutzen, die einen Strombegrenzungsschutz für zurückfließenden Strom aufweisen (Flood back).

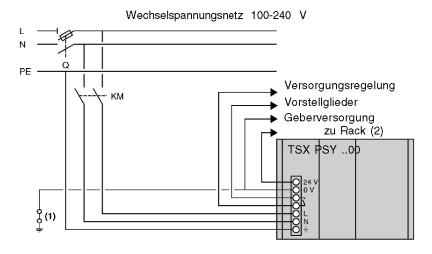
Wenn ein Stromversorgungsmodul an ein Gleichstromnetz angeschlossen ist, ist unbedingt die Kabellänge der Stromversorgungskabel zu begrenzen, um Leitungsverluste zu vermeiden.

- Stromversorgungsmodul TSX PSY 1610:
 - Länge auf 30 m begrenzt (60 m hin und zurück) bei Kupferdrähten mit Leiterquerschnitt 2,5 mm² (12 AWG).
 - Länge auf 20 m begrenzt (40 m hin und zurück) bei Kupferdrähten mit Leiterquerschnitt 1,5 mm² (14 AWG).
- Stromversorgungsmodule TSX PSY 3610 und TSX PSY 5520:
 - Länge auf 15 m begrenzt (30 m hin und zurück) bei Kupferdrähten mit Leiterquerschnitt 2,5 mm² (12 AWG).
 - Länge auf 10 m begrenzt (20 m hin und zurück) bei Kupferdrähten mit Leiterquerschnitt 1,5 mm² (14 AWG).

▲ WARNUNG

ERDUNG VON GLEICHSTROM-VERSORGUNGEN

Die 0 V und die mechanische Masse sind intern in den Steuerungen, dem Netzkabelzubehör und bestimmten Schaltpulten angeschlossen.


Beim Anschluss potentialfrei arbeitender Applikationen sind besondere Vorkehrungen hinsichtlich der Anschlüsse zu treffen. Diese sind von der jeweiligen Installationsart abhängig. In diesen Fällen müssen isolierte Gleichstromversorgungen verwendet werden.

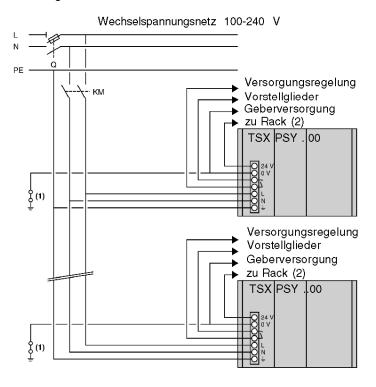
Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Anschluss der Stromversorgungsmodule für Wechselstromnetze

Anschluss einer aus einem Rack bestehenden Steuerungsstation

Abbildung:

Q: Hauptschalter,


KM: Netzschalter oder Trennschalter,

- (1) Isolierleiste, um nach einem Masseanschlussfehler zu suchen
- (2) Verfügbarer Strom:
- 0,6 A mit Stromversorgungsmodul TSX PSY 2600 (siehe Seite 311),
- 0.8 A mit Stromversorgungsmodul TSX PSY 5500 (siehe Seite 313).
- 1,6 A mit Stromversorgungsmodul TSX PSY 8500 (siehe Seite 315).

HINWEIS: Sicherungen: Die Stromversorgungsmodule für Wechselstromnetz TSX PSY 2600/5500/8500 sind standardmäßig mit einer Sicherung ausgerüstet. Diese Sicherung, die in Reihe mit dem Eingang **L** geschaltet ist, befindet sich innerhalb des Moduls und ist nicht zugänglich.

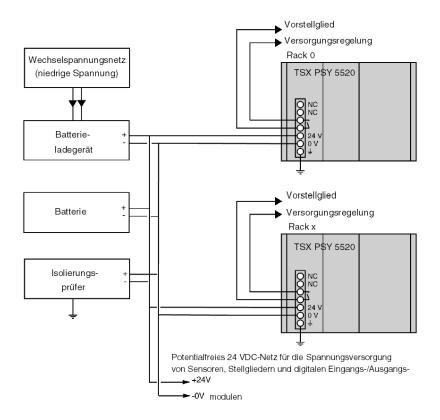
Anschluss einer aus mehreren Racks bestehenden Steuerungsstation

Abbildung:

HINWEIS: Im Fall mehrerer Steuerungsstationen, die von demselben Netz versorgt werden, ist das Anschlussprinzip identisch.

Q: Hauptschalter,

KM: Netzschalter oder Trennschalter,


- (1) Isolierleiste, um nach einem Masseanschlussfehler zu suchen
- (2) Verfügbarer Strom:
- 0,6 A mit Stromversorgungsmodul TSX PSY 2600 (siehe Seite 311),
- 0.8 A mit Stromversorgungsmodul TSX PSY 5500 (siehe Seite 313).
- 1,6 A mit Stromversorgungsmodul TSX PSY 8500 (siehe Seite 315).

HINWEIS: Sicherungen: Die Stromversorgungsmodule für Wechselstromnetz TSX PSY 2600/5500/8500 sind standardmäßig mit einer Sicherung ausgerüstet. Diese Sicherung, die in Reihe mit dem Eingang **L** geschaltet ist, befindet sich innerhalb des Moduls und ist nicht zugänglich.

Anschluss der Gleichstromversorgungsmodule von einem potentialfreien Gleichstromnetz mit 24 oder 48 VDC

Abbildung

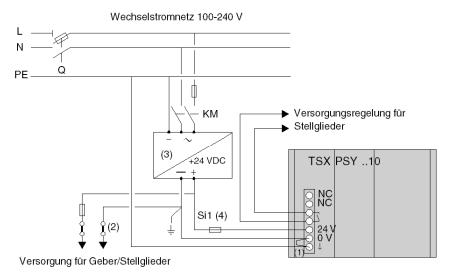
Abbildung des Funktionsprinzips:

A GEFAHR

ELEKTRISCHER SCHLAG - ERDUNG FÜR POTENTIALFREIE MONTAGE ODER MARINEANWENDUNGEN

Bei potentialfreier (nicht geerdeter) Montage, die in bestimmten Anwendungen und insbesondere in **Marineanwendungen** üblich ist, muss ein isoliertes Stromversorgungsmodul **TSX PSY 5520** (24/48 VDC) verwendet werden.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


HINWEIS: Der Grad der Potentialtrennung von 24 VDC (oder 48 VDC) im Verhältnis zur Erde kann dauerhaft gemessen werden. In diesem Fall wird eine Warnung ausgeben, wenn der Grad der Potentialtrennung unnatürlich klein ist.

Die Eingangs-/Ausgangsmodule der Premium-Serie sind isoliert.

Anschluss der Stromversorgungsmodule für Gleichstrom an ein Wechselstromnetz

Nicht isoliertes Stromversorgungsmodul TSX PSY 1610/3610

Anschluss einer aus einem einzigen Rack bestehenden Station mit geerdetem Netz:

Q: Hauptschalter

KM: Netzschalter oder Trennschalter

- (1): Externer Shunt, der mit dem Stromversorgungsmodul geliefert wird
- (2): Isolierleiste für die Suche nach Masseanschlussfehlern In diesem Fall ist die Stromversorgung zu trennen, bevor das Netz von der Masse abgeklemmt wird.
- (3): Es ist möglich, eine Prozessversorgung (siehe Seite 323) zu benutzen.
- (4): Sicherung (4 A, träge), nur notwendig, wenn ein Stromversorgungsmodul TSX PSY 3610 benutzt wird.

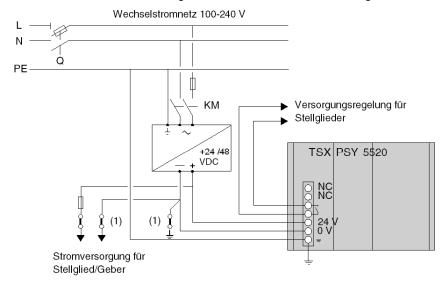
Das Stromversorgungsmodul TSX PSY 1610 ist standardmäßig mit einer Sicherung ausgerüstet, die sich unter dem Modul befindet und in Reihe mit dem Eingang 24 V geschaltet ist (Sicherung 3,5 A, 5x20, träge).

Wechselstromnetz 100-240 V PΕ KMVersorgungsregelung für Stellglieder (3) TSX PSY ..10 +24 VDC Si1 (4) (2) Stromversorgung für Stellglied/Geber Versorgungsregelung für Stellglieder TSX PSY ..10 Si1 (4)

Anschluss einer aus mehreren Racks bestehenden Station mit geerdetem Netz:

Q: Hauptschalter

KM: Netzschalter oder Trennschalter


- (1): Externer Shunt, der mit dem Stromversorgungsmodul geliefert wird
- (2): Isolierleiste für die Suche nach Masseanschlussfehlern In diesem Fall ist die Stromversorgung zu trennen, bevor das Netz von der Masse abgeklemmt wird.
- (3): Es ist möglich, eine Prozessversorgung zu benutzen.
- (4): Sicherung (4 A, träge), nur notwendig, wenn ein Stromversorgungsmodul TSX PSY 3610 benutzt wird.

Das Stromversorgungsmodul TSX PSY 1610 ist standardmäßig mit einer Sicherung ausgerüstet, die sich unter dem Modul befindet und in Reihe mit dem Eingang 24 V geschaltet ist (Sicherung 3,5 A, 5x20, träge).

HINWEIS: Im Fall mehrerer Steuerungsstationen, die von demselben Netz versorgt werden, ist das Anschlussprinzip identisch.

Isoliertes Stromversorgungsmodul TSX PSY 5520

Anschluss einer aus einem einzigen Rack bestehenden Station mit geerdetem Netz:

Q: Hauptschalter

KM: Netzschalter oder Trennschalter

(1): Isolierleiste für die Suche nach Masseanschlussfehlern

(2): Möglichkeit, eine Prozessversorgung zu benutzen

HINWEIS: Sicherung: Die Stromversorgungsmodule TSX PSY 5520 sind standardmäßig mit einer Sicherung ausgerüstet. Diese Sicherung, die mit dem Eingang 24/48 V in Reihe geschaltet ist, befindet sich innerhalb des Moduls und ist nicht zugänglich.

Wechselstromnetz 100-240 V PΕ Versorgungsregelung für ΚM Stellglieder (2)+24 /48 TSX PSY 5\$20 + VDC (1) Stromversorgung für Stellglied/Geber Versorgungsregelung für Stellglieder TSX PSY 5\$20

Anschluss einer aus mehreren Racks bestehenden Station mit geerdetem Netz:

Q: Hauptschalter

KM: Netzschalter oder Trennschalter

(1) : Isolierleiste für die Suche nach Masseanschlussfehlern

(2): Möglichkeit, eine Prozessversorgung zu benutzen

HINWEIS: Sicherung: Die Stromversorgungsmodule TSX PSY 5520 sind standardmäßig mit einer Sicherung ausgerüstet. Diese Sicherung, die mit dem Eingang 24/48 V in Reihe geschaltet ist, befindet sich innerhalb des Moduls und ist nicht zugänglich.

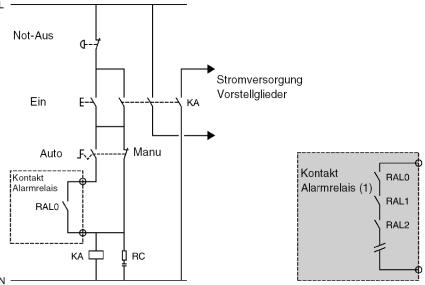
HINWEIS: Im Fall mehrerer Steuerungsstationen, die von demselben Netz versorgt werden, ist das Anschlussprinzip identisch.

Überwachung der Stromversorgung von Gebern und Vorstellgliedern

Durchführen der Überwachung

Die Überwachung der verschiedenen Versorgungen sollte gemäß folgendem Ablauf durchgeführt werden:

Schritt	Aktion
1	Schalten Sie die Steuerung und die Eingänge (Geber) mit dem KM-Schalter ein (Schema (siehe Seite 277)).
2	Wenn sich die Steuerung in RUN und in AUTO befindet, schalten Sie die Versorgung der Ausgänge (Vorstellglieder) mit dem KA-Schalter ein. Dieser wird bei Kontakt des Alarmrelais von jedem Stromversorgungsmodul überwacht.

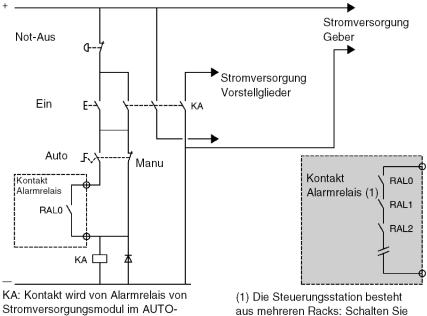

Sicherheitsnormen

Die Sicherheitsnormen erfordern es, dass vor dem Neustart der Anlage nach einem Stopp (der durch einen Netzausfall oder durch die Betätigung eines Notausschalters ausgelöst wurde) das Bedienungspersonal den Neustart freigibt.

Der Schalter MANU/AUTO ermöglicht die Forcierung der Ausgänge über ein PG, wenn sich die Steuerung in STOP befindet.

Beispiel 1

Steuerungsstation mit Wechselstromversorgung:



KA: Kontakt wird von Alarmrelais von Stromversorgungsmodul im AUTO-Betrieb überwacht.

(1) Die Steuerungsstation besteht aus mehreren Racks: Schalten Sie alle Kontakte "Alarmrelais" (RAL0, RAL1, RAL2,...) in Reihe.

Beispiel 2

Steuerungsstation mit Gleichstromversorgung:

Stromversorgungsmodul im AUTO-Betrieb überwacht.

aus mehreren Racks: Schalten Sie alle Kontakte "Alarmrelais" (RAL0, RAL1, RAL2,...) in Reihe.

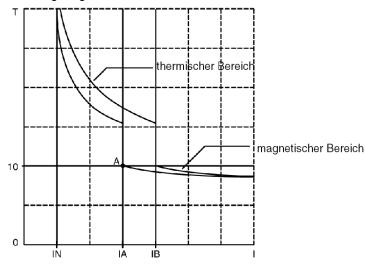
Definition der Schutzelemente am Leitungsanfang

Einleitung

Es wird empfohlen, am Leitungsanfang des Versorgungsnetzes ein Sicherheitselement (Überlastschalter bzw. Sicherung) einzubauen.

Die folgenden angegebenen Daten ermöglichen für ein gegebenes Versorgungsmodul die Festlegung der Mindeststromstärke von Überlastschalter und Sicherung.

Auswahl des Überlastschalters


Folgende drei Merkmale sind für die Auswahl des Überlastschalters zu berücksichtigen (Angabe erfolgt für jedes Versorgungsmodul):

- Eingangsnennstrom: Irms (Effektivstrom)
- Rufstrom: I
- It

Die Mindeststromstärke für den Überlastschalter wird folgendermaßen ausgewählt:

- Stromstärke Überlastschalter IN > I eff der Versorgung,
- I max. Überlastschalter > I Versorgungssignal,
- It Überlastschalter an Punkt A der Kurve > It Versorgung.

Abbildung: Angaben vom Hersteller der Überlastschalter.

Auswahl der Sicherung

Folgende zwei Merkmale sind für die Stromstärke der Sicherung zu berücksichtigen (Angabe erfolgt für jedes Versorgungsmodul):

- Eingangsnennstrom: Irms (Effektivstrom)
- I²t.

Die Mindeststromstärke für die Sicherung wird folgendermaßen ausgewählt:

- Wert Sicherung IN > 3 x I eff Versorgung,
- I²t der Sicherung > 3 x I²t Versorgung.

Zusammenfassung der Merkmale I eff, I Signal, It und I²t für jedes Versorgungsmodul:

Modul TSX		PSY 2600	PSY 5500	PSY 8500	PSY 1610	PSY 3610	PSY 5520
l eff	bei 24 VDC	-	-	-	1,5 A	2,7 A	3 A
	bei 48 VDC	-	-	-	-	-	1,5 A
	bei 100 VAC	0.5 A	1,7 A	1,4 A	-	-	-
	bei 24 VAC	0,3 A	0.5 A	0.5 A	-	-	-
I Signal ⁽¹)	bei 24 VDC	-	-	-	100 A	150 A	15 A
,	bei 48 VDC	-	-	-	-	-	15 A
	bei 100 VAC	37 A	38 A	30 A	-	-	-
	bei 24 VAC	75 A	38 A	60 A	-	-	-
It	bei 24 VDC	-	-	-	0,1 As	0,3 As	0,25 As
	bei 48 VDC	-	-	-	-	-	15 As
	bei 100 VAC	0,034 As	0,11 As	0,15 As	-	-	-
	bei 24 VAC	0,067 As	0,11 As	0,15 As	-	-	-
I ² t	bei 24 VDC	-	-	-	6 A ² s	26 A ² s	2,2 A ² s
	bei 48 VDC	-	-	-	-	-	1,8 A ² s
	bei 100 VAC	0,63 A ² s	4 A ² s	15 A ² s	-	-	-
	bei 24 VAC	2,6 A ² s	2 A ² s	8 A ² s	-	-	-

⁽¹⁾ Werte beim ersten Einschalten und bei 25 °C.

Kapitel 36

Stromversorgungsmodule TSX PSY ...: Diagnose

Gegenstand dieses Kapitels

In diesem Kapitel wird die Diagnose der Stromversorgungsmodule TSX PSY ... beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Anzeige an den Stromversorgungsmodulen TSX PSY	288
Backup-Batterie am Versorgungsmodul TSX PSY	290
Unterbrechung der Stromversorgung eines Racks (außer Rack 0)	291
Vorgänge nach dem Drücken der RESET-Taste an einem Stromversorgungsmodul	292

Anzeige an den Stromversorgungsmodulen TSX PSY

Einführung

Jedes Stromversorgungsmodul hat einen Anzeigeblock mit:

- Drei LEDs (OK, BAT, 24 V) für die Stromversorgungsmodule für Wechselstrom TSX PSY 2600/5500/8500,
- Zwei LEDs (OK, BAT) für die Stromversorgungsmodule für Gleichstrom TSX PSY 1610/3610/5520.

Beschreibung

In der folgenden Tabelle sind die verschiedenen LED-Anzeigen und ihre Funktionen beschrieben:

Anzeige-LED	Beschreibung
LED OK (grün)	Leuchtet bei Normalbetrieb,Erlischt, wenn die Ausgangsspannungen unter den Grenzwerten liegen.
LED BAT (rot)	 Erlischt bei Normalbetrieb, Leuchtet bei fehlender, verbrauchter, falsch eingebauter oder falscher Batterie.
LED 24 V (grün)	 Leuchtet bei Normalbetrieb, Erlischt, wenn die 24-V-Spannung, mit der die Geber versorgt werden, nicht mehr vorhanden ist.
Drucktaste RESET	Bei Betätigung dieser Drucktaste wird eine Folge von Betriebssignalen ausgegeben, die mit denen identisch sind: • bei einem Netzausfall durch Druck, • beim Einschalten durch Loslassen. Diese Betätigungen (Druck und Loslassen) bewirken bei der Applikation einen Warmstart (siehe Seite 195).

Geberversorgung

Die Stromversorgungsmodule für Wechselstrom TSX PSY 2600/5500/8500 verfügen über eine integrierte Stromversorgung, die eine Spannung von 24 V DC für die Geberversorgung liefert.

Diese Geberversorgung ist über die Klemmenleiste mit Schraubklemmen des Moduls zugänglich.

UNERWARTETER GERÄTEBETRIEB

Schließen Sie das Modul TSX PSY 2600/5500/8500 nicht parallel mit einem externen Versorgungsmodul an.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Der Ausgang "Geberversorgung 24 VDC" des Moduls TSX PSY 8500 ist vom Typ TBTS (sehr niedrige Kleinspannung). Es garantiert somit die Sicherheit des Benutzers.

Backup-Batterie am Versorgungsmodul TSX PSY ...

Einleitung

In jedem Versorgungsmodul ist Platz für eine Batterie für die Versorgung des internen **RAM**, damit die Sicherung der Daten auch dann gewährleistet ist, wenn sich die Steuerung in spannungsfreiem Zustand befindet.

Diese Batterie wird zusammen mit dem Versorgungsmodul geliefert. Achten Sie beim Einlegen der Batterie auf die Polarität.

HINWEIS: Wenn Sie einen in einen PC integrierbaren Atrium-Prozessor verwenden, ist die Backup-Batterie in den Prozessor integriert. Die Eigenschaften dieser Backup-Batterie entsprechen den oben beschriebenen.

Daten zur Backup-Batterie

Technische Daten der Batterie: Thionyl-Lithiumchlorid-Batterie, 3,6 V/0,8 Ah, Größe 1/2AA.

Ersatzteil-Referenzen: TSX PLP 01.

Zeitraum, in dem die Batterie die Sicherung der Daten gewährleistet: Dieser Zeitraum hängt von folgenden zwei Faktoren ab:

- Länge der Zeit, in der die Steuerung ohne Netzspannung ist und daher auf die Batterie angewiesen ist,
- Umgebungstemperatur, wenn die Steuerung ohne Netzspannung ist.

Umgebungstemperatur-Tabelle (keine Netzspannung):

Umgebungstemperatur im ausgeschalteten Zustand		≤ 30° C	40° C	50° C	60° C
Sicherungszeit	Steuerung: 12 h/Tag spannungsfrei	5 Jahre	3 Jahre	2 Jahre	1 Jahr
	Steuerung: 1 h/Tag spannungsfrei	5 Jahre	5 Jahre	4,5 Jahre	4 Jahre

Batterieüberwachung: Steht sich das Versorgungsmodul unter Spannung, überwacht es den Batteriezustand. Wenn die Batteriespannung unter den Nennwert sinkt, wird der Benutzer durch das Aufleuchten der LED **BAT** (rot) darauf hingewiesen. In diesem Fall muss die Batterie umgehend ausgetauscht werden. Das Systembit %S68 gibt den Zustand der Backup-Batterie an (0 = Batterie OK).

Auswechseln der Batterie: Die Batterie kann ausgewechselt werden, während das Versorgungsmodul unter Spannung steht oder unmittelbar nachdem das Modul vom Netz getrennt wurde. In letzterem Fall muss das Auswechseln der Batterie innerhalb eines bestimmten Zeitraums erfolgen.

Die Sicherungszeit hängt von der Umgebungstemperatur ab. Stand der Prozessor zuvor unter Spannung, hängt die normale Sicherungszeit von folgenden Faktoren ab:

Umgebungstemperatur bei Trennung vom Netz	20° C	30° C	40° C	50° C
Sicherungszeit	2 h	45 min	20 min	8 min

290 35006162 12/2018

Unterbrechung der Stromversorgung eines Racks (außer Rack 0)

Allgemeines

Der Prozessor erkennt in allen Kanälen dieses Racks Fehler, aber an anderen Racks liegen keine Störungen vor. Die fehlerhaften Eingangswerte werden im Anwendungsspeicher nicht mehr aktualisiert und bei vorliegendem digitalem Eingangsmodul auf 0 gesetzt. Wenn diese Werte jedoch forciert wurden, wird deren Forcierungswert aufrechterhalten.

Kurzzeitige Unterbrechung

Beträgt die Dauer der Unterbrechung bei Wechselstromversorgung weniger als 10 ms (bzw. bei Gleichstromversorgung weniger als 1 ms), wird diese Unterbrechung vom Programm nicht erkannt. Das Programm wird weiter normal ausgeführt.

Vorgänge nach dem Drücken der RESET-Taste an einem Stromversorgungsmodul

Allgemeines

Das Stromversorgungsmodul jedes Racks verfügt an seiner Frontseite über eine RESET-Taste, die bei Betätigung eine Initialisierungssequenz der Module des von ihm versorgten Racks auslöst.

Wenn diese Aktion in einem Stromversorgungsmodul in dem Rack ausgeführt wird, das den Prozessor des Typs TSX P57/TSX H57 unterstützt (Rack 0), führt sie zu einem Warmstart.

Sonderfall des Prozessors PCI 57

In diesem Fall ist der Prozessor nicht physikalisch im Rack an der Adresse 0 vorhanden, so dass die Betätigung der RESET-Taste am Stromversorgungsmodul des Racks nicht zu einem Warmstart der Anwendung führt. Dennoch werden die im Rack vorhandenen Module reinitialisiert.

292 35006162 12/2018

Stromversorgungsmodule TSX PSY ... : Hilfsfunktionen

Gegenstand dieses Kapitels

In diesem Kapitel sind die Hilfsfunktionen der Stromversorgungsmodule TSX PSY... beschrieben. .

Inhalt dieses Kapitels

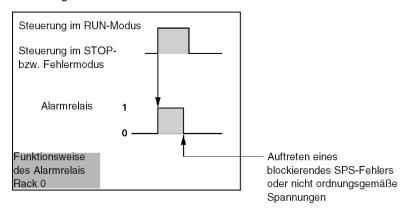
Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Alarmrelais am Versorgungsmodul TSX PSY	294
Technische Daten des Alarmrelaiskontakts	296

Alarmrelais am Versorgungsmodul TSX PSY

Einführung

Das sich in jedem Versorgungsmodul befindende Alarmrelais besitzt einen potenzialfreien Kontakt, der über den Schraubklemmenblock des Moduls zugänglich ist.


Darstellung:

Alarmrelais des Moduls an dem für den Prozessor bestimmten Rack (Rack 0)

Befindet sich die Steuerung bei normaler Funktionsweise im Modus **RUN**, wird das Alarmrelais aktiviert und dessen Kontakt geschlossen (Zustand 1). Bei jedem, auch teilweisem Anhalten der Applikation, dem Auftreten eines "blockierenden" Fehlers, nicht ordnungsgemäßen Ausgangsspannungen bzw. bei Netzausfall fällt die Spannung des Relais ab, und der dazugehörige Kontakt öffnet sich (Zustand 0).

Darstellung:

▲ VORSICHT

UNERWARTETES VERHALTEN DER GERÄTE

Verwenden Sie das Alarmrelais des Versorgungsmoduls nicht, wenn der Atrium-Prozessor in einen PC integriert ist (da es in dieser Konfiguration nicht funktionsfähig ist).

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

294 35006162 12/2018

▲ VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Stellen Sie im Einzelschrittmodus oder bei der Verwendung von Haltepunkten sicher, dass das Verhalten des Alarmrelais den Ausgangsstatus nicht beeinflusst. Setzen Sie Bit %S9 auf 1, um den Übergang der Ausgänge in den Fehlermodus zu forcieren.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Ist diese Funktion für einen ordnungsgemäßen Betrieb der Installation jedoch unerlässlich, kann das Alarmrelais des Versorgungsmoduls durch Verwendung eines Ausgangs mit Alarmrelais am X-Bus bzw. FIPIO-Bus ersetzt werden. Dazu muss der Ausgang folgende Merkmale aufweisen:

- Der Ausgang muss mit einem Relais versehen sein.
- Der Ausgang ist mit einem Fehlerwert von 0 konfiguriert (Standardkonfiguration).
- Zu Beginn der Ausführung des Applikationsprogramms wird der Ausgang auf den Status 1 initialisiert.

Wird der Relaisausgang dementsprechend konfiguriert, arbeitet er genauso wie das durch einen Prozessor TSX P57/TSX H57 gesteuerte Relais.

Alarmrelais von Modulen an anderen Racks (1 bis 7)

Sobald das Modul unter Spannung gesetzt wird und die Ausgangsspannungen korrekt sind, wird das Alarmrelais aktiviert und dessen Kontakt geschlossen (Status 1).

Sind die Ausgangsspannungen fehlerhaft oder tritt ein Netzausfall ein, fällt die Spannung des Relais ab (Status 0).

Diese Betriebsmodi ermöglichen die Verwendung dieser Kontakte in externen Schaltungen mit Failsafe-Prinzip wie beispielsweise die Regelung von Versorgungsmodulen von Vorstellgliedern und das Rücksenden von Daten.

Technische Daten des Alarmrelaiskontakts

Technische Daten

Kontakt Alarmrelais

Grenzwert	Wechselstrom	Wechselstrom					
Betriebsspannung	Gleichstrom (möglich b	is 34 V währe	end 1 h innerh	nalb von 24 h)	10 bis 30 V		
Thermischer Strom	3 A				•		
Wechselstrombelastung	AC 12	Spannung	~24 V	~48 V	~110 V	~220 V	
		Leistung	50 VAC (5)	50 VAC (6) 110 VAC (4)	110 VAC (6) 220 VAC (4)	220 VAC (6)	
	Induktive Überspannung AC14 und AC15	Spannung	~24 V	~48 V	~110 V	~220 V	
		Leistung	24 VAC (4)	10 VAC (10) 24 VAC (8)	10 VAC (11) 50 VAC (7) 110 VAC (2)	10 VAC (11) 50 VAC (9) 110 VAC (6) 220 VAC (1)	
Gleichstrombelastung	Überspannung DC12	Spannung	24 V (Gleichstrom)				
		Leistung	24 W (6) 40 W (3)				
	Induktivitätsbereich	Spannung	24 V (Gleichstrom)				
	DC13 (L/R=60 ms)	Leistung	10 W (8) 24 W (6)				
	Minimal umzuschaltene	de Last 1 mA/5 V					
Ansprechzeit	Einschalten	< 10 ms	ms				
	Ausschalten	< 10 ms					

296 35006162 12/2018

Kontakttyp	Schließer	Schließer			
Integrierte Schutzvorrichtungen	gegen Überlasten und Kurzschlüsse		nein, Einbau einer Schnellschmelzsicherung obligatorisch		
	gegen induktive Überspannungen bei ~		nein, Montage parallel erforderlich an den Klemmen jedes Vorstellglieds eines RC-Kreislaufs oder für die Spannung geeigneten MOV-Varistors.		
	gegen induktive Überspannungen bei Gleichstrom		nein, Einbau einer Entladungsdiode an den Klemmenleisten eines jeden Vorstellgliedes obligatorisch		
Isolierung (Versuchsspannung)	Kontakt/Masse	2000 Veff50/60 Hz-1 mn (an Modul TSX PSY 2600/5500/1610/3610/5520)			
		3000 Veff50/60 Hz-1 mn (an Modul TSX PSY 8500)			
	Isolationswiderstand	> 10 MΩ unter 500 VDC			

- (1) 0.1×7^6 Betätigungen (7) 1.5×10^6 Betätigungen
- (2) $0,15 \times 8^6$ Betätigungen (8) 2×10^6 Betätigungen
- (3) 0,3 x 9⁶ Betätigungen (9) 3 x 10⁶ Betätigungen
- (4) 0,5 x 10⁶ Betätigungen (10) 5 x 10⁶ Betätigungen
- (5) 0,7 x 10⁶ Betätigungen (11) 10 x 10⁶ Betätigungen
- (6) 1 x 10⁶ Betätigungen

298 35006162 12/2018

Versorgungsmodule TSX PSY: Leistung und Verbrauchsbilanz

Inhalt dieses Kapitels

In diesem Kapitel werden die Leistung und die Verbrauchsbilanz verschiedener Stromversorgungsmodule beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Verbrauchsbilanz zur Auswahl des Stromversorgungsmoduls	300
Verbrauch	302
Verbrauch	304
Verbrauch	305
Verbrauchsbilanz	306
Verbrauch	307
Leistungsbilanz	308

Verbrauchsbilanz zur Auswahl des Stromversorgungsmoduls

Allgemeines

Die für die Versorgung eines Racks erforderliche Leistung hängt von den im Rack eingebauten Modultypen ab. Daher ist zur Bestimmung des in das Rack einzubauenden Versorgungsmoduls (Standardformat oder doppeltes Format) die Aufstellung einer Verbrauchsbilanz erforderlich.

An jedem Versorgungsmodul verfügbare Leistungen

Übersichtstabelle:

	Standardform	mat	Doppeltes Format			
	TSX PSY 1610	TSX PSY 2600	TSX PSY 3610	TSX PSY 5520	TSX PSY 5500	TSX PSY 8500
Gesamtleistung (alle Ausgänge)(1) (4b)	30 W (30 W)	26 W (30 W)	50 W (55) W	50 W (55 W)	50 W (55 W)	77 W bei 60°C 85 W bei 55°C, 100 W mit TSX FAN
Verfügbare Leistung an Ausgang 5 VDC (1b)	15 W	25 W	35 W	35 W	35 W	75 W
Verfügbare Leistung an Ausgang 24 VR (2b)	15 W	15 W	19 W	19 W	19 W	nicht geliefert
An Ausgang 24 V DC verfügbare Leistung (Sensorversorgung an Klemmenblock, Vorderseite) (3b)	nicht geliefert	12 W	nicht geliefert	nicht geliefert	19 W	38 W

(1) Die Werte in Klammern entsprechen den Spitzenwerten, die innerhalb von jeweils 10 Minuten 1 Minute lang vorliegen. Diese Werte sind für die Berechnung der Verbrauchsbilanz nicht zu berücksichtigen.

A WARNUNG

UNERWARTETES VERHALTEN DER GERÄTE

Stellen Sie beim Auswählen des Spannungsversorgungsmoduls sicher, dass die verfügbare Leistung an jedem Ausgang (5 V DC, 24 VR und 24 V DC) und die gesamte verfügbare Leistung höher sind als die über die Leistungsbilanz berechneten Verbrauchsanforderungen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Das Versorgungsmodul TSX PSY 8500 verfügt nicht über einen Ausgang 24 VR zur Versorgung bestimmter Module mit 24 VDC. Daher müssen für alle Racks, die über diesen Versorgungstyp verfügen, folgende Vorkehrungen getroffen und Einstellungen vorgenommen werden:

- Die Ausgangsmodule mit Relais TSX DSY 08R. / 16R. und das Wägemodul TSX ISP Y 100 können nicht in diesen Racks installiert werden.
- Die Analogausgangsmodule TSX ASY 800 müssen mit externer Versorgung installiert werden (maximal 3 Module pro Rack).

Leistungsbilanz

Tabelle der Leistungsbilanz

Rack	Racknummer					
1	Erforderliche Leistung am Ausgang 5 VDC:	x 10 ⁻³ A x 5 V	=W			
2	Erforderliche Leistung am Ausgang 24 VR:	x 10 ⁻³ A x 24 V	=W			
3	Erforderliche Leistung am Ausgang 24 VC:	x 10 ⁻³ A x 24 V	=W			
4	Erforderliche Gesamtleistung		=W			

Verbrauch

Tabelle 1

In dieser Tabelle wird der normale Verbrauch eines jeden Moduls angegeben. Mit diesen Werten kann der Verbrauch pro Rack und Ausgang in Abhängigkeit von den eingebauten Modulen berechnet werden.

Modultyp	Referenznummern	Verbrauch in	mA (Normalwer	t) (1)
		Bei 5 VDC	Bei 24 VR	Bei 24 VC (2)
Prozessor + PCMCIA- Speicherkarte	TSX P57 0244/104/204	850		
	TSX P57 154/254	930		
	TSX P57 1634/2634	1650		
	TSX P57 304	1100		
	TSX P57 354	1180		
	TSX P57 3634	1900		
	TSX P57 454	1680		
	TSX P57 4634	1880		
	TSX P57 554	1680		
	TSX P57 5634	1880		
	TSX P57 6634	1880		
	TSX H57 24M	1880		
	TSX H57 44M	1880		

Digitaleingänge	TSX DEY 08D2	55	80
	TSX DEY 16A2	80	
	TSX DEY 16A3	80	
	TSX DEY 16A4	80	
	TSX DEY 16A5	80	
	TSX DEY 16D2	80	135
	TSX DEY 16D3	80	135
	TSX DEY 16FK	250	75
	TSX DEY 32D2K	135	160
	TSX DEY 32D3K	140	275
	TSX DEY 64D2K	155	315

- (1) Der Verbrauch der Module wird für 100 % der Eingänge bzw. Ausgänge unter Zugrundelegung von Status 1 angegeben.
- (2) Bei Verwendung einer externen Geberversorgung (24 V Gleichstrom) ist der Verbrauch an diesem Ausgang für die Auswahl der Rackversorgung nicht zu berücksichtigen.

Verbrauch

Tabelle 2

In dieser Tabelle wird der normale Verbrauch eines jeden Moduls angegeben. Mit diesen Werten kann der Verbrauch pro Rack und Ausgang in Abhängigkeit von den eingebauten Modulen berechnet werden.

Modultyp	Referenz-Nummern	Verbrauch in mA (Normalwert) (1)			
		Bei 5 VDC	Bei 24 VR	Bei 24 VC (2)	
Digitalausgänge	TSX DSY 08R4D	55	80		
	TSX DSY 08R5	55	70		
	TSX DSY 08R5A	55	80		
	TSX DSY 08S5	125			
	TSX DSY 08T2	55			
	TSX DEY 08T22	55			
	TSX DEY 08T31	55			
	TSX DEY 16R5	80	135		
	TSX DEY 16S4	220			
	TSX DEY 16S5	220			
	TSX DEY 16T2	80			
	TSX DEY 16T3	80			
	TSX DSY 32T2K	140			
	TSX DSY 64T2K	155			
Digitale Ein-/Ausgänge	TSX DMY 28FK	300		75	
	TSX DMY 28RFK	300		75	
Sicherheits-Not-Aus	TSX PAY 262	150			
	TSX PAY 282	150			
Dezentrales Modul von X-Bus	TSX REY 200	500			

⁽¹⁾ Der Verbrauch der Module wird für 100 % der Eingänge bzw. Ausgänge unter Zugrundelegung von Status 1 angegeben.

⁽²⁾ Bei Verwendung einer externen Geberversorgung (24 V Gleichstrom) ist der Verbrauch an diesem Ausgang für die Auswahl der Rackversorgung nicht zu berücksichtigen.

Verbrauch

Tabelle 3

In dieser Tabelle wird der normale Verbrauch eines jeden Moduls angegeben. Mit diesen Werten kann der Verbrauch pro Rack und Ausgang in Abhängigkeit von den eingebauten Modulen berechnet werden.

Modultyp	Referenz-Nummern	Verbrauch in	mA (Normalwer	t) (1)
		Bei 5 VDC	Bei 24 VR	Bei 24 VC (2)
Analogmodul	TSX AEY 414	660		
	TSX AEY 420	500		
	TSX AEY 800	270		
	TSX AEY 810	475		
	TSX AEY 1600	270		
	TSX AEY 1614	300		
	TSX AEY 410	990		
	TSX AEY 800 (3)	200	300	
Zählfunktion	TSX CTY 2A	280		30
	TSX CTY 2C	850		15
	TSX CTY 4A	330		36
Achsensteuerung	TSX CAY 21	1100		15
	TSX CAY 22	1100		15
	TSX CAY 41	1500		30
	TSX CAY 42	1500		30
	TSX CAY 33	1500		30
Einzelschrittsteuerung	TSX CFY 11	510		50
	TSX CFY 21	650		100
Wiegen	TSX ISPY 100 (3)	150	145	

- (1) Der Verbrauch der Module wird für 100 % der Eingänge bzw. Ausgänge unter Zugrundelegung von Status 1 angegeben.
- (2) Bei Verwendung einer externen Geberversorgung (24 V Gleichstrom) ist der Verbrauch an diesem Ausgang für die Auswahl der Rackversorgung nicht zu berücksichtigen.
- (3) Bei Verwendung einer externen Versorgung (24 VR Gleichstrom) ist der Stromverbrauch in Bezug auf 24 VR intern für die Auswahl der Rackversorgung nicht zu berücksichtigen.

Verbrauchsbilanz

Tabelle 4

In dieser Tabelle wird der normale Verbrauch eines jeden Moduls angegeben. Mit diesen Werten kann der Verbrauch pro Rack und Ausgang in Abhängigkeit von den eingebauten Modulen berechnet werden.

Modultyp	Referenznummern	Verbrauch in	n mA (Normalwert) (1)	
		Bei 5 V DC	Bei 24 VR	Bei 24 VC (2)
Kommunikation	TSX ETY 110 (3) (4)	800		
		1200		
	TSX ETY 120 (3) (4)	800		
		1200		
	TSX ETY 210 (3) (4)	800		
		1200		
	TSX IBY 100	500		
	TSX PBY 100	400		
	TSX SAY 100	110		
	TSX SCY 21601	350		
	TSX SCP 111	140		
	TSX SCP 112	120		
	TSX SCP 114	150		
	TSX FPP 10	330		
	TSX FPP 20	330		
·	TSX JNP 112	120		
	TSX JNP 114	150		
	TSX MBP 100	220		
	TSX MDM 10	195		

- (1) Der Verbrauch der Module wird für 100 % der Eingänge bzw. Ausgänge unter Zugrundelegung von Status 1 angegeben.
- (2) Bei Verwendung einer externen Geberversorgung (24 V Gleichstrom) ist der Verbrauch an diesem Ausgang für die Auswahl der Rackversorgung nicht zu berücksichtigen.
- (3) Ohne Fernversorgung (RJ45).
- (4) Mit Fernversorgung (AUI).

Verbrauch

Tabelle 5

In dieser Tabelle wird der normale Verbrauch eines jeden Moduls angegeben. Mit diesen Werten kann der Verbrauch pro Rack und Ausgang in Abhängigkeit von den eingebauten Modulen berechnet werden.

Modultyp	Referenz-Nummern	Verbrauch in mA (Normalwert) (1)		(1)
		Bei 5 VDC	Bei 24 VR	Bei 24 VC (2)
Sonstige (nicht selbstversorgte und	TSX P ACC01	150		
an den PG-Anschluss anschließbare Geräte)	T FTX 117	310		

- (1) Der Verbrauch der Module wird für 100 % der Eingänge bzw. Ausgänge unter Zugrundelegung von Status 1 angegeben.
- (2) Bei Verwendung einer externen Geberversorgung (24 V Gleichstrom) ist der Verbrauch an diesem Ausgang für die Auswahl der Rackversorgung nicht zu berücksichtigen.

Leistungsbilanz

Allgemein

Die Leistungsbilanz für ein Rack wird in Abhängigkeit von der Verbrauchsbilanz und den anhand der Verbrauchsbilanz (siehe Seite 300) definierten Tabellen erstellt.

Tabelle zur Berechnung der Leistung eines Racks:

Rack	Racknummer:				
1	Erforderliche Leistung am Ausgang 5 VDC:	(1)x10 ⁻³ Ax5V	=W		
2	Erforderliche Leistung am Ausgang 24 VR:	(1)x10 ⁻³ Ax5V	=W		
3	Erforderliche Leistung am Ausgang 24 VS:	(1)x10 ⁻³ Ax5V	=W		
4	Erforderliche Gesamtleistung:		=W		

- (1) Dieser Operand entspricht der Summe des von allen Modulen des Racks verbrauchten Gesamtstroms am Ausgang 5 VDC.
- (2) Dieser Operand entspricht der Summe des von allen Modulen des Racks verbrauchten Gesamtstroms am Ausgang 24 VR.
- (3) Dieser Operand entspricht der Summe des von den Gebern verbrauchten Gesamtstroms am Ausgang 24 VS.

A WARNUNG

UNERWARTETES GERÄTEVERHALTEN

Stellen Sie beim Auswählen des Spannungsversorgungsmoduls sicher, dass die verfügbare Leistung an jedem Ausgang (5 VDC, 24 VR und 24 VDC) und die gesamte verfügbare Leistung höher sind als die über die Leistungsbilanz berechneten Verbrauchsanforderungen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Verfügbare Leistungen (an jedem Gesamtausgang)

Tabelle der Leistung der Versorgungsmodule:

	Ausgang 5 VDC	Ausgang 24 VR	Ausgang 24 VS	Gesamt
TSX PSY 1610	15 W	15 W	-	30 W
TSX PSY 2600	25 W	15 W	12 W	26 W
TSX PSY 3610	35 W	19 W	-	50 W
TSX PSY 5520	35 W	19 W	-	50 W
TSX PSY 5500	35 W	19 W	19 W	50 W
TSX PSY 8500	75 W	-	38 W	77/85/100W (1)

^{(1) 77} W bei 60 °C, 85 W bei 55 °C, 100 W bei 55 °C, wenn das Rack mit einem Belüftungsmodul ausgestattet ist.

Stromversorgungsmodul TSX PSY 2600

Technische Daten des Versorgungsmoduls TSX PSY 2600

Technische Daten

Bei dem Modul TSX PSY 2600 handelt es sich um ein Wechselstrom-Versorgungsmodul in einfachem Format.

Referenz	TSX PSY 2600			
Primärkreis	Nennspannung (V) ~		100240	
	Grenzspannung (V) ~	85264		
	Frequenz Nenn-/Grenzwerte	50-60/47-63 Hz		
	Scheinleistung	50 VA		
	Nennleistungsaufnahme: leff	≤ 0,5 A bei 100 V ≤ 0,3 A bei 240 V		
	Erstes Einschalten bei 25 °C (1)	l Signal	≤ 37 A bei 100 V ≤ 75 A bei 240 V	
		l ² t bei Einschalten	0,63 A ² s bei 100 V 2,6 A ² s bei 240 V	
		It bei Einschalten	0,034 As bei 100 V 0,067 As bei 240 V	
	Akzeptierte Dauer von Mikrounterb	≤10 ms		
	Integrierter Schutz an Phase	durch interne und nicht zug	jängliche Sicherung	

Referenz	TSX PSY 2600			
Sekundärkreis	Wirkleistung gesamt		26 W	
	Ausgang 5 VDC	Nennspannung	5,1 V	
		Nennstrom	5 A	
		Leistung (typisch)	25 W	
	Ausgang 24 VR (24-V-Relais) (2)	Nennspannung:	24 VDC	
		Nennstrom	0,6 A	
		Leistung (typisch)	15 W	
	Ausgang 24 VS (24-V-Sensor)	Nennspannung:	24 VDC	
		Nennstrom	0,5 A	
		Leistung (typisch)	12 W	
	Schutz der Ausgänge gegen	Überlasten/Kurzschlüsse/Ü	berspannungen	
Verlustleistung	10 W			
Hilfsfunktionen				
Alarmrelais	ja (1 potentialfreier Schließer auf K	lemmenblock)		
Anzeige	ja, durch LED auf der Vorderseite			
Backup-Batterie	ja (Statusüberwachung durch LED	auf der Vorderseite des Mod	luls)	
Normkonformität	IEC 1131-2			
Isolierung	Dielektrische Spannungsfestigkeit	Primärkreis/Sekundärkreis	2000 Veff	
	(50/60 Hz-1 mn)	Primärkreis/Erde	2000 Veff	
		Ausgang 24 V DC/Erde	-	
	Isolationswiderstand	Primärkreis/Sekundärkreis	≥ 100 MΩ	
		Primärkreis/Erde	≥ 100 MΩ	

- (1) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung von Schutzkomponenten zu berücksichtigen.
- (2) Ausgang 24 V Gleichstrom zur Versorgung der Relais der Module "Relaisausgänge".

Stromversorgungsmodul TSX PSY 5500

Technische Daten des Versorgungsmoduls TSX PSY 5500

Technische Daten

Bei dem Modul TSX PSY 5500 handelt es sich um ein Wechselstrom-Versorgungsmodul im doppelten Format.

Referenz			
Primärkreis	Nennspannung (V) ~		100120/200240
	Grenzspannung (V) ~		85140/190264
	Frequenz Nenn-/Grenzwerte		50-60/47-63 Hz
	Scheinleistung		150 VA
	Nennleistungsaufnahme: leff		≤ 1,7 A bei 100 V ≤ 0,5 A bei 240 V
	Erstes Einschalten bei 25 °C (1)	l Signal	≤ 38 A bei 100 V ≤ 38 A bei 240 V
		l ² t bei Einschalten	4 A ² s bei 100 V 2 A ² s bei 240 V
		It bei Einschalten	0,11 As bei 100 V 0,11 As bei 240 V
	Akzeptierte Dauer von Mikrounterb	≤10 ms	
	Integrierter Schutz an Phase	durch interne und nicht zug	ängliche Sicherung

Referenz					
Sekundärkreis	Wirkleistung gesamt		50 W		
	Ausgang 5 VDC	Nennspannung:	5,1 V		
		Nennstrom	7 A		
		Leistung (typisch)	35 W		
	Ausgang 24 VR (24-V-Relais) (2)	Nennspannung:	24 V DC		
		Nennstrom	0,8 A		
		Leistung (typisch)	19 W		
	Ausgang 24 VS (24-V-Sensor)	Nennspannung:	24 V DC		
		Nennstrom	0,8 A		
		Leistung (typisch)	19 W		
	Schutz der Ausgänge gegen	Überlasten/Kurzschlüsse/Ül	perspannungen		
Verlustleistung	20 W				
Hilfsfunktionen					
Alarmrelais	ja (1 potentialfreier Schließer auf K	lemmenblock)			
Anzeige	ja, durch LED auf der Vorderseite				
Backup-Batterie	ja (Statusüberwachung durch LED	auf der Vorderseite des Mod	uls)		
Normkonformität	IEC 1131-2				
Isolierung	Dielektrische Spannungsfestigkeit	Primärkreis/Sekundärkreis	2000 Veff		
	(50/60 Hz-1 mn)	Primärkreis/Erde	2000 Veff		
		Ausgang 24 V DC/Erde	-		
	Isolationswiderstand	Primärkreis/Sekundärkreis	≥ 100 MΩ		
		Primärkreis/Erde	≥ 100 MΩ		

- (1) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung von Schutzkomponenten zu berücksichtigen.
- (2) Ausgang 24 V Gleichstrom zur Versorgung der Relais der Module "Relaisausgänge".

Stromversorgungsmodul TSX PSY 8500

Technische Daten des Versorgungsmoduls TSX PSY 8500

Technische Daten

Bei dem Modul TSX PSY 8500 handelt es sich um ein Wechselstrom-Versorgungsmodul im doppelten Format.

Referenz			
Primärkreis	Nennspannung (V) ~		100120/200240
	Grenzspannung (V) ~		85140/170264
	Frequenz Nenn-/Grenzwerte		50-60/47-63 Hz
	Scheinleistung		150 VA
	Nennleistungsaufnahme: leff		≤ 1,4 A bei 100 V ≤ 0,5 A bei 240 V
	Erstes Einschalten bei 25 °C (1)	I Signal	≤ 30 A bei 100 V ≤ 60 A bei 240 V
		I ² t bei Einschalten	15 A ² s bei 100 V 8 A ² s bei 240 V
		It bei Einschalten	0,15 As bei 100 V 0,15 As bei 240 V
	Akzeptierte Dauer von Mikrounterb	rechungen	≤10 ms
	Integrierter Schutz an Phase	durch interne und nicht zug	ängliche Sicherung

Referenz			
Sekundärkreis	Wirkleistung gesamt		77/85/100 W (2)
	Ausgang 5 VDC	Nennspannung:	5,1 V
		Nennstrom	15 A
		Leistung (typisch)	75 W
	Ausgang 24 VR (24-V-Relais) (3)	Nennspannung:	nicht geliefert
		Nennstrom	nicht geliefert
		Leistung (typisch)	nicht geliefert
	Ausgang 24 VS (24-V-Sensor)	Nennspannung:	24 VDC
		Nennstrom	1,6 A
		Leistung (typisch)	38 W
	Schutz der Ausgänge gegen	Überlasten/Kurzschlüsse/Ü	berspannungen
Verlustleistung			20 W
Hilfsfunktionen			,
Alarmrelais	ja (1 potentialfreier Schließer auf K	lemmenblock)	
Anzeige	ja, durch LED auf der Vorderseite		
Backup-Batterie	ja (Statusüberwachung durch LED	auf der Vorderseite des Mod	uls)
Normkonformität	IEC 1131-2		
Isolierung	Dielektrische Spannungsfestigkeit	Primärkreis/Sekundärkreis	3000 Veff
	(50/60 Hz-1 mn)	Primärkreis/Erde	3000 Veff
		Ausgang 24 V DC/Erde	500 Veff
	Isolationswiderstand	Primärkreis/Sekundärkreis	≥ 100 MΩ
		Primärkreis/Erde	≥ 100 MΩ

- (1) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung von Schutzkomponenten zu berücksichtigen.
- (2) 77 W bei 60 °C, 85 W bei 55 °C, 100 W bei 55 °C, wenn das Rack mit Lüftermodulen ausgestattet ist.
- (3) Ausgang 24 V Gleichstrom zur Versorgung der Relais der Module "Relaisausgänge".

Stromversorgungsmodul TSX PSY 1610

Technische Daten des Versorgungsmoduls TSX PSY 1610

Kenndaten

Bei dem Modul TSX PSY 1610 handelt es sich um ein nicht isoliertes Gleichstrom-Versorgungsmodul in einfachem Format.

Referenz	TSX PSY 1610		
Primär	Nennspannungen (nicht isoliert)		24 V DC
	Grenzspannungen (einschl. Welligke während 1 h alle 24 h)	19,2 bis 30 VDC	
	Eingangsnennstrom: Effektivstrom be	ei 24 VDC	≤ 1,5 A
	Erstes Einschalten bei 25°C (2)	l Signal	≤ 100 A bei 24 VDC
	I ² t bei Einschalten		6 A ² s
		It bei Einschalten	0,1 As
	Akzeptierte Dauer von Mikrounterbre	chungen	≤ 1 ms
	Integrierter Schutz an Eingang	pro Sicherung 5x20 trä	ige, 3,5 A

Referenz	TSX PSY 1610			
Sekundär	Wirkleistung gesamt (typisch)		30 W	
	Ausgang 5 VDC	Nennspannung:	5 V	
		Nennstrom	3A	
		Leistung (typisch)	15 W	
	Ausgang 24 VR (24-VDC-Relais) (3)	Nennspannung:	U-Netz - 0,6 V	
		Nennstrom	0.6A	
		Leistung (typisch)	15 W	
	An den Ausgängen integrierter Schutz gegen (4)	Überlasten	Ja	
		Kurzschlüsse	Ja	
		Überspannungen	Ja	
Verlustleistung			10 W	
Hilfsfunktionen				
Alarmrelais	ja (1 potentialfreier Schließer auf Klemmenblock)			
Anzeige	ja, durch LED auf der Vorderseite			
Backup- Batterie	ja (Statusüberwachung durch LED auf der Vorderseite des Moduls)			
Normkonformitä	ät		IEC1131-2	

- (1) Im Falle der Versorgung von Modulen mit "Relaisausgängen" wird der Grenzbereich auf 21,6 bis 26,4 V reduziert.
- (2) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung für Schutzkomponenten zu berücksichtigen.
- (3) 24-VDC-Ausgang zur Versorgung der Relais der Module mit "Relaisausgängen".
- (4) Der für den Benutzer nicht zugängliche Spannungsausgang mit 24 VR wird durch eine sich unter dem Modul befindliche Sicherung geschützt (5x20, 4 A, Typ Medium).

Stromversorgungsmodul TSX PSY 3610

Technische Daten des Versorgungsmoduls TSX PSY 3610

Kenndaten

Bei dem Modul TSX PSY 3610 handelt es sich um ein nicht isoliertes Gleichstrom-Versorgungsmodul in doppeltem Format.

Referenz			
Primär	Nennspannung		24 VDC
	Grenzspannungen (einschl. Welligkeit) (1) (möglich bis 34 V während 1 h alle 24 h)		19,2 bis 30 VDC
	Eingangsnennstrom: Effektivstrom bei 24 VDC		≤ 2,7A
	Erstes Einschalten bei 25°C (2)	l Signal	≤ 150 A bei 24 VDC
		l ² t bei Einschalten	26 A ² s
		It bei Einschalten	0,3 As
	Akzeptierte Dauer von Mikrounterbrechungen		≤ 1 ms
	Integrierter Schutz an Eingang	Nein	

Referenz			
Sekundär	Wirkleistung gesamt (typisch)		50 W
	Ausgang 5 VDC	Nennspannung:	5.1V
		Nennstrom	7A
		Leistung (typisch)	35 W
	Ausgang 24 VR (24 V Relais) (3)	Nennspannung:	U-Netz - 0,6 V
		Nennstrom	0,8 A
		Leistung (typisch)	19 W
	An den Ausgängen integrierter Schutz gegen (4)	Überlasten	Ja
		Kurzschlüsse	Ja
		Überspannungen	Ja
Verlustleistung			15 W
Hilfsfunktionen			
Alarmrelais	ja (1 potentialfreier Schließer auf Klemmenblock)		
Anzeige	ja, durch LED auf der Vorderseite		
Backup-Batterie	tterie ja (Statusüberwachung durch LED auf der Vorderseite des Moduls)		
Normkonformität IEC1131-2			IEC1131-2

- (1) Im Falle der Versorgung von Modulen mit "Relaisausgängen", wird der Grenzbereich auf 21,6 bis 26.4 V reduziert.
- (2) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung für Schutzkomponenten zu berücksichtigen.
- (3) Ausgang 24 V Gleichstrom zur Versorgung der Relais der Module "Relaisausgänge".
- (4) Der für den Benutzer nicht zugängliche Spannungsausgang mit 24 VR wird durch eine sich unter dem Modul befindliche Sicherung geschützt (5x20, 4 A, Typ Medium).

Stromversorgungsmodul TSX PSY 5520

Technische Daten des Versorgungsmoduls TSX PSY 5520

Kenndaten

Bei dem Modul TSX PSY 5520 handelt es sich um ein isoliertes Gleichstrom-Versorgungsmodul in doppeltem Format.

Referenz			
Primär	Nennspannung		24 bis 0,48 VDC
	Grenzspannung (einschließlich Welligkeit)		19,2 bis 60 VDC
	Eingangsnennstrom: Effektivstrom		≤ 3 A bei 24 VDC ≤ 1,5 A bei 48 VDC
	Erstes Einschalten bei 25 °C (1)	I Signal	≤ 15 A bei 24 VDC ≤ 15 A bei 48 VDC
		l ² t bei Einschalten	2,2 A ² s bei 24 VDC 1,8 A ² s bei 48 VDC
		It bei Einschalten	0,25 As bei 24 VDC 0,15 As bei 48 VDC
	Akzeptierte Dauer von Mikrounterbrechungen		≤ 1 ms
	An Phaseneingang integrierter Schutz	durch interne und nicht zug	ängliche Sicherung

Referenz			
Sekundär	Wirkleistung gesamt (typisch)	50 W	
	Ausgang 5 VDC	Nennspannung:	5.1V
		Nennstrom	7A
		Leistung (typisch)	35 W
	Ausgang 24 VR (24-VDC- Relais) (2)	Nennspannung:	24 V
		Nennstrom	0,8 A
		Leistung (typisch)	19 W
	An den Ausgängen integrierter Schutz gegen	Überlasten	Ja
		Kurzschlüsse	Ja
		Überspannungen	Ja
Verlustleistung			20 W
Hilfsfunktionen			
Alarmrelais	ja (1 potentialfreier Schließer auf	Klemmenblock)	
Anzeige	ja, durch LED auf der Vorderseite		
Backup- Batterie	ja (Statusüberwachung durch LED auf der Vorderseite des Moduls)		
Normkonformität		IEC1131-2	
Isolierung	Dielektrische Spannungsfestigkeit	Primärkreis/Sekundärkreis	2000 Veff-50/60 Hz-1 min 2000 Veff-50/60 Hz-1 min
		Primärkreis/Erde	10.110
	Isolationswiderstand	Primärkreis/Sekundärkreis Primärkreis/Erde	> 10 MΩ > 10 MΩ

- (1) Diese Werte sind bei der gleichzeitigen Inbetriebnahme mehrerer Geräte bzw. bei der Größenberechnung für Schutzkomponenten zu berücksichtigen.
- (2) 24-VDC-Ausgang zur Versorgung der Relais der Module mit "Relaisausgängen".

Teil V

Prozessversorgungen

Gegenstand dieses Kapitels

Dieser Abschnitt beschreibt die Prozessversorgungen und ihre Funktion.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
45	Prozessversorgungen: Überblick	325
46	Prozessversorgungen: Installation	339
47	Prozessversorgungsmodule: Anschlüsse	349
48	Eigenschaften von Prozessversorgungen	357

Kapitel 45

Prozessversorgungen: Überblick

Inhalt dieses Kapitels

Ziel dieses Kapitels ist es, Ihnen die Prozessversorgungen vorzustellen.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

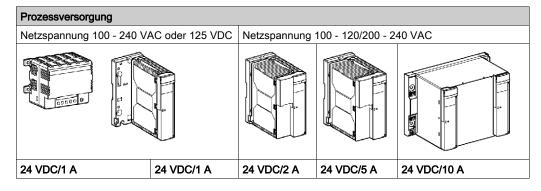
Thema	Seite
Allgemeiner Überblick über Prozessversorgungsmodule	326
Physikalische Beschreibung des Moduls TBX SUP 10	327
Physikalische Beschreibung des Moduls TSX SUP 1011	328
Physikalische Beschreibung des Moduls TSX 1021/1051	330
Beschreibung des Versorgungsmoduls TSX SUP 1101	332
Physische Beschreibung der Trägerplatine	333
Katalog mit Prozessversorgungsmodulen 24 VDC	334
Prozess-Stromversorgungen: Hilfsfunktionen	336

Allgemeiner Überblick über Prozessversorgungsmodule

Allgemeines

Eine breite Palette von Versorgungsblöcken und -modulen ermöglicht Ihnen eine bedarfsgerechte Auswahl.

Es handelt sich um die Prozessversorgungsblöcke und -module TBX SUP 10 und TSX SUP 1..1. Sie sind für die Versorgung der Peripherie eines von den Steuerungen (Micro und Premium) gesteuerten Steuerungssystems mit 24 VDC vorgesehen. Diese Peripherie besteht aus Gebern, Stellgliedern, Encodern, Bedienterminals, Reglern, LEDs, Druckschaltern, pneumatischen Hebevorrichtungen, usw. Die Versorgungsspannung von 24 V kann aus einem Wechselspannungsnetz erzeugt werden (100/240 V, 50/60 Hz).

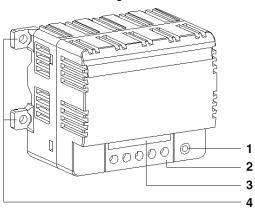

Die Art der Befestigung dieser Produkte wurde speziell für die Besonderheiten der Schienen und Befestigungen der Steuerungen Micro, Premium und der TBX Produkte entwickelt.

Alle Produkte werden folgendermaßen befestigt:

- auf Telequick AM1-PA-Platinen
- auf zentraler DIN-Schiene AM1-DP200/DE200, mit Ausnahme der Hochleistungs-Versorgungsblöcke TSX SUP 1101 und TSX A05

Tabellarischer Überblick

In dieser Tabelle sind die verschiedenen Prozessversorgungen aufgeführt:



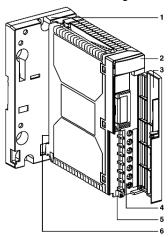
326 35006162 12/2018

Physikalische Beschreibung des Moduls TBX SUP 10

Abbildung

Schema mit Markierungen

Tabelle der Markierungen


In der folgenden Tabelle sind die Beschreibungen zu den Markierungen im oben stehenden Schema aufgeführt:

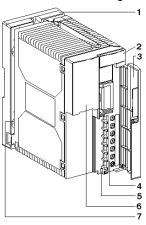
Markierung	Beschreibung
1	LED-Anzeige, die die Betriebsbereitschaft des Moduls anzeigt.
2	Klemmenleiste mit Schrauben zum Anschluss der Stromversorgung.
3	Typenschild für die Drahtanschlüsse.
4	Halterungen zum Befestigen des Moduls.

Physikalische Beschreibung des Moduls TSX SUP 1011

Abbildung

Schema mit Markierungen

Tabelle der Markierungen


In der folgenden Tabelle sind die Beschreibungen zu den Markierungen im obenstehenden Schema aufgeführt:

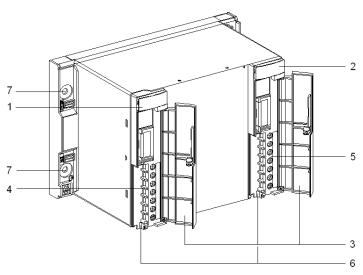
Markierung	Beschreibung
1	Trägerplatine, ermöglicht die Befestigung der Versorgungsbaugruppe direkt auf DIN-Profil vom Typ AM1-DE200/DP200 oder Lochplatine Telequick AM1-PA.
2	 Anzeigebaustein, bestehend aus: einer LED-Anzeige 24 V (grün): leuchtet, wenn die vorliegenden internen Spannungen und Ausgangsspannungen korrekt sind, einer LED-Anzeige LSH (orange) "Leistungsoptimierungs-Modus": leuchtet, wenn die Stromversorgung im Parallelschaltungs-Modus mit Leistungsoptimierung arbeitet.
3	Klappe zum Schutz der Klemmenleiste.
4	Schraubklemmenleiste zum Anschluss: • an das Wechsel- oder Gleichstromversorgungsnetz, • an den 24 VDC-Ausgang.
5	Öffnung, die das Durchstecken einer Kabelschelle ermöglicht.
6	 Umschalter "NOR/LSH" an der Rückseite des Moduls zur Steuerung der Vorrichtung zur Leistungsoptimierung. Position NOR: Normale Funktion ohne Leistungsoptimierung (standardmäßig eingestellte Position), Position LSH: Funktion mit Leistungsoptimierung mit Stromversorgungen im Parallelbetrieb.
	Hinweis: Der Zugriff auf den Schalter erfordert die Demontage des Moduls von der Trägerplatine.

Physikalische Beschreibung des Moduls TSX 1021/1051

Abbildung

Schema mit Markierungen

Tabelle der Markierungen


In der folgenden Tabelle sind die Beschreibungen zu den Markierungen im obenstehenden Schema aufgeführt:

Markierung	Beschreibung
1	Trägerplatine, ermöglicht die Befestigung der Versorgungsbaugruppe direkt auf DIN-Profil vom Typ AM1-DE200/DP200 oder Lochplatine Telequick AM1-PA.
2	 Anzeigebaustein, bestehend aus: einer LED-Anzeige 24 V (grün): leuchtet, wenn die internen Spannungen und Ausgangsspannungen korrekt sind. einer LED-Anzeige LSH (orange) nur bei TSX SUP 1021 "Leistungsoptimierungs-Modus": leuchtet, wenn die Stromversorgung im Parallelschaltungs-Modus mit Leistungsoptimierung arbeitet.
3	Klappe zum Schutz der Klemmenleiste.
4	Schraubklemmenleiste zum Anschluss: • an das Wechsel- oder Gleichstromversorgungsnetz, • des 24 VDC-Ausgangs
5	Öffnung, die das Durchstecken einer Kabelschelle ermöglicht.
6	Spannungswähler 110/220 V. Bei Lieferung ist der Spannungswähler auf 220 eingestellt.
7	 Umschalter "NOR/LSH" an der Rückseite des Moduls zur Steuerung der Vorrichtung zur Leistungsoptimierung. Dieser Umschalter ist nur am Modul TSX SUP 1021 vorhanden. Position NOR: Normale Funktion ohne Leistungsoptimierung (standardmäßig eingestellte Position), Position LSH: Funktion mit Leistungsoptimierung mit Stromversorgungen im Parallelbetrieb.
	Hinweis: Der Zugriff auf den Schalter erfordert die Demontage des Moduls von der Trägerplatine.

Beschreibung des Versorgungsmoduls TSX SUP 1101

Abbildung

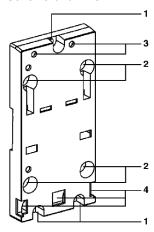
Schema und Ziffern

Bedeutung der Ziffern

In der folgenden Tabelle ist die Bedeutung der Ziffern aus obigem Schema erklärt:

Ziffer	Beschreibung
1	Anzeigeblock mit einer LED "ON" (orange): leuchtet, wenn die Versorgung unter Spannung steht
2	Anzeigeblock mit einer 24-V-LED (grün), leuchtet wenn die Spannung am 24-VDC-Ausgang stimmt
3	Klappe zum Schutz der Klemmenleisten
4	Klemmenleiste mit Schrauben zum Anschluss an das Wechselspannungsnetz
5	Klemmenleiste mit Schrauben zum Anschluss der Spannung des 24-VDC-Ausgangs
6	Öffnungen für die Durchführung einer Kabelklemme
7	vier Befestigungsbohrungen für Schrauben M6

Physische Beschreibung der Trägerplatine


Auf einen Blick

Jedes Versorgungsmodul TSX SUP 10x1 wird montiert auf einer Trägerplatine geliefert. An dieser wird die Spannungsversorgung angeschlossen. Dies können Profilschienen DIN AM1-DE200 oder AM1-DP200 oder Schlitzplatten Telequick AM1-PA sein.

Jede Trägerplatine kann Folgendes aufnehmen: entweder ein Modul TSX SUP 1021 oder TSX SUP 1051 oder ein oder zwei Module TSX SUP 1011.

Abbildung

Bedeutung der Ziffern

In der folgenden Tabelle ist die Bedeutung der Ziffern aus obigem Schema erklärt:

Ziffer	Beschreibung
1	drei Bohrungen mit einem Durchmesser von 5,5 mm für die Befestigung der Platine auf einer Tafel oder Schlitzplatte AM1-PA mit Schienenabstand 140 mm (Befestigungsschienen für Steuerungen TSX 37)
2	vier Bohrungen mit einem Durchmesser von 6,5 mm für die Befestigung der Platine auf einer Tafel oder Schlitzplatte AM1-PA mit Schienenabstand 88,9 mm (Befestigungsschienen für Steuerungen TSX 57)
3	zwei Bohrungen M4 für die Befestigung eines oder mehrerer Versorgungsmodule TSX SUP 1011/1021/1051
4	Fenster zur Aufnahme der Passstifte unter und hinter dem Modul

Katalog mit Prozessversorgungsmodulen 24 VDC

Auswahltabelle

In der folgenden Tabelle sind die wichtigsten technischen Daten der Prozessversorgungsmodule 24 VDC beschrieben.

Referenznummern	TBX SUP 10	TSX SUP 1011
Kenndaten der Eingänge Nennspannung	100 - 240 VAC oder 125 VDC	
Grenzwerte	90 - 264 VAC oder 88 - 156 VDC	85 - 264 VAC oder 105 - 150 VDC
Grenzfrequenz	47 - 63 Hz	47 - 63 Hz oder 360 - 440 Hz
Nenneingangsstrom	0,4 A	0,4 A
Kenndaten der Ausgänge Nutzleistung	24 W	26 W
Ausgangsspannung (Gleichspannung)	24 VDC	
Nennstrom	1 A	1 A
Hilfsfunktionen Sicherheit TBTS (1)	Nein	Ja
Parallelschaltung (2)	Nein	Ja, mit Leistungsoptimierung (3)
Redundanz (4)	Nein	Ja

Auswahltabelle (Fortsetzung)

In der folgenden Tabelle sind die wichtigsten technischen Daten der Prozessversorgungsmodule 24 VDC beschrieben.

Referenznummern	TSX SUP 1021	TSX SUP 1051	TSX SUP 1101
Kenndaten der Eingänge Nennspannung	100 - 120 VAC oder	200 - 240 VDC	
Grenzwerte	85 - 132 VAC oder 170 - 264 VDC		
Grenzfrequenz	47 - 63 Hz oder 360 - 440 Hz		
Nenneingangsstrom	0,8 A	2,4 A	5 A
Kenndaten der Ausgänge Nutzleistung	53 W	120 W	240 W
Ausgangsspannung (Gleichspannung)	24 VDC		
Nennstrom	2,2 A	5 A	10 A
Hilfsfunktionen Sicherheit TBTS (1)	Ja		
Parallelschaltung (2)	Ja, mit Leistungsoptimierung (3)		
Redundanz (4)	Ja Nein		

- (1) Die Konstruktionsmerkmale entsprechen den Normen CEI 950 und CEI 1131-2 und garantieren die Sicherheit des Benutzers am Ausgang 24 V bezüglich Isolation zwischen Primärund Sekundärkreis, maximaler Überspannung auf den Ausgangsleitungen und Erdungsschutz.
- (2) Möglichkeit der Parallelschaltung zweier Ausgänge von Stromversorgungen gleichen Typs. Dadurch können höhere Ausgangsströme erreicht werden, als bei nur einer Versorgung zulässig wäre.
- (3) Bei zwei Modulen, deren gesamter Ausgangsstrom 100% beträgt, liefert jedes Modul folglich 50% des Gesamtstroms. Dadurch verlängert sich die Lebensdauer der Produkte.
- (4) Die Parallelschaltung zweier Ausgänge von Stromversorgungen gleichen Typs, um Ströme zu liefern, die auch von einer einzigen Versorgung zulässig sind, garantiert die Versorgungsspannung auch dann, wenn eines der beiden Module ausfällt.

Prozess-Stromversorgungen: Hilfsfunktionen

Parallelschaltungsmodus mit Leistungsoptimierung

Ziel der Parallelschaltung ist es, **zwei Module desselben Typs** zu verwenden, um einen Ausgangsstrom zu erhalten, der größer ist als der maximale Strom, der mit einer einzigen Stromversorgung möglich ist. Der Gesamtstrom ist die Summe der Ströme, die von der Gesamtheit der Stromversorgungen geliefert werden.

Die Leistungsoptimierung ist ein internes System der Stromversorgung, das dazu bestimmt ist, die Ströme gleichmäßig zwischen den parallel geschalteten Stromversorgungen aufzuteilen. Der erzielte Nutzen besteht in einer beträchtlichen Erhöhung der Lebensdauer, die durch eine Verteilung der verbrauchten Leistungen erreicht wird.

Spezifische Besonderheiten der einzelnen Stromversorgungen:

Stromversorgungen TSX SUP 1011/1021

Der Leistungsoptimierungs-Modus wird eingestellt, indem der an der Rückseite des Moduls befindliche Umschalter NOR/LSH in die Stellung LSH geschaltet wird. Damit der Zugang zum Schalter möglich ist, muss der Träger abgebaut werden. Wenn die orange Anzeige-LED (LSH) leuchtet, ist der Modus aktiv.

Der von zwei parallel geschalteten Stromversorgungen gelieferte Strom ist begrenzt auf:

- 2A mit 2 Stromversorgungen TSX SUP 1011,
- 4A mit 2 Stromversorgungen TSX SUP 1021.

Der Betrieb in diesem Modus hat eine geringere Genauigkeit der Ausgangsspannung zur Folge: 24 V +/- 5 % anstelle von 24 V +/- 3 % im normalen Modus.

Das Ungleichgewicht der Leistungen bei der Aufteilung der Lasten kann maximal 25% erreichen.

Diese Modultypen müssen auf besondere Art angeschlossen (siehe Seite 350) werden

Stromversorgungen TSX SUP 1051/1101

Bei diesen Stromversorgungen ist für den Leistungsoptimierungs-Modus kein Umschalter erforderlich. Die Module TSX SUP 1051 (siehe Seite 352) und TSX SUP 1101 (siehe Seite 354) müssen auf besondere Art angeschlossen werden. Der mit zwei parallel geschalteten Stromversorgungen gelieferte Maximalstrom ist begrenzt auf:

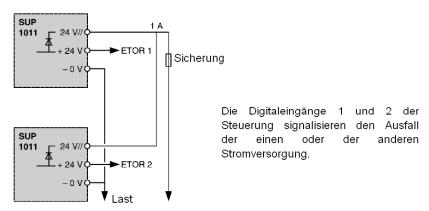
- 10 A mit 2 Stromversorgungen TSX SUP 1051,
- 20 A mit 2 Stromversorgungen TSX SUP 1101.

Der Betrieb in diesem Modus hat keinerlei Verlust an Genauigkeit der Ausgangsspannung zur Folge:

Das Ungleichgewicht der Leistungen bei der Aufteilung der Lasten kann maximal 15% erreichen.

3306 35006162 12/2018

Redundanz an den Stromversorgungsmodulen TSX SUP 1101/1021


Prinzip:

Zur Bereitstellung der für die Anwendung erforderlichen Ströme auch bei einem Ausfall einer der Stromversorgungen.

In diesem Falle werden die beiden Stromversorgungen parallel geschaltet, indem die erforderlichen Anschlüsse vorgenommen werden (siehe *Anschluss der Stromversorgungsmodule TSX SUP 1101/1021, Seite 350*).

Die Stromversorgungen sind im Leistungsoptimierungs-Modus konfiguriert.

Beispiel: Es ist 1 A mit Redundanz zu liefern, ausgehend von 2 Stromversorgungen TSX SUP 1011.

HINWEIS: Die Stromversorgungen TSX SUP 1051 und 1101 sind nicht mit der Reihendiode ausgestattet, die für die Redundanzfunktion erforderlich ist.

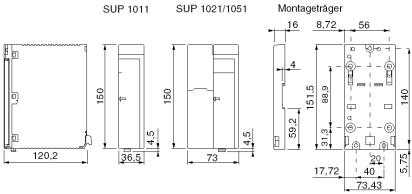
Kapitel 46

Prozessversorgungen: Installation

Ziel dieses Kapitels

In diesem Kapitel ist die Installation der Prozessversorgungen beschrieben.

Inhalt dieses Kapitels

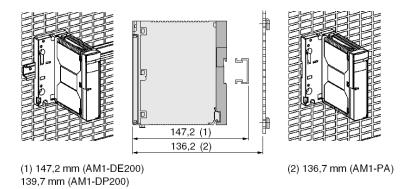

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Platzbedarf/Montage von Prozessversorgungen	340
Abmessungen/Montage/Verbindung TBX SUP 10	343
Platzbedarf/Montage von Stromversorgungen TSX SUP 1101	345
Zusammenfassung der Befestigungsarten	347

Platzbedarf/Montage von Prozessversorgungen

Platzbedarf

Abbildung:



Abmessungen in Millimetern

Montage auf DIN-Profilschiene AM1-DE200 oder AM1-DP200 oder Schlitzplatten Telequick AM1-PA

Jedes Versorgungsmodul wird auf einem Träger montiert geliefert, der für diese Montageart geeignet ist.

Abbildung:

Montage auf Profilschiene AM1-D....

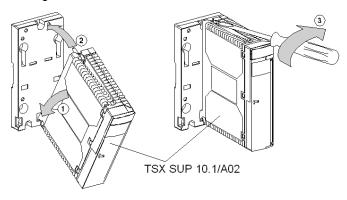
Führen Sie folgende Schritte durch:

Schritt	Aktion
1	Überprüfen Sie, ob das Modul auf dem Träger montiert ist.
2	Montieren Sie Modul und Träger zusammengebaut auf der Profilschiene.

Montage auf Schlitzplatte AM1-PA

Führen Sie folgende Schritte durch:

Schritt	Aktion
1	Demontieren Sie das Modul von seinem Träger.
2	Montieren Sie den Träger auf die Schlitzplatte AM1-PA.
3	Montieren Sie das Modul auf dem Träger.


Montage des Moduls auf dem Träger

Jedes Versorgungsmodul wird mit einem Träger geliefert, mit dessen Hilfe es direkt auf eine DIN-Profilschiene montiert werden kann. Dieser Träger kann ein oder zwei Versorgungsmodule TSX SUP 1011 oder ein Versorgungsmodul TSX SUP 1021/1051 aufnehmen.

Führen Sie folgende Schritte durch:

Schritt	Aktion
1	Schieben Sie die Passstifte des Moduls in die Öffnungen an der Unterseite des Trägers.
2	Schwenken Sie das Modul, so dass es mit dem Rack in Kontakt kommt.
3	Ziehen Sie die Schraube an der Oberseite des Moduls fest, um das Modul am Träger zu befestigen.

Abbildung:

1 Modul TSX SUP 1011

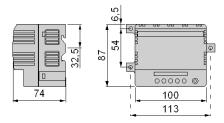
2 Module TSX SUP 1011

1 Modul TSX SUP 1021/1051

Montage auf einem Rack TSX RKY...

Die Versorgungsmodule TSX SUP 1011/1021/1051 können an beliebiger Position im Rack montiert werden außer an der Position PS, die für das Versorgungsmodul des Racks reserviert ist. In diesem Fall wird der Träger nicht verwendet und muss abgebaut werden.

Diese Module werden genau so eingebaut wie Prozessormodule.

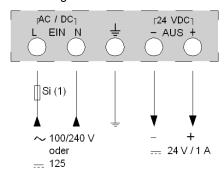

Siehe Prozessormodule montieren, Seite 102.

HINWEIS: Das Versorgungsmodul des Racks TSX PSY... muss sich unbedingt in der Position PS befinden, damit die Module des Racks versorgt werden.

Abmessungen/Montage/Verbindung TBX SUP 10

Abmessungen/Montage

Darstellung:



Der Versorgungsblock TSX SUP 10 muss in vertikaler Position montiert werden, da so die normale Konvektion der Luft im Inneren des Blocks optimal ist.

Er kann auf einer Tafel, der Schlitzplatte Telequick AM1-PA oder Profilschienen montiert werden.

Anschlüsse

Darstellung:

(1) externe Schutzsicherung an der Phase: 1 A, 250 V träge bei einer einzigen Versorgung

HINWEIS: Primärkreis: Wenn das Modul mit Wechselspannung 100/240 V versorgt wird, muss bei der Verkabelung auf Phase und Nullleiter geachtet werden. Bei einer Versorgung des Moduls mit 125 V Gleichspannung dagegen muss nicht auf die Polung geachtet werden.

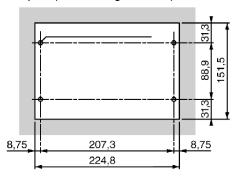
Sekundärkreis: Die Klemme mit dem Potential 0 V muss unmittelbar am Versorgungsmodul geerdet werden.

▲ GEFAHR

ELEKTRISCHER SCHLAG

Verbinden Sie die Erdungsklemme des Moduls mit einem grün-gelben Draht mit der Schutzerde.

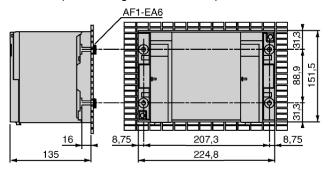
Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


Platzbedarf/Montage von Stromversorgungen TSX SUP 1101

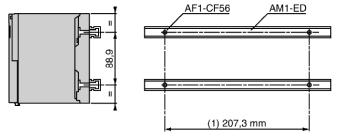
Einführung

Die Versorgungsblöcke TSX SUP 1101 können auf eine Tafel, Schlitzplatte AM1-PA oder DIN-Schiene montiert werden.

Tafeleinbau


Bohrplan (Abmessungen in mm):

(1) Der Durchmesser der Montagebohrungen muss so gross sein, dass Schrauben M6 eingesetzt werden können.


Montage auf Lochplatten Telequick AM1-PA

Befestigen Sie den Versorgungsblock mit Schrauben M6 x 25 und Scheiben und Clipsmuttern AF1-EA6 (Abmessungen in Millimetern).

Montage auf DIN-Schienen von 35 mm Breite

Befestigen Sie den Versorgungsblock, indem Sie die 4 Schrauben M6 x 25 + Scheiben und Muttern 1/4 Umdrehung anziehen und AF1-CF56 verschieben (Abmessungen in Millimetern).

Zusammenfassung der Befestigungsarten

Zusammenfassende Tabelle der Befestigungsarten

Die folgende Tabelle ist eine Zusammenfassung der verschiedenen möglichen Befestigungsarten für Prozessversorgungen.

Bezeichnung der Versorgung	TSX SUP 10	TSX SUP 1011	TSX SUP 1021	TSX SUP 1051	TSX SUP 1101
Telequick AM1-PA Platine	X	X	X	X	X
zentrale DIN Schiene AM1-DE200/DP200	X	X	X	X	
DIN Schiene AM1-ED Abstand 140 mm (Steuerung TSX 37)		X	X	X	
DIN Schiene AM1-ED Abstand 88,9 mm (Steuerung TSX 57)		Х	X	Х	X
Rack TSX 57 TSX RKY		Х	Х	Х	

Kapitel 47

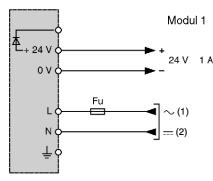
Prozessversorgungsmodule: Anschlüsse

Gegenstand dieses Kapitels

In diesem Kapitel wird der Anschluss von Prozessversorgungsmodulen beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:


Thema	Seite
Anschluss der Stromversorgungsmodule TSX SUP 1101/1021	350
Anschluss der Stromversorgungsmodule TSX SUP 1051	352
Anschluss der Stromversorgungsmodule TSX SUP 1101	354

Anschluss der Stromversorgungsmodule TSX SUP 1101/1021

Abbildung

Anschlussplan:

Normaler Anschluss

Modul 2

Fu=Externe Sicherung für Phase (Fu): 250 V 4 A Zeitverzögerung.

- (1) 100...240 VAC bei TSX SUP 1011 100...120/200..240 VAC bei TSX SUP 1021
- (2) 125 VDC, nur bei TSX SUP 1011.

Parallellegen

Anschlussrichtlinien

Primärkreis: Wenn das Modul mit 100/240 V Wechselstrom versorgt wird, müssen bei der Verdrahtung die Phase und der Nullleiter berücksichtigt werden. Wird das Modul mit 125 V Gleichstrom versorgt, muss die Polarität nicht berücksichtigt werden.

 eine Betriebsspannung ≥ 600 V AC mit einem Leiterquerschnitt von 1,5 mm² (14 AWG) für den Anschluss an das Leitungsnetz,

▲ GEFAHR

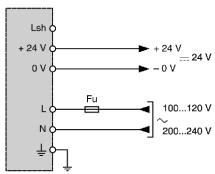
ELEKTRISCHER SCHLAG

Verbinden Sie die Erdungsklemme des Moduls mit einem grün-gelben Draht mit der Schutzerde.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

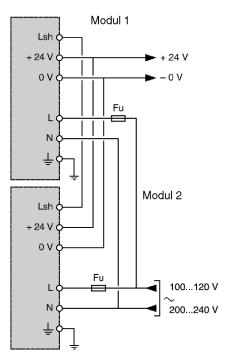
Die Klemmenleiste für die Versorgung ist durch eine Klappe geschützt, die den Zugang zu den Anschlussklemmen ermöglicht. Der Ausgang der Leiter erfolgt vertikal nach unten, wobei die Leiter von einer Kabelklemme gehalten werden können.

Sekundärkreis: Um potentialgetrennte Spannungen zur Gewährleistung von 24 V TBTS (EN 60950) zu berücksichtigen, sind folgende Leiter zu verwenden:


 eine Betriebsspannung ≥ 300 V AC mit einem Leiterquerschnitt von 2,5 mm² (12 AWG) für die 24-V-Ausgänge und die Masse.

Anschluss der Stromversorgungsmodule TSX SUP 1051

Abbildung


Anschlussplan:

Normaler Anschluss

Fu=Externe Sicherung für Phase (Fu): 250 V 4 A Zeitverzögerung

Parallellegen

Anschlussrichtlinien

Primärkreis: Bei der Verdrahtung sind die Richtlinien bezüglich Phase und Nullleiter einzuhalten.

 eine Betriebsspannung ≥ 600 V AC mit einem Leiterquerschnitt von 1,5 mm² (14 AWG) für den Anschluss an das Leitungsnetz,

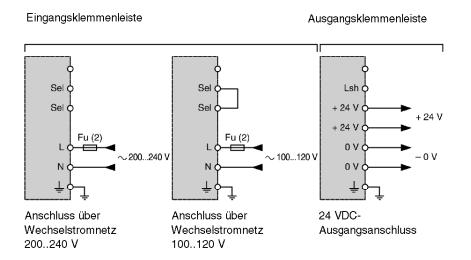
A GEFAHR

ELEKTRISCHER SCHLAG

Verbinden Sie die Erdungsklemme des Moduls mit einem grün-gelben Draht mit der Schutzerde.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Die Klemmenleiste für die Versorgung ist durch eine Klappe geschützt, die den Zugang zu den Anschlussklemmen ermöglicht. Der Ausgang der Leiter erfolgt vertikal nach unten, wobei die Leiter von einer Kabelklemme gehalten werden können.

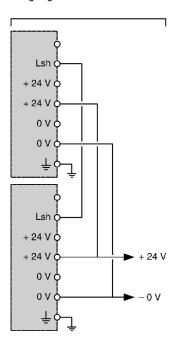

Sekundärkreis: Um potentialgetrennte Spannungen zur Gewährleistung von 24 V TBTS (EN 60950) zu berücksichtigen, sind folgende Leiter zu verwenden:

• eine Betriebsspannung ≥ 300 V AC mit einem Leiterquerschnitt von 2,5 mm² (12 AWG) für die 24-V-Ausgänge und die Masse.

Anschluss der Stromversorgungsmodule TSX SUP 1101

Abbildung 1

Plan für normalen Anschluss:


Abbildung 2

Plan für Parallelanschluss (Parallelschaltung):

Eingangsklemmenleisten

Sel (1) Fu (2) Sel (1) Sel (1) Fu (2) Fu (2) A Modul 2

Ausgangsklemmenleisten

- (1) Anschluss bei Versorgung über ein Wechselstromnetz (100 120 V).
- (2) Externe Sicherung für Phase (Fu): 6,3 A, träge, 250 V.

Anschlussrichtlinien

Primärkreis: Bei der Verdrahtung sind die Richtlinien bezüglich Phase und Nullleiter einzuhalten.

 eine Betriebsspannung ≥ 600 V AC mit einem Leiterquerschnitt von 1,5 mm² (14 AWG) oder 2,5 mm² (12 AWG) für den Anschluss an das Leitungsnetz,

A GEFAHR

ELEKTRISCHER SCHLAG

Verbinden Sie die Erdungsklemme des Moduls mit einem grün-gelben Draht mit der Schutzerde.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Die Klemmenleiste für die Versorgung ist durch eine Klappe geschützt, die den Zugang zu den Anschlussklemmen ermöglicht. Der Ausgang der Leiter erfolgt vertikal nach unten, wobei die Leiter von einer Kabelklemme gehalten werden können.

Sekundärkreis: Um potentialgetrennte Spannungen zur Gewährleistung von 24 V TBTS (EN 60950) zu berücksichtigen, sind folgende Leiter zu verwenden:

- eine Betriebsspannung ≥ 300 V AC mit einem Leiterquerschnitt von 2,5 mm² (12 AWG) für die 24-V-Ausgänge und die Masse.
- Verdrahten Sie die beiden 24-V-Klemmen parallel, oder verteilen Sie die Lasten auf die beiden 24-V-Ausgänge, wenn der bereitzustellende Gesamtstrom 5 A übersteigt.

Kapitel 48

Eigenschaften von Prozessversorgungen

Inhalt dieses Kapitels

Dieses Kapitel zeigt Ihnen anhand von Tabellen die elektrischen Eigenschaften von Prozessversorgungen.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Elektrische Kenndaten der Versorgungsmodule: TBX SUP 10 und TSX SUP 1011	358
Elektrische Kenndaten der Versorgungsmodule: TSX SUP 1021/1051/1101	360
Physikalische Umgebungsbedingungen	362

Elektrische Kenndaten der Versorgungsmodule: TBX SUP 10 und TSX SUP 1011

Tabelle der Kenndaten

In der folgenden Tabelle sind die elektrischen Kenndaten der Stromversorgungen aufgeführt: TBX SUP 10 und TSX SUP 1011:

Prozessversorgung			TBX SUP 10 24 V/1 A	TSX SUP 1011 24 V/1 A
			Tooooo o	
Primär				
Nenn-Eingangsspannung		V	Wechselstrom 100 - 240 Gleichstrom 125	Wechselstrom 100 - 240 Gleichstrom 125
Grenz-Eingangsspannung		V	Wechselstrom 90 - 264 Gleichstrom 88 - 156	Wechselstrom 85 - 264 Gleichstrom 105 - 156
Netzfrequenz		Hz	47 - 63	47 - 63/360 - 440
Nenn-Eingangsstrom (U=100) V)	Ein	0,4	0,4
Maximaler Rufstrom (1)	bei 100 V	Ein	3	37
	bei 240 V	Ein	30	75
It max. bei Einschaltung (1)	bei 100 V	As	0,03	0,034
	bei 240 V	As	0,07	0,067
I ² t max. bei Einschaltung (1)	bei 100 V	A ² s	2	0,63
	bei 240 V	A ² s	2	2,6
Leistungsfaktor			0,6	0,6
Oberwellen (3)			10 % (Phi=0° und 180°)	10 % (Phi=0° und 180°)
Wirkungsgrad bei Volllast		%	>75	>75
Sekundär		•		
Wirkleistung (2)		W	24	26(30)
Nenn-Ausgangsstrom (2)		Ein	1	1,1
Ausgangsspannung/ Genauigkeit bei 25 °C		V	24+/-5 %	24+/-3 %
Restwelligkeit (Spitze-Spitze) Hochfrequenzrauschen max. (Spitze-Spitze)		mV	240	150
		mV	240	240

Prozessversorgung			TBX SUP 10 24 V/1 A	TSX SUP 1011 24 V/1 A
			1 00000	
Zulässige Dauer von Mikro-Netzausfällen (3)		ms	≤10 bei Wechselstrom ≤1 bei Gleichstrom	≤10 bei Wechselstrom ≤1 bei Gleichstrom
Schutz vor	Kurzschlüssen und Überlasten		ständige automatische Wiedereinschaltung	Rücksetzung auf 0 und automatische Wiedereinschaltung bei Verschwinden des Fehlers
	Überspannungen	V	Spitzenbegrenzung U>36	Spitzenbegrenzung U>36
Parallelschaltung			Nein	Ja, mit Leistungsoptimierung
Reihenschaltung			Nein	Ja
Verlustleistung			8	18

- (1) Werte beim ersten Einschalten bei 25 °C. Diese Elemente sind beim Starten für die Dimensionierung der Schutzorgane zu berücksichtigen.
- (2) Wirkleistung und Ausgangsstrom für eine Umgebungstemperatur von 60 °C. Wert in () = Wirkleistung in einem belüfteten Schrank oder im Temperaturbereich 0 +40 °C.
- (3) Bei Nennspannung für eine Wiederholfrequenz von 1 Hz.

Elektrische Kenndaten der Versorgungsmodule: TSX SUP 1021/1051/1101

Tabelle der Kenndaten

In der folgenden Tabelle sind die elektrischen Kenndaten der Stromversorgungen aufgeführt: TSX SUP 1021/1051/1101:

Prozessversorgung			TSX SUP 1021 24 V/2 A	TSX SUP 1051 24 V/5 A	TSX SUP 1101 24 V/10 A
Primär			_		
Nenn-Eingangsspannung		V	Wechselstrom 100 - 120 / 200 - 240		
Grenz-Eingangsspannung		V	Wechselstrom 85 - 132 / 170 - 264		
Netzfrequenz		Hz	47 - 63/360 - 440		
Nenn-Eingangsstrom (U=100	V)	Ein	0,8	2,4	5
Maximaler Rufstrom (1)	bei 100 V	Ein	<30	51	75
	bei 240 V	Ein	<30	51	51
It max. bei Einschaltung (1)	bei 100 V	As	0,06	0,17	0,17
	bei 240 V	As	0,03	0,17	0,17
I ² t max. bei Einschaltung (1)	bei 100 V	A ² s	4	8,6	8,5
	bei 240 V	A ² s	4	8,6	8,5
Leistungsfaktor			0,6	0,52	0,5
3. Oberwelle			10 % (φ=0° und 180°)		
Wirkungsgrad bei Volllast		%	>75	>80	
Sekundär		•		•	
Wirkleistung (2)		W	53(60)	120	240
Nenn-Ausgangsstrom (2)		Ein	2,2	5	10
Ausgangsspannung (0 °C - 60 °C) V			24+/-3 %		24+/-1 %
Restwelligkeit (Spitze-Spitze)		mV	150 200		
Hochfrequenzrauschen max. (Spitze-Spitze) mV		mV	240		
Zulässige Dauer von Mikro-Netzausfällen (3)		ms	<=10		
Einlaufzeit bei ohmscher Last			<1		

Prozessversorgung		TSX SUP 1021 24 V/2 A	TSX SUP 1051 24 V/5 A	TSX SUP 1101 24 V/10 A	
Schutz vor	Kurzschlüssen und Überlasten		Rücksetzung auf 0 und automatische Wiedereinschaltung bei Verschwinden des Fehlers	Strombegrenzung	
	Überspannungen	٧	Spitzenbegrenzung U>36	Spitzenbegrenzur	ıg U>32
Parallelschaltung			Ja, mit Leistungsoptimierung		
Reihenschaltung			ja		
Verlustleistung		18	30	60	

- (1) Werte beim ersten Einschalten bei 25 °C. Diese Elemente sind beim Starten für die Dimensionierung der Schutzorgane zu berücksichtigen.
- (2) Wirkleistung und Ausgangsstrom für eine Umgebungstemperatur von 60 °C. Wert in () = Wirkleistung in einem belüfteten Schrank oder im Temperaturbereich 0 +40 °C.
- (3) Bei Nennspannung für eine Wiederholfrequenz von 1 Hz.

Physikalische Umgebungsbedingungen

Tabelle der Kenndaten

Die folgende Tabelle beschreibt die elektrischen Eigenschaften der Versorgungen TBX SUP 10 und TSX SUP 10x1

Prozessversorgungsmodule/-blöcke		TBX SUP 10	TBX SUP 1011/1021 TSX SUP 1051/1101
Anschluss über Schraubklemmen maximale Kapazität pro Klemme	mm ²	1 Klemme pro Ausgang 1 x 2,5	1011/1021/1051/A02 :1 Ausgangsklemme 1101 : Klemmen/Ausgang 2 x 1,5 mit Kabelschuh oder 1 x 2,5
Temperatur: Lagerung Funktionsweise	°C °C	-25 bis +70 +5 bis +55	-25 bis +70 0 bis +60 (TSX SUP 1011/1021/1051/1101
relative Feuchtigkeit	%	5-95	
Kühlung	%	durch natürliche Konve	ektion
Benutzersicherheit		-	TBTS (EN 60950 und IEC1131-2)
Dielektrische Spannungsfestigkeit Primärkreis/Sekundärkreis Primärkreis/Erde Sekundärkreis/Erde	V eff V eff V eff	50/60 Hz - 1 mm 1500 1500 500	3500 2200 500
Isolationswiderstand Primärkreis/Sekundärkreis Primärkreis/Erde	Megaohm Megaohm	>=100 >=100	
Leckstrom		I<=3,5 mA (EN 60950)	
Entladungsfestigkeit elektrostatische		6 kV pro Kontakt / 8 kV Luft (entspricht IEC 1000-4-2)	
schnelle elektrische Transienten		2 kV (Serientakt und Gleichtakt an Ein- und Ausgang)	
Feldeinfluss elektromagnetischer		10 V/m (80MHz bis 1GHz)	
Unempfindlichkeit gegen elektromagnetische Störungen		(entspricht FCC 15-A und EN 55022 Klasse A) Testbedingungen: U und I nominal, ohmscheLast, Kabel: 1 Meter horizontal, 0,8 Meter vertikal	

Prozessversorgungsmodule/-blöcke		TBX SUP 10	TBX SUP 1011/1021 TSX SUP 1051/1101	
Stoßwelle		Eingang: 4 kV MC, 2 kV MS Ausgänge: 2 kV MF, 0,5 kV MS (entspricht IEC 1000-4-5)		
Vibrationsfestigkeit (1)		1 mm 3 Hz bis 13,2 Hz 1g 57 Hz bis 150 Hz (entspricht IEC 68-2-6, Test FC)		
Schutzart		IP 20.5 IP 20.5, Klemmenleiste IP 21.5		
MTBF bei 40°C	Н	100 000		
Lebensdauer bei 50°C	Н	30 000 (bei Nennspannung und 80 % Nennleistung)		

⁽¹⁾ entspricht IEC 68-2-6, Test FC, Modul oder Block auf Schlitzplatte oder Tafel montiert

Teil VI

Standard- und Erweiterungsracks TSX RKY..

Gegenstand dieses Abschnitts

In diesem Abschnitt werden die Standard- und Erweiterungsracks TSX RKY beschrieben.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
49	Übersicht über die Standardracks und die erweiterbaren Racks TSX RKY	367
50	Standard- und Erweiterungsracks TSX RKY: Einbau/Montage	377
51	Standard- und Erweiterungsracks TSX RKY: Funktionen	385
52	Racks TSX RKY: Zubehör	401
53	X-Bus-Erweiterungsmodule	415
54	Belüftungsmodul	433

Kapitel 49

Übersicht über die Standardracks und die erweiterbaren Racks TSX RKY..

Gegenstand dieses Kapitels

Im vorliegenden Kapitel finden Sie:

- Allgemeine Angaben zu den Racks TSX RKY,
- Die physische Beschreibung dieser Racks.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Standard- und Erweiterungsracks TSX RKY	368
Standardrack: Beschreibung	372
Erweiterbares Rack: Beschreibung	374

Standard- und Erweiterungsracks TSX RKY

Allgemeines

Die Racks TSX RKY bilden das Basiselement der Premium-Steuerungen.

Diese Racks führen die folgenden Funktionen aus:

Mechanische Funktion:

Die Racks dienen zur Befestigung von allen Modulen innerhalb einer Steuerungsstation (Versorgungsmodule, Prozessoren, digitale und analoge Eingangs-/Ausgangsmodule und anwendungsspezifische Module). Sie können in Schaltschränken, in Maschinengestellen oder in Schalttafeln installiert werden.

• Elektrische Funktion:

Die Racks enthalten einen Bus, den so genannten X-Bus. Er gewährleistet die Verteilung der:

- o erforderlichen Stromversorgung für jedes Modul innerhalb eines Racks,
- Dienstsignale und Daten für die komplette Steuerungsstation, falls diese mehrere Racks enthält.

HINWEIS: Es werden zwei Rack-Familien in unterschiedlichen Modularitäten angeboten (4, 6, 8 und 12 Positionen):

- Standardracks.
- Erweiterbare Racks.

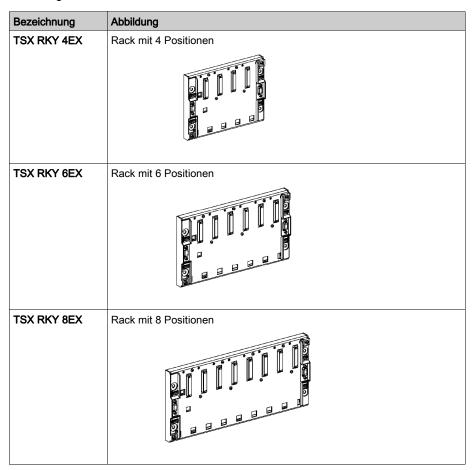
Standardracks

Zum Aufbau einer Steuerungsstation mit einem einzigen Rack In der folgenden Tabelle finden Sie die verschiedenen **Standardracks**:

Bezeichnung	Abbildung
TSX RKY 6	Rack mit 6 Positionen
TSX RKY 8	Rack mit 8 Positionen
TSX RKY 12	Rack mit 12 Positionen

Erweiterbare Racks

Zum Aufbau einer Steuerungsstation mit beispielsweise:


- maximal 8 Racks TSX RKY 12 EX.
- maximal 16 Racks TSX RKY 4EX/6EX/8EX.

Diese Racks sind über einen so genannten X-Bus verteilt, dessen Länge auf maximal 100 m begrenzt ist.

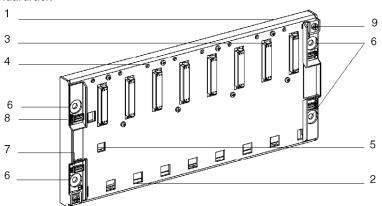
Für die Kontinuität des Busses von einem Rack zum anderen sorgt ein Busverlängerungskabel.

Bei Anwendungen, die einen größeren Abstand zwischen den Racks benötigen, können mit einem X-Bus-Erweiterungsmodul zwei X-Bus-Segmente mit einem maximalen Abstand von 250 Metern an das Rack angeschlossen werden, das den Prozessor enthält.

In der folgenden Tabelle finden Sie die verschiedenen erweiterbaren Racks:

370 35006162 12/2018

Bezeichnung	Abbildung
TSX RKY 12EX	Rack mit 12 Positionen


Standardrack: Beschreibung

Einleitung

Zum Aufbau einer Steuerungsstation mit einem einzigen Rack.

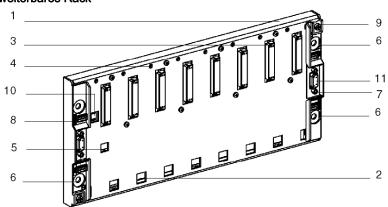
Abbildung

Standardrack

Beschreibung

In der folgenden Tabelle finden Sie die Beschreibung der einzelnen Elemente eines Standardracks.

Nummer	Beschreibung
1	Metallplatte mit folgenden Funktionen: Stützt die Elektronikkarte des X-Busses, und schützt diese vor Störgrößen wie EMI und ESD Stützt die Module Verbessert die mechanische Steifigkeit des Racks
2	Fenster zur Aufnahme der Passstifte des Moduls.
3	48-polige 1/2 DIN-Buchsenstecker als Verbindung zwischen Rack und Modul. Bei Lieferung des Racks sind die Buchsenstecker mit Kappen geschützt. Diese sind vor dem Einsetzen der Module zu entfernen. Der Anschluss ganz links mit der Beschriftung PS ist immer für das Stromversorgungsmodul des Racks bestimmt. Die anderen Anschlüsse mit der Beschriftung 00 bis sind für alle anderen Arten von Modulen vorgesehen.
4	Bohrungen mit Gewinde zur Befestigung der Module mit Schrauben.
5	Öffnung zur richtigen Montage des Stromversorgungsmoduls. Da Stromversorgungsmodule auf ihrer Rückseite eine Erhöhung aufweisen, kann dieses Modul nur in der angegebenen Position montiert werden.
6	Löcher, um das Rack mit Schrauben M6 auf einer Halterung zu befestigen.
7	Steckplatz für die Rackadresse.
8	Steckplatz für die Netzadresse der Station.
9	Erdungsklemmen für die Erdung des Racks.


Erweiterbares Rack: Beschreibung

Einleitung

Zum Aufbau einer aus mehreren Racks bestehenden Steuerungsstation.

Abbildung

Erweiterbares Rack

Beschreibung

In der folgenden Tabelle finden Sie die Beschreibung der einzelnen Elemente eines erweiterbaren Racks

Nummer	Beschreibung
1	Metallplatte mit folgenden Funktionen: Stützt die Elektronikkarte des X-Busses, und schützt diese vor Störgrößen wie EMI und ESD Stützt die Module Verbessert die mechanische Steifigkeit des Racks
2	Fenster zur Aufnahme der Passstifte des Moduls.
3	48-polige 1/2 DIN-Buchsenstecker als Verbindung zwischen Rack und Modul. Bei Lieferung des Racks sind die Buchsenstecker mit Kappen geschützt. Diese sind vor dem Einsetzen der Module zu entfernen. Der Anschluss ganz links mit der Beschriftung PS ist immer für das Stromversorgungsmodul des Racks bestimmt. Die anderen Anschlüsse mit der Beschriftung 00 bis sind für alle anderen Arten von Modulen vorgesehen.
4	Bohrungen mit Gewinde zur Befestigung der Module mit Schrauben.
5	Öffnung zur richtigen Montage des Stromversorgungsmoduls. Da Stromversorgungsmodule auf ihrer Rückseite eine Erhöhung aufweisen, kann dieses Modul nur in der angegebenen Position montiert werden.
6	Löcher, um das Rack mit Schrauben M6 auf einer Halterung zu befestigen.
7	Steckplatz für die Rackadresse.
8	Steckplatz für die Netzadresse der Station.
9	Erdungsklemmen für die Erdung des Racks.
10	Mikroschalter zur Kodierung der Rackadresse (nur erweiterbare Racks).
11	9-polige SUB D-Buchsenstecker, um die Verbindung des X-Busses mit einem anderen Rack zu ermöglichen (nur erweiterbare Racks).

Übersicht über die Standardracks und die erweiterbaren Racks TSX RKY..

Kapitel 50

Standard- und Erweiterungsracks TSX RKY..: Einbau/Montage

Gegenstand dieses Kapitels

In diesem Kapitel wird Folgendes beschrieben:

- Einbau der Racks
- Montage der Racks

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

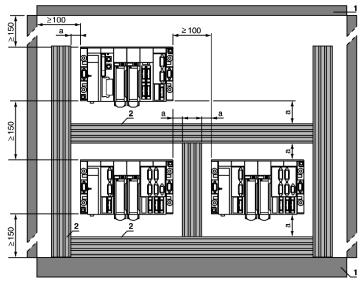
Thema	Seite
Montage der Racks	378
Montage und Befestigung der Racks	381
Masseanschluss eines TSX RKY-Racks	383

Montage der Racks

Einleitung

Beim Einbau der Racks TSX RKY • sind bestimmte Montageanweisungen zu beachten.

Montageanweisungen für Racks: Beschreibung


- 1 Da die verschiedenen Module (Versorgungsmodule, Prozessoren, digitaler Eingang/Ausgang usw.) durch natürliche Konvektion gekühlt werden, müssen die verschiedenen Racks, um die Belüftung (siehe Seite 433) zu erleichtern, horizontal und vertikal installiert werden.
- 2 Wenn mehrere Racks im selben Schaltschrank eingebaut werden, ist Folgendes zu beachten:
 - Lassen Sie zwischen zwei übereinander liegenden Racks mindestens 150 mm Platz für die Kabelkanäle und den Luftumlauf.
 - Installieren Sie Wärme erzeugende Geräte (Transformatoren, Prozessversorgung, Hauptschalter usw.) über den Racks.
 - Lassen Sie auf jeder Seite des Racks mindestens 100 mm Platz für die Kabeldurchführung und den Luftumlauf.

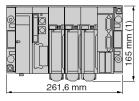
HINWEIS: Falls das Gerät außerhalb eines Metall-Schaltschranks in einem Bereich montiert wird, wo die Emissionsgrenzwerte zwischen 30 MHz und 1 GHz zu beachten sind (Norm EN 55022), wird empfohlen, die Racks TSXRKY 8EX oder TSXRKY6EX anstelle der Racks TSXRKY8 und TSXRKY6 zu verwenden.

378 35006162 12/2018

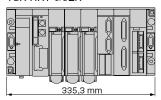
Abbildung

In der folgenden Abbildung sind die Montageanweisungen grafisch dargestellt.

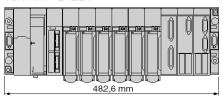
- a Größer oder gleich 50 mm.
- 1 Apparatur bzw. Gehäuse
- 2 Kabelrille


Platzbedarf der Racks: Abbildungen

Die folgenden Abbildungen zeigen den Platzbedarf der Racks TSX RKY ••.


160 mm (1) 200 mm (2)

TSX RKY 4EX


TSX RKY 6/6EX

TSX RKY 8/8EX

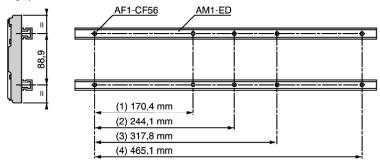
TSX RKY 12/12EX

- (1) Module mit Schraubklemmenleiste
- (2) Maximale Tiefe für alle Modultypen und ihre zugehörigen Anschlüsse

Montage und Befestigung der Racks

Einleitung

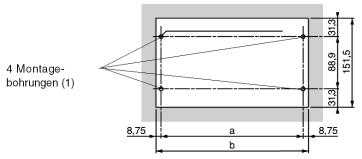
Die Racks TSX RKY ·• und TSX RKY ·• EX können auf:


- DIN-Schienen von 35 mm Breite montiert und mit Schrauben M6x25 befestigt werden,
- Lochplatten Telequick oder auf Tafeln montiert werden.

Die Montageanweisungen (siehe Seite 378) sind unabhängig von der Montageart einzuhalten.

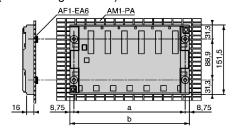
Montage auf DIN-Schienen von 35 mm Breite

Die 4 Schrauben M6x25 + Scheiben und Muttern ¼ Umdrehung anziehen und AF1-CF56 verschieben.


Montageplan

- (1) TSX RKY 4EX
- (2) TSX RKY6 und TSX RKY 6EX
- (3) TSX RKY8 und TSX RKY 8EX
- (4) TSX RKY 12 und TSX RKY 12EX

Montage auf einer Schalttafel


Bohrplan (Abmessungen in mm):

- (1) Der Durchmesser der Montagebohrungen muss für Schrauben M6 ausreichen.
- (1) Der Durchmesser der Montagebohrung muss für Schrauben M6 ausreichen. a und b siehe Tabelle.

Montage auf Lochplatine Telequick AM1-PA

Befestigen Sie das Rack mit 4 Schrauben M6x25 + Scheiben und Muttern AF1-EA6. Bohrplan (Abmessungen in mm):

Die folgende Tabelle zeigt die einzelnen Montageabläufe in Abhängigkeit von den unterschiedlichen Rackausführungen TSX RKY:

Racks	а	b	Stärke
TSX RKY 4EX	170,4 mm	187,9 mm	16 mm
TSX RKY 6/6EX	244,1 mm	261,6 mm	16 mm
TSX RKY 8/8EX	317,8 mm	335,3 mm	16 mm
TSX RKY 12/12EX	465,1 mm	482,6 mm	16 mm

HINWEIS: Maximales Anzugsmoment der Schrauben: 2,0 Nm

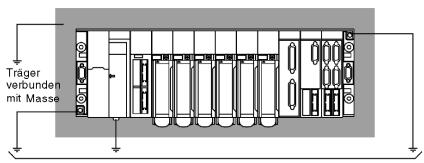
382 35006162 12/2018

Masseanschluss eines TSX RKY-Racks

Erden von Racks

Die Funktionserdung der Racks wird durch die metallische Rückseite gewährleistet.

Das bedeutet, dass für die SPS die Konformität mit Umweltnormen gewährleistet ist. Die Voraussetzung hierfür ist jedoch, dass die Racks mit einem ordnungsgemäß geerdeten Metallträger verbunden sind. Die verschiedenen Racks, aus denen sich eine SPS-Station des Typs TSX P57/TSX H57 zusammensetzen kann, müssen entweder im selben Träger oder in verschiedenen, ordnungsgemäß miteinander verbundenen Trägern installiert sein.


▲ GEFAHR

ELEKTRISCHER SCHLAG - FALSCHE ERDUNG

- Die Erdungsklemme jedes Racks muss mit der Schutzerde verbunden sein.
- Verwenden Sie einen grün/gelben Draht mit einem Mindestquerschnitt von 2,5 mm (12 AWG) und kürzestmöglicher Länge.
- Maximales Anzugsmoment der Masseanschlussschraube: 2,0 Nm.
- Bei der Installation sind alle lokalen und nationalen Codes zu befolgen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Abbildung:

gelb/grüner Draht mit Masse verbunden

HINWEIS: Die internen 0 V der SPS werden mit dem Masseanschluss verbunden. Der Masseanschluss selbst wird mit der Masse verbunden.

Kapitel 51

Standard- und Erweiterungsracks TSX RKY..: Funktionen

Gegenstand dieses Kapitels

In diesem Kapitel werden die verschiedenen Funktionen der Standard- und Erweiterungsracks **TSX RKY.**, beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Aufbau einer Steuerungsstation mit Premium-Prozessor	386
Aufbau einer Steuerungsstation mit Atrium-Prozessor	389
Adressierung der Racks einer Steuerungsstation	392
Prinzip der Adressierung zweier Racks über die gleiche Adresse	394
Moduladressen	395
Einbau von Versorgungsmodulen, Prozessoren und anderen Modulen	397

Aufbau einer Steuerungsstation mit Premium-Prozessor

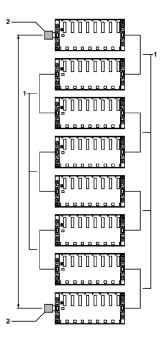
Einführung

Sie können eine Steuerungsstation mit einem Prozessor TSX P57/TSX H57 wie folgt aufbauen:

- Standardracks (siehe Seite 369): TSX RKY 6/8/12
- Erweiterbare Racks (siehe Seite 370): TSX RKY 4EX/6EX/8EX/12EX

Aufbau mit Standardracks

Durch die Verwendung von Standardracks können Sie eine auf ein einzelnes Rack begrenzete Steuerungsstation TSX P57/TSX H57 aufbauen.


Bei beiden Versionen (Konfiguration mit Wechselstromversorgung **TSX P57 CA 0244** und Konfiguration mit Gleichstromversorgung **TSX P57 CD 0244**) handelt es sich bei dem Rack dieser Konfiguration um ein Standardrack TSX RKY 6.

Aufbau mit erweiterbaren Racks: TSX RKY 4EX/6EX/8EX/12EX

Durch die Verwendung von erweiterbaren Racks können Sie eine Steuerungsstation aufbauen mit maximal:

Station	Anzahl Racks	
TSX 57 0244	1 Rack TSX RKY 12EX1 Rack TSX RKY 4EX/6EX/8EX	
TSX 57-104\1634\154	2 Racks TSX RKY 12EX4 Racks TSX RKY 4EX/6EX/8EX	
TSX 57- 204\254\2634\2834\304\354\3634\454\4634\554\5634\6634 und TSX H57 24M/44M	8 Racks TSX RKY 12EX 16 Racks TSX RKY 4EX/6EX/8EX	

Abbildung

- (1) Ein und dieselbe Station kann Racks mit 4, 6, 8 und 12 Steckplätzen enthalten, die untereinander über X-Bus-Verlängerungskabel (siehe Seite 402) (Kennziffer 1) verbunden sind.
- (2) Der X-Bus ist an jedem Ende mit einem Leitungsabschluss (siehe Seite 406) (Kennziffer 2) zu versehen.

HINWEIS: Die Gesamtlänge aller in einer Steuerungsstation verwendeten Kabel TSX CBY..0K darf niemals 100 m überschreiten. Für Anwendungen, bei denen die Abstände zwischen den Racks über 100 m liegen müssen, können zwei X-Bus-Segmente durch Zuschaltung eines Erweiterungsmoduls bis zu maximal 250 m von dem Rack, in dem sich der Prozessor befindet, entfernt werden, der Abstand zwischen jedem Segment des X-Busses darf dabei maximal 100 m betragen.

X-Bus-Verlängerungskabel

Racks werden über die X-Bus-Verlängerungskabel TSX CBY..0K verbunden. Diese werden mit den 9-poligen SUB-D-Anschlüssen an der rechten und linken Seite jedes erweiterbaren Racks verbunden.

HINWEIS: Wenn ein X-Bus-Kabel oder ein Leitungsabschluss entfernt oder unterbrochen wird, zeigen einige Racks einen Fehler an. Nach der ordnungsgemäßen Wiederherstellung der Rackverbindungen müssen alle Racks aus- und anschließend wieder eingeschaltet werden.

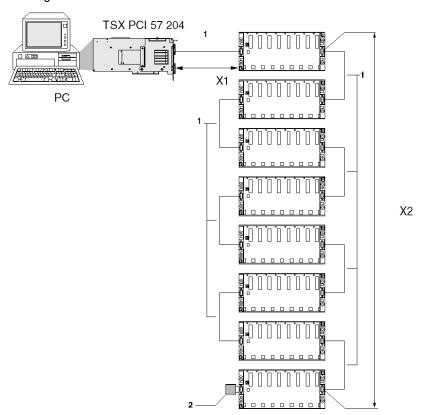
HINWEIS: Da die 9-poligen SUB-D-Anschlüsse nicht zwischen Ein- und Ausgang unterscheiden, können der linke und der rechte Anschluss gleichermaßen als Ein- oder Ausgang verwendet werden.

Leitungsabschluss

Die nicht verwendeten 9-poligen SUB-D-Anschlüsse an den beiden erweiterbaren Racks am Ende der Verkettung sind **unbedingt** mit TSX TL YEX-Abschlusswiderständen zu versehen, die mit **A**/ und **/B** gekennzeichnet sind.

Aufbau einer Steuerungsstation mit Atrium-Prozessor

Einführung


Sie können eine Steuerungsstation mit Atrium-Prozessor mit folgenden erweiterbaren Racks aufbauen: TSX RKY 4EX/6EX/8EX/12EX

Aufbau mit erweiterbaren Racks

Durch die Verwendung von erweiterbaren Racks können Sie eine Steuerungsstation aufbauen mit maximal:

Station	Anzahl Racks	
TSX PCI 57.204	8 Racks TSX RKY 12EX16 Racks TSX RKY 4EX/6EX/8EX	
TSX PCI 57.354	8 Racks TSX RKY 12EX16 Racks TSX RKY 4EX/6EX/8EX	

Abbildung:

- (1) Ein und dieselbe Station kann Racks mit 4, 6, 8 und 12 Steckplätzen enthalten, die untereinander über X-Bus-Verlängerungskabel (siehe Seite 402) (Kennziffer 1) verbunden sind
- (2) Der X-Bus ist an jedem Ende mit einem Leitungsabschluss (siehe Seite 406) (Kennziffer 2) zu versehen.

HINWEIS: Die Gesamtlänge (X1+X2) aller in einer Steuerungsstation verwendeten Kabel TSX CBY..0K darf niemals 100 m überschreiten. Für Anwendungen, bei denen die Abstände zwischen den Racks über 100 m liegen müssen, können zwei X-Bus-Segmente durch Zuschaltung eines Erweiterungsmoduls bis zu maximal 250 m von dem Rack, in dem sich virtuell der Atrium-Prozessor befindet, entfernt werden, der Abstand zwischen jedem Segment des X-Busses darf dabei maximal 100 m betragen.

X-Bus-Verlängerungskabel

Die Verbindung zwischen den Racks erfolgt über die X-Bus-Verlängerungskabel TSX CBY••0K, die mit dem 9-poligen SUB-D-Anschluss an der rechten und linken Seite jedes erweiterbaren Racks sowie an der Vorderseite des Prozessors verbunden werden.

HINWEIS: Wenn ein X-Bus-Kabel oder ein Leitungsabschluss entfernt oder unterbrochen wird, zeigen einige Racks einen Fehler an. Nach der ordnungsgemäßen Wiederherstellung der Rackverbindungen müssen alle Racks aus- und anschließend wieder eingeschaltet werden.

HINWEIS: Da die 9-poligen SUB-D-Anschlüsse nicht zwischen Ein- und Ausgang unterscheiden, können der linke und der rechte Anschluss gleichermaßen als Ein- oder Ausgang verwendet werden.

Leitungsabschluss

Das Äquivalent des Leitungsabschlusses /A ist werkseitig in den Prozessor integriert. Der Prozessor bildet deshalb einen Abschluss des X-Busses. Der nicht benutzte 9-polige SUB-D-Anschluss des erweiterbaren Racks, das sich am Ende der Verkettung befindet, ist **unbedingt** mit einem Leitungsabschluss TSX TLY, Kennzeichen /B, zu versehen.

Hinweise zum Atrium-Prozessor

Der Atrium-Prozessor ist standardmäßig für die Montage am Anfang des X-Busses ausgelegt. Der Leitungsabschluss /A des Prozessors ist daher in Form einer herausnehmbaren Tochterkarte in den Prozessor integriert.

Falls für eine Anwendung der Prozessor innerhalb eines Segments des X-Busses integriert werden muss, wird zusammen mit dem Prozessor eine mechanische Einheit geliefert, die dies ermöglicht.

Diese mechanische Einheit besteht aus:

- einer Tochterkarte, die an Stelle des Leitungsabschlusses A/ installiert wird.
- einer Frontabdeckung mit einem 9-poligen SUB-D-Stecker für den Anschluss eines X-Bus-Kabels TSX CBY••0K und einem Kabel für den Anschluss an die Tochterkarte.

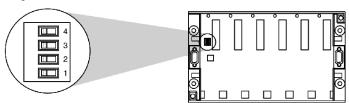
Adressierung der Racks einer Steuerungsstation

Einleitung

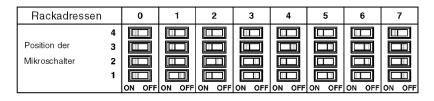
Bei der Adressierung der Racks einer Steuerungsstation unterscheidet man zwischen zwei Fällen:

- Steuerungsstation mit einem Standardrack (siehe Seite 369).
- Steuerungsstation mit erweiterbaren Racks (siehe Seite 370).

Station mit Standardrack


Die Station ist immer auf ein einziges Rack begrenzt. Deshalb ist die Rackadresse implizit und hat den Wert 0 (keine Mikroschalter).

Station mit erweiterbaren Racks


Jedem Rack innerhalb der Station ist eine Adresse zuzuweisen. Diese Adresse wird über 4 Mikroschalter am Rack kodiert.

Mit den Mikroschaltern 1 bis 3 wird die Rackadresse auf dem X-Bus (0-7) kodiert, während mit dem Mikroschalter 4 die beiden Racks (4, 6 oder 8 Steckplätze) mit derselben Adresse kodiert werden. Die letztere Funktion wird von der Programmiersoftware gesteuert.

Abbildung des Mikroschalters

Tabelle mit den Rackadressen

HINWEIS: Bei Lieferung stehen die Mikroschalter 1, 2 und 3 auf EIN (Adresse 0).

Zuweisung der Adressen von verschiedenen Racks

Adresse 0: Diese Adresse wird immer dem Rack zugewiesen, das:

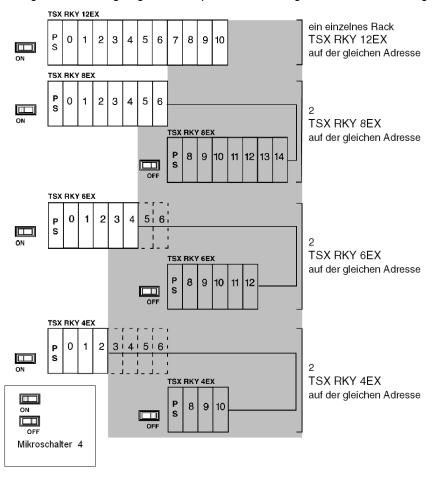
- physikalisch den Prozessor TSX P57/TSX H57 enthält,
- virtuell den Prozessor TSX PCI 57 enthält.

Dieses Rack kann an einer beliebigen Position innerhalb der Verkettung eingesetzt werden.

Adressen 1 bis 7: Diese Adressen können allen anderen erweiterbaren Racks der Station in beliebiger Reihenfolge zugewiesen werden.

HINWEIS: Die Kodierung der Rackadresse hat vor Montage des Versorgungsmoduls zu erfolgen.

HINWEIS: Wenn zwei oder mehreren Racks dieselbe Adresse zugewiesen wurde (nicht die Adresse 0), so gehen die betreffenden Racks sowie ihre sämtlichen Module in den Fehlerstatus über. Nach dem Korrigieren der Adressen müssen die betroffenen Racks ausgeschaltet und anschließend wieder eingeschaltet werden.


Dieser Hinweis betrifft nur die Racks mit der Bezeichnung TSX RKY..EX

Wenn zwei oder mehreren Racks die Adresse 0 zugewiesen wurde, geht das Rack, das den Prozessor enthält, nicht in den Fehlerstatus über.

Prinzip der Adressierung zweier Racks über die gleiche Adresse

Abbildung

Die folgende Abbildung zeigt das Prinzip der Adressierung zweier Racks über die gleiche Adresse.

HINWEIS:

- Bei den TSX RKY 12EX kann einem zweiten Rack nicht die gleiche Adresse zugewiesen werden.
- Die Racks TSX RKY 8EX/6EX/4EX k\u00f6nnen miteinander gemischt werden.
- Zwei Racks TSX RKY 8EX/6EX/4EX mit der gleichen Adresse sind nicht zwangsläufig unmittelbar miteinander verkettet. Die Reihenfolge der physischen Verteilung spielt keine Rolle.

Moduladressen

Auf einen Blick

Für sämtliche Standardracks und erweiterbare Racks ist die Adresse eines Moduls geographisch und von der Position des Moduls innerhalb des Racks abhängig. Die Adresse jeder Position ist unter jedem Stecker angegeben. Der Stecker "PS" ist stets dem Versorgungsmodul vorbehalten.

Es gibt mehrere Möglichkeiten, ein Modul zu adressieren:

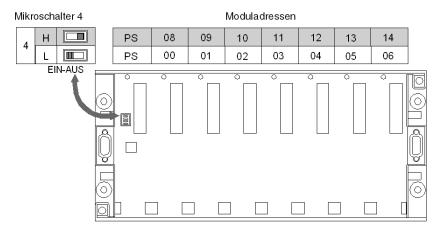
- Adressierung von Modulen in Standardracks (siehe Seite 369),
- Adressierung von Modulen in erweiterbaren Racks (siehe Seite 370).

Adressierung von Modulen in Standardracks

- In einem Rack TSX RKY6: Verwenden Sie die Adressen 00 bis 04
- In einem Rack TSX RKY8: Verwenden Sie die Adressen 00 bis 06
- In einem TSX RKY12: Verwenden Sie die Adressen 00 bis 10

Adressierung von Modulen in erweiterbaren Racks

Die Adresse eines Moduls ist von der Position des Mikroschalters 4 abhängig:


- Steht der Mikroschalter 4 auf ON, haben die Module je nach Typ des Racks die Adresse (00 bis X).
- Steht der Mikroschalter 4 auf OFF, haben die Module je nach Typ des Racks die Adresse (08 bis Y). Diese Funktion wird nicht von der Programmiersoftware gesteuert.

In der folgenden Tabelle finden Sie die Adressen in Abhängigkeit von der Position des Mikroschalters 4:

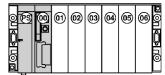
Position des Mikroschalters 4	ON	OFF
Racks TSX RKY 4EX	00 bis 02	08 bis 10
Racks TSX RKY 6EX	00 bis 04	08 bis 12
Racks TSX RKY 8EX	00 bis 06	08 bis 14
Racks TSX RKY 12EX	00 bis 10	nicht belegt

Abbildung

Abbildung der Moduladressen im Rack TSX RKY 8EX

HINWEIS: Auf die grau dargestellten Adressen kann nur aus der Programmiersoftware heraus zugegriffen werden.

Einbau von Versorgungsmodulen, Prozessoren und anderen Modulen


Einbau in einem Standard-Rack oder einem erweiterbaren Rack mit der Adresse 0 und mit Premium-Prozessor

In dem Rack mit der Adresse 0 müssen unbedingt ein Versorgungsmodul sowie das Prozessormodul eingebaut werden. Die Premium-Steuerungen verfügen über zwei Typen von Versorgungsmodulen (Standard- oder Doppelformat), wobei die Position des Prozessors vom Typ des verwendeten Versorgungsmoduls abhängt.

Verwendung eines Versorgungsmoduls im Standardformat:

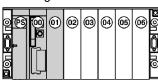
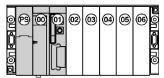

- Das Versorgungsmodul belegt systematisch die Position PS.
- Das Prozessormodul im einfachen Format wird an Position 00 (bevorzugte Position) oder an Position 01 eingebaut. Im zweiten Fall ist Position 00 nicht verfügbar.

Abbildung:

- Das Prozessormodul im Doppelformat wird an den Positionen 00 und 01 (bevorzugte Positionen) oder an den Positionen 01 und 02 eingebaut. Im zweiten Fall ist Position 00 nicht verfügbar.
- Die anderen Module werden je nach Einbau des Prozessors ab Position 01, 02 oder 03 eingebaut.


Abbildung:

Verwendung eines Versorgungsmoduls im Doppelformat:

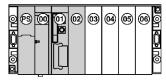
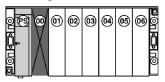

- Das Versorgungsmodul belegt systematisch die Position PS.
- Das Prozessormodul im einfachen Format muss unbedingt an Position 01 eingebaut werden.

Abbildung:

- Das Prozessormodul im Doppelformat wird an den Positionen 01 und 02 eingebaut.
- Die anderen Module werden je nach Prozessortyp ab Position 02 oder 03 eingebaut.

Abbildung:

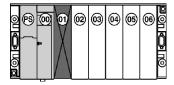

Einbau in einem erweiterbaren Rack mit der Adresse 0 und mit Atrium-Prozessor

Der in den PC integrierte Atrium-Prozessor belegt virtuell eine Position im Rack mit der Adresse 0. Diese virtuelle Position muss frei bleiben. Die Premium-Steuerungen verfügen über zwei Typen von Versorgungsmodulen (Standard- oder Doppelformat), wobei die freie Position vom Typ des verwendeten Versorgungsmoduls abhängt.

Verwendung eines Versorgungsmoduls im Standardformat:

- Das Versorgungsmodul belegt systematisch die Position PS.
- Die Position 00 (virtuelle Position des Prozessors) muss frei bleiben.
- Die anderen Module werden ab Position 01 eingesetzt.

Abbildung:

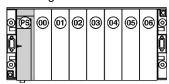


35006162 12/2018

Verwendung eines Versorgungsmoduls im Doppelformat:

- Das Versorgungsmodul belegt systematisch die Positionen PS und 00.
- Position 01 (die virtuelle Position des Prozessors) muss frei bleiben.
- Die anderen Module werden ab Position 02 eingesetzt.

Abbildung:


Einbau in einem erweiterbaren Rack mit der Adresse 1 bis 7 und mit einem beliebigen Prozessortyp

Jedes Rack muss mit einem Versorgungsmodul entweder im Standard- oder im Doppelformat ausgestattet sein.

Verwendung eines Versorgungsmoduls im Standardformat:

- Das Versorgungsmodul belegt systematisch die Position PS.
- Die anderen Module werden ab Position 00 eingesetzt.

Abbildung:

Verwendung eines Versorgungsmoduls im Doppelformat:

- Das Versorgungsmodul belegt systematisch die Position PS.
- Die anderen Module werden ab Position 01 eingesetzt.

Abbildung:

Kapitel 52

Racks TSX RKY: Zubehör

Gegenstand dieses Kapitels

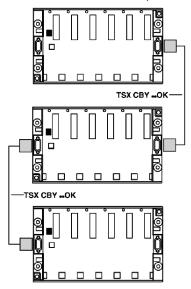
Ziel dieses Kapitels ist es, die verschiedenen Zubehörteile für Racks TSX RKY.. vorzustellen.

Inhalt dieses Kapitels

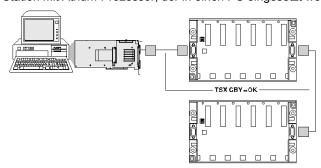
Dieses Kapitel enthält die folgenden Themen:

Thema	Seite					
Verlängerungskabel für X-Bus TSX CBY0K						
TSX CBY 1000 X-Bus-Verlängerungskabel						
Leitungsabschluss TSX TLYEX	406					
Setzen von Leitungsabschlüssen in einer Station mit einem Premium-Prozessor						
Setzen von Leitungsabschlüssen in einer Station mit einem Atrium-Prozessor						
Schutzabdeckung SX RKA 02 für eine freie Position						
Kennzeichnung	410					
Kompatibilität mit dem vorhandenen Gerätepark	412					

Verlängerungskabel für X-Bus TSX CBY..0K


Einleitung

Diese Kabel in vordefinierten Längen ermöglichen die Verkettung der erweiterbaren Racks **TSX RKY..EX** und transportieren die verschiedenen Signale des X-Busses.


Bei Verwendung eines Atrium-Prozessors ermöglichen sie ebenfalls die Verbindung zwischen dem in den PC integrierten Prozessor und dem ersten Rack innerhalb der Station.

Die Kabel haben an jedem Ende einen 9-poligen SUB D Stecker, an den ein 9-poliger SUB D Buchsenstecker des erweiterbaren Racks oder Atrium-Prozessors angeschlossen werden kann.

Station mit Prozessor TSX, der in das Rack eingesetzt werden kann

Station mit Atrium-Prozessor, der in einen PC eingesetzt werden kann

Wichtig:

Die Gesamtlänge der in einer Steuerungsstation verwendeten Kabel ist auf 100 Meter begrenzt.

A VORSICHT

MATERIAL SCHADEN

Schalten Sie alle Elemente der Station (Racks, PC usw.) aus, bevor Sie ein TSX CBY0K-Kabel einsetzen oder ausbauen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Die verschiedenen verfügbaren Kabeltypen

Es werden verschiedene Kabellängen angeboten, um dem Bedarf der Benutzer gerecht zu werden.

Zusammenfassende Tabelle der verschiedenen Kabeltypen

Referenz	Längen			
TSX CBY 010K (II ≥ 02)	1 m			
TSX CBY 030K (II ≥ 02)	3 m			
TSX CBY 050K (II ≥ 02)	5 m			
TSX CBY 120K (II ≥ 02)	12 Meter			
TSX CBY 180K (II ≥ 02)	18 Meter			
TSX CBY 280K (II ≥ 02)	28 Meter			
TSX CBY 380K (II ≥ 02)	38 Meter			
TSX CBY 500K (II ≥ 02)	50 Meter			
TSX CBY 720K (II ≥ 02)	72 Meter			
TSX CBY 1.000K (II ≥ 02)	100 Meter			

TSX CBY 1000 X-Bus-Verlängerungskabel

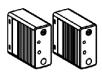
Einleitung

Wenn für den X-Bus Längen unter 100 m benötigt werden, die sich von denen unterscheiden, die als bestückte Kabel mit Steckern angeboten werden, ist **unbedingt** das Kabel **TSX CBY 1000** zu verwenden.

Dieses Kabel ist an jedem Ende mit Verbindungssteckern TSX CBY K9 zu versehen, die vom Benutzer zu montieren sind. Der Montageablauf ist im Servicehandbuch beschrieben, das mit dem Kabel und den Steckern geliefert wird.

Zur Bestückung dieser Kabel benötigen Sie die folgenden Teile:

- 1 Kabel TSX CBY 1000.
- 1 Satz mit zwei 9-poligen Steckern TSX CBY K9,
- 1 Kit TSX CBY ACC10.


1 Kabel TSX CBY 1000.

Dieses Kabel muss eine Kabeltrommel für 100 m Kabel und zwei Prüfgeräte enthalten, mit denen das Kabel geprüft wird, nachdem die verschiedenen Anschlüsse durchgeführt wurden.

Abbildung:

Kabeltrommel

Tester

1 Satz mit 2 9-poligen Steckern TSX CBY K9

Dieser Satz enthält für jeden Stecker:

- 1 Steckergehäuse,
- 1 Satz Kontakte.
- 1 innere Abschirmhaube,
- 1 äußere Abschirmhaube,
- 1 Aderendhülse,
- 1 Kunststoffhaube mit 2 Schrauben.

Abbildung:

35006162 12/2018

1 Kit TSX CBY ACC10

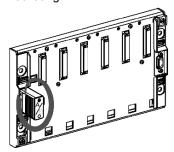
Dieses Kit enthält:

- 2 Crimpzangen,
- einen Kontaktabzieher, der im Falle einer Falschverdrahtung benutzt wird.

Abbildung:

Crimpzange

Leitungsabschluss TSX TLYEX


Einleitung

Wenn erweiterbare Racks (siehe Seite 385) verwendet werden, ist der X-Bus an jedem Ende mit einem Leitungsabschluss zu versehen.

Einleitung

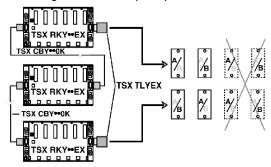
Ein Leitungsabschluss besteht aus einem 9-poligen SUB D-Stecker und einer Haube mit Adapterelementen. Der Leitungsabschluss erfolgt an dem 9-poligen SUB D-Stecker der erweiterbaren Racks am Ende der Reihe.

Abbildung:

Die Leitungsanschlüsse TSX TLYEX werden in Sätzen zu 2 Stück verkauft und sind mit **A**/ und /**B** gekennzeichnet. Der Bus muss unbedingt an einem Ende einen Abschluss **A**/ und am anderen Ende einen Abschluss /**B** enthalten, wobei die Reihenfolge beliebig (siehe Seite 407) ist.

A VORSICHT

MATERIAL SCHADEN


Schalten Sie alle Element-Racks der Station aus, bevor Sie einen Leitungsabschluss einsetzen oder ausbauen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Setzen von Leitungsabschlüssen in einer Station mit einem Premium-Prozessor

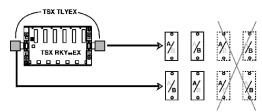
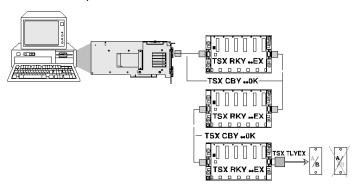

Positionieren auf einer Steuerungsstation mit verschiedenen erweiterbaren Racks TSX RKY..EX

Abbildung des Funktionsprinzips:

Positionieren auf einer Steuerungsstation mit einem erweiterbaren Rack TSX RKY..EX

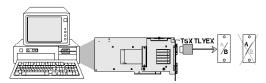
Abbildung des Funktionsprinzips:


HINWEIS: Wenn ein erweiterbares Rack verwendet wird, muss jeder 9-polige SUB-D-Stecker des Racks immer mit einem Leitungsabschluss versehen werden.

Setzen von Leitungsabschlüssen in einer Station mit einem Atrium-Prozessor

Auf einen Blick

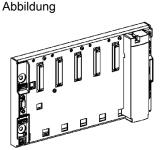
Das Äquivalent des Leitungsabschlusses /A ist werkseitig in den Prozessor integriert. Der Prozessor wird deshalb an den Anfang des X-Busses gesetzt. Der nicht benutzte 9-polige SUB D-Stecker des erweiterbaren Racks, das sich am Ende der Verkettung befindet, ist daher **unbedingt** mit einem Leitungsabschluss TSX TLY EX, Kennzeichen /B, zu versehen.


Übersichtsschaltplan:

Sonderfall

Falls kein Element an den X-Bus angeschlossen ist, ist der Leitungsabschluss **TSX TLYEX** /B an den X-Bus-Stecker des **Atrium**-Prozessors anzuschließen.

Abbildung:



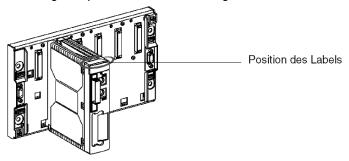
Schutzabdeckung SX RKA 02 für eine freie Position

Auf einen Blick

Wenn eine Position im Rack frei ist, ist es ratsam, sie durch eine dafür vorgesehene Abdeckung **TSX RKA 02** zu schützen.

Diese Abdeckung wird wie ein Modul mit geringerer Tiefe auf dem Rack angebracht und befestigt. Die Abdeckung TSX RKA 02 ist in Packungen zu je fünf Stück erhältlich.

Kennzeichnung


Kennzeichnung der Modulpositionen auf dem Rack

Wenn das Modul im Rack eingesteckt ist, verdeckt dieses das Kennzeichen der Position, die auf dem Rack aufgedruckt ist.

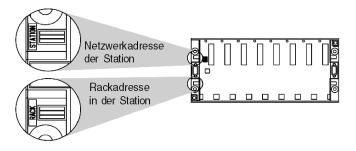
Aus diesem Grund und um die Position eines Moduls schnell ermitteln zu können, wird jedes Rack mit einem Bogen Haftetiketten geliefert, mit denen die Position jedes Moduls gekennzeichnet werden kann.

Dieses Haftetikett wird auf dem oberen Teil des Moduls angebracht, wenn dieses im Rack eingesetzt ist.

Abbildung: Beispiel für die Kennzeichnung des Prozessormoduls

Etikettleiste:

PS	00	01	020	03	04	05	06
07	08	09	10	11	12	13	14


Kennzeichnung der Racks

Jedes Rack wird mit einem Satz aufsteckbarer Kennzeichen geliefert, mit denen jedes Rack wie folgt gekennzeichnet werden kann:

- Adresse des Racks in der Station,
- Netzwerkadresse der Station, falls diese an ein Kommunikationsnetz angeschlossen ist.

Zu diesem Zweck verfügt jedes Rack über zwei Stellen, die für die Aufnahme dieser Kennzeichen bestimmt sind.

Abbildung:

Kompatibilität mit dem vorhandenen Gerätepark

Übersichtstabelle

In dieser Tabelle wird die Kompatibilität mit dem vorhandenen Gerätepark unter Bezugnahme auf die alten und neuen Referenznummern aufgezeigt:

			Konfigura	eführt mit			
			Alte Refer	Neue Referenzen			
			TSX RKYE TSX CBYOK (•• 01) TSX TLY (•• 01)	TSX RKYE TSX CBYOK (•• 01) TSX TLY A+B (•• 03)	TSX RKYE TSX CBYOK (*• 02) TSX CBY 1000 TSX TLY A+B (*• 03)	TSX RKYEX TSX CBYOK (*• 02) TSX CBY 1000 TSX TLYEX A/+/B	
		2 Abschlüsse TSX TLY (•• 01)	JA	NEIN (1)	NEIN (1)	NEIN (3)	
		Kabel TSX CBYOK (•• 01)	JA	JA	NEIN (2)	NEIN (4)	
	enzen	Abschlüsse TSX TLY A+B (•• 03)	JA	JA	JA	NEIN (3)	
Entwicklung der Konfiguration mit	Alte Referenzen	Rack(s) TSX RKYE	JA	JA	JA	NEIN (5)	
er Konfig		Kabel TSX CBYOK (•• 02) oder CBY 1000	JA	JA	JA	JA	
p Bun	zen	Rack(s) TSX RKYEX	NEIN (6)	JA	JA	JA	
Entwickli	Neue Referenzen	Abschlüsse TSX TLYEX A/+/B	JA	JA	JA	JA	

Ausführliche Informationen über die Inkompatibilitäten:

- 1. Funktionsweise korrekt, aber falsche Erkennung einer Unterbrechung des X-Busses. Das Verhalten der Ausgänge ist bei einer Busunterbrechung nicht garantiert.
- 2. Korrekte Funktionsweise auf 50 Metern anstelle von 100 Metern. Erkennung einer Unterbrechung des X-Busses korrekt.
- 3. Mangelhafte Anpassung des Busses, keine Funktionsgarantie. Die TLY und TLY A/B passen die Signale im Verhältnis zu 0 V an (Draht im X-Bus-Kabel). Die TLY EX A/B passen die Signale im Verhältnis zur Abschirmung an.
- 4. Falsche Erkennung einer doppelten Adresse.
- **5.** Funktionsweise korrekt, aber keine Erkennung doppelter Adressen.
- Mangelhafte Anpassung des Busses. Es sind TLY EX-Verschlüsse für eine korrekte Funktionsweise erforderlich, wenn ein TSXRKY..EX. in der Konfiguration verwendet wird.

HINWEIS: An einer Steuerungsstation muss das Leitungsabschlusspaar TSX TLY den gleichen Index besitzen.

•• Entspricht der Version der Produkte.

Kapitel 53

X-Bus-Erweiterungsmodule

Gegenstand dieses Kapitels

In diesem Kapitel wird das X-Bus-Erweiterungsmodul und seine Installation beschrieben.

Inhalt dieses Kapitels

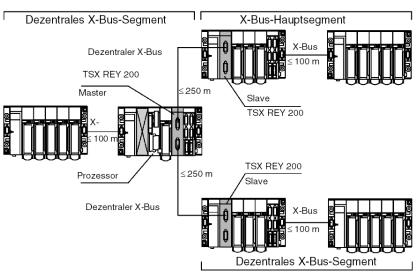
Dieses Kapitel enthält die folgenden Themen:

Thema	Seite					
X-Bus-Erweiterungsmodul: Einführung	416					
Rack-Erweiterungsmodul: Physikalische Beschreibung	418					
X-Bus-Erweiterungsmodul: Einbau	419					
X-Bus-Erweiterungsmodul: Konfiguration						
X-Bus-Erweiterungsmodul: Maximalabstände in Abhängigkeit von Modultypen						
X-Bus-Erweiterungsmodule: Anschlüsse						
X-Bus-Erweiterungsmodul: Diagnose						
Topologie einer Steuerungsstation mit Erweiterungsmodul						
Verwalten eines Stromversorgungsmoduls mit einem X-Bus-Erweiterungsmodul	432					

X-Bus-Erweiterungsmodul: Einführung

Allgemein

Der Premium-Steuerungs-X-Bus ermöglicht es, 8 Racks mit 12 Positionen (TSX RKY 12EX) oder 16 Racks mit 4, 6 oder 8 Positionen (TSX RKY 4EX/6EX/8EX) anzuschließen, die auf einer maximalen Länge von 100 Metern verteilt sind.


Falls Anwendungen einen größeren Abstand zwischen den Racks erfordern, kann dieser Abstand durch das X-Bus-Erweiterungsmodul (TSX REY 200) erheblich vergrößert werden. Dabei werden jedoch die Kennzeichen und die Leistung beibehalten, die typisch für eine Steuerungsstation sind, die nur aus einem einzigen X-Bus-Segment ohne Erweiterungsmodul besteht.

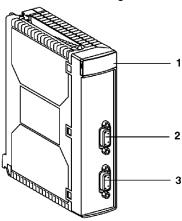
Das System besteht aus folgenden Komponenten:

- einem X-Bus-Erweiterungsmodul (TSX REY 200), dem so genannten "Master". Es befindet sich im Rack auf Adresse 0 (Racks mit Prozessor) und auf dem X-Bus-Hauptsegment. Dieses Modul verfügt über zwei Kanäle, über die die beiden X-Bus-Segmente auf einen Maximalabstand von 250 Metern erweitert werden können.
- einem oder zwei TSX REY 200-Modulen, den so genannten "Slaves". Jeder Slave befindet sich im Rack auf den erweiterten Bussegmenten.
- Jedes Slave-Modul ist über ein Kabel TSX CBRY 2500 mit TSX CBRY K5-Steckersatz mit dem Master-Modul verbunden.

Topologiebeispiel

Abbildung:

Verbrauch des Moduls


Verbrauch bei 5-VDC-Stromversorgung: 500 mA

Verlustleistung: 2,5 W.

Rack-Erweiterungsmodul: Physikalische Beschreibung

Abbildung

Nummerierte Abbildung:

Tabelle der Nummerierungen

Diese Tabelle enthält Beschreibungen zu den Nummern in der Abbildung:

Nummer	Beschreibung
1	Aus 6 LEDs bestehender Anzeigeblock: LED-Anzeige RUN: Zeigt den Betriebszustand des Moduls an. LED-Anzeige ERR: Zeigt einen Fehler im Modul an. LED-Anzeige I/O: Zeigt einen externen Fehler am Modul an. LED-Anzeige MST: Zeigt den Status der Master- oder Slave-Funktion des Moduls an. LED-Anzeige CH0: Zeigt den Betriebszustand von Kanal 0 an. LED-Anzeige CH1: Zeigt den Betriebszustand von Kanal 1 an.
2	Anschluss zum Verbinden von Kanal 0 des Moduls.
3	Anschluss zum Verbinden von Kanal 1 des Moduls.

X-Bus-Erweiterungsmodul: Einbau

Einleitung

Beim Einbau eines X-Bus-Erweiterungsmoduls können verschiedene Fälle auftreten:

- Einbau eines Master-Moduls in eine Premium-Station
- Einbau eines Master-Moduls in eine Atrium-Station
- Einbau eines Slave-Moduls

Einbau eines Master-Moduls in eine Premium-Station

Das Master-Modul muss unbedingt wie folgt eingebaut werden:

- in das Rack, das den Prozessor enthält (Rackadresse 00) (Rack auf dem X-Bus-Hauptsegment)
- an einer freien Position dieses Racks

Die folgende Tabelle zeigt die verschiedenen Möglichkeiten, die jeweils vom Format der Versorgung und vom Prozessor abhängen.

Fall	Abbildung
Rackadresse 0 mit Versorgung und Prozessor einfachen Formats: • Versorgung in Steckplatz PS • Prozessor zwingend in Steckplatz 01 • Modul TSX REY 200 in einem der freien Steckplätze im Rack (die Position 00 ist unzulässig)	
Rackadresse 0 mit Versorgung doppelten Formats und Prozessor einfachen Formats: Versorgung in Steckplatz PS und 00 Prozessor zwingend in Steckplatz 01 Modul TSX REY 200 in einem der freien Steckplätze im Rack	
Rackadresse 0 mit Versorgung einfachen Formats und Prozessor doppelten Formats: • Versorgung in Steckplatz PS • Prozessor zwingend in Steckplatz 01 und 02 • Modul TSX REY 200 in einem der freien Steckplätze im Rack (die Position 00 ist unzulässig)	

Fall	Abbildung
Rackadresse 0 mit Versorgung und Prozessor doppelten Formats: • Versorgung in Steckplatz PS und 00 • Prozessor zwingend in Steckplatz 01 und 02 • Modul TSX REY 200 in einem der freien Steckplätze im Rack	

Einbau eines Master-Moduls in eine Atrium-Station

Wie bei einer Premium-Station ist das Master-Modul unbedingt wie folgt einzubauen:

- in dem Rack, das den Prozessor virtuell enthält (Rackadresse 0) (Dieses Rack befindet sich auf dem X-Bus-Hauptsegment.)
- in einem beliebigen Steckplatz (mit Ausnahme des für das Versorgungsmodul vorgesehenen und virtuell vom Prozessor belegten Steckplatzes (Möglichkeit zur Nutzung des Steckplatz 00 bei Stromversorgung einfachen Formats).

Einschränkung:

Der virtuelle Steckplatz des Prozessors (nicht belegter Steckplatz) ist obligatorisch der Steckplatz 01.

Die folgende Tabelle zeigt die verschiedenen Möglichkeiten, die jeweils vom Format der Versorgung und vom Prozessor abhängen.

Fall	Abbildung
Rackadresse 0 mit Versorgung einfachen Formats: Versorgung in Steckplatz PS virtueller Steckplatz des Prozessors zwingend in Steckplatz 01 (Steckplatz nie belegt) Modul TSX REY 200 in einem der freien Steckplätze im Rack (die Position 00 ist unzulässig)	
Rackadresse 0 mit Versorgung doppelten Formats: Versorgung in Steckplatz PS virtueller Steckplatz des Prozessors zwingend in Steckplatz 01 (Steckplatz nie belegt) Modul TSX REY 200 in einem der freien Steckplätze im Rack	

Einbau des Slave-Moduls

Das Slave-Modul wird in eines der Racks des verschobenen Bussegments und in einen beliebigen Steckplatz dieses Racks (mit Ausnahme des für das Versorgungsmodul bestimmten Steckplatzes) eingebaut.

Die folgende Tabelle zeigt die verschiedenen Möglichkeiten, die jeweils vom Format der Versorgung und vom Prozessor abhängen.

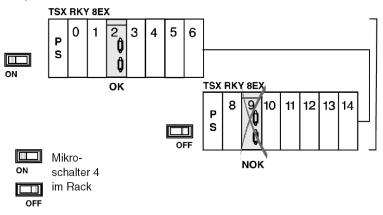
Fall	Abbildung
Rackadresse 0 mit Versorgung einfachen Formats: Versorgung in Steckplatz PS Modul TSX REY 200 in einem der freien Steckplätze im Rack (die Position 00 ist unzulässig)	23 w w w w w w 6 6 6 0 0 0 0 0 0 0 0 0 0 0
Rackadresse 0 mit Versorgung einfachen Formats: • Versorgung in Steckplatz PS und 00 • Modul TSX REY 200 in einem der freien Steckplätze im Rack	

X-Bus-Erweiterungsmodul: Konfiguration

Allgemeines

Die Konfiguration des Moduls als Master- oder Slave-Funktion erfolgt automatisch.

- Wird das Modul am Rack mit der Adresse 0 eingebaut, wird es automatisch als Master definiert.
- Wird das Modul an einem Rack mit einer anderen Adresse als 0 eingebaut, wird es automatisch als Slave definiert.


HINWEIS: Für den Fall, dass 2 Racks mit der Adresse 0 versehen sind, **muss** sich das Master-Modul an dem Rack mit den "niedrigen" Moduladressen befinden. Siehe dazu untenstehende Abbildung.

"Niedrige" Moduladressen:

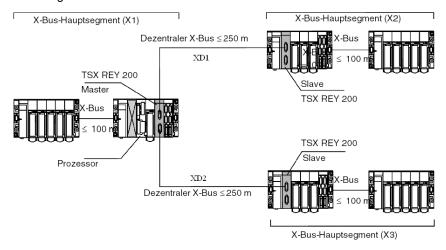
- Adressen 0 bis 6 an TSX RKY 8EX,
- · Adressen 0 bis 4 an TSX RKY 6EX,
- Adressen 0 bis 2 an Rack TSX RKY 4EX.

Abbildung

Beispiel: 2 Racks TSX RKY 8EX mit Adresse 0.

HINWEIS: Für den Fall, dass zwei Racks an Adresse 0 gemeldet sind, darf am Rack mit den "hohen" Moduladressen nicht das dezentrale Slave-Modul angeschlossen werden. "Hohe" Moduladressen:

- Adressen 8 bis 14 an Rack TSX RKY 8EX.
- Adressen 8 bis 12 an Rack TSX RKY 6EX.
- Adressen 8 bis 10 an Rack TSX RKY 4EX.

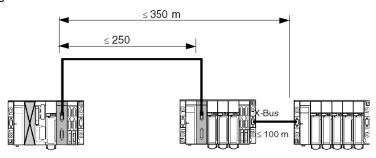

X-Bus-Erweiterungsmodul: Maximalabstände in Abhängigkeit von Modultypen

Allgemeines

Aus der folgenden Abbildung gehen die zulässigen Maximalabstände für die verschiedenen X-Bus-Segmente und X-Bus-Erweiterungen hervor.

- Für jedes X-Bus-Segment (X1, X2 oder X3): Maximallänge: 100 Meter.
- für jede X-Bus-Erweiterung (XD1 bzw. XD2): Maximallänge: 250 Meter.

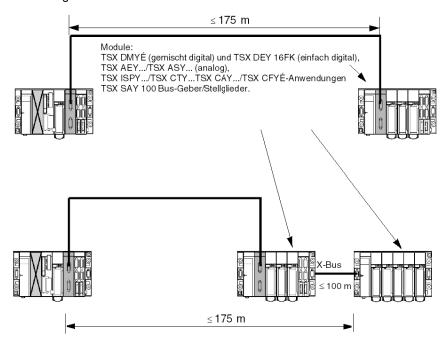
Abbildung:


Bei Berücksichtigung dieser Angaben darf der Maximalabstand zwischen dem Prozessor und den entferntesten Modulen 350 Meter betragen.

Dieser Abstand von 350 Metern ist nur bei einfachen digitalen E/A-Modulen möglich. In folgenden Abbildungen werden die Einschränkungen in Abhängigkeit vom Modultyp angezeigt.

HINWEIS: Für die Kommunikationsmodule TSX SCY •••/TSX ETY•••/TSX IBY •••/TSX PBY ••• ist eine Erweiterung nicht zulässig. Diese Module müssen sich am Hauptsegment des X1-Busses befinden.

Einfache digitale E/A-Module und Sicherheitsmodule


Darstellung:

Einfache digitale E/A-Module: TSX DEY-/TSX DSY-

und TSX PAYÉ-Sicherheitsmodule Ausnahme: TSX DEY 16FK

Gemischte digitale E/A-Module, analoge, anwendungsspezifische und Bus-Sensor-/Stellglied-Module Darstellung:

HINWEIS: für folgende Module:

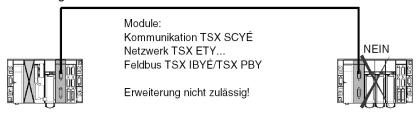
- TSX DEY 16 FK mit PV-Index ≥ 06,
- TSX DMY 28FK / 28RFK
- TSX AEY 810/1614
- TSX ASY 410 mit PV-Index ≥ 11,
- TSX ASY 800
- TSX CTY 2C
- TSX CAY 22/42/33

zulässiger Maximalabstand (Verlängerungskabel und X-Bus-Kabellänge): 225 Meter.

Kommunikationsmodule

A VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG


Die folgenden Module müssen sich am X-Bus-Hauptsegment befinden.

- Kommunikation TSX SCY....
- Netzwerk TSX ETY...
- TSX IBY... /TSX PBY-Feldbus

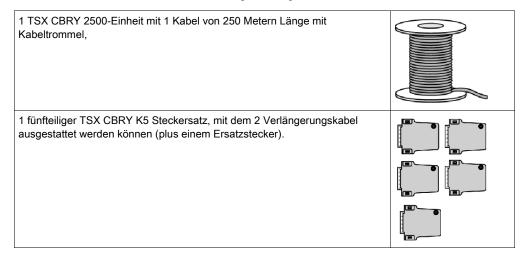
Diese Komponenten dürfen nicht an X-Bus-Erweiterungen angeschlossen werden.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Darstellung:

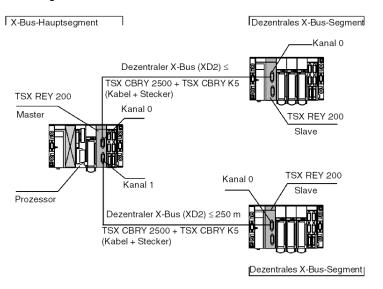
X-Bus-Erweiterungsmodule: Anschlüsse

Allgemeines


Zur Erweiterung des X-Busses müssen Sie Folgendes verwenden:

- die Einheit TSX CBRY 2500, bestehend aus einem Kabel von 250 m Länge mit Kabeltrommel,
- den TSX CBRY K5-Steckersatz.

Das Kabel muss an jedem Ende mit Anschlusssteckern versehen werden, die Sie anbringen müssen. Die Anleitung dazu finden Sie im Lieferumfang des TSX CBRT K5-Steckersatzes.


Anschlusszubehör

Für die Installation einer X-Bus-Erweiterung sind folgende Elemente erforderlich:

Anschlussprinzip

Abbildung:

HINWEIS: Jedes Segment des X-Busses muss an jedem Ende mit einem Leitungsabschluss A/ und B/ (siehe Seite 406) versehen sein.

X-Bus-Erweiterungsmodul: Diagnose

Diagnose mit Hilfe von LED-Anzeigen

Mit Hilfe des Anzeigeblocks des Moduls TSX REY 200 an der Vorderseite des Moduls kann an einem Erweiterungssystem eine Diagnose durchgeführt werden.

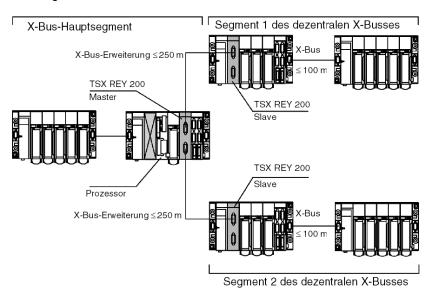
Abbildung: Anzeigeblock (siehe Seite 418)

Modul in Master-Funktion (an Rackadresse 00)

Diagnosetabelle

LED-Anzeigen						Modulstatus	Kommentare
ERR	RUN	Mst	I/O	СНО	CH1		
В	-	-	-	-	-	Fehler	keine Kommunikation mit dem Prozessor
Α	E	E	Α	E	Α	ОК	Kanal 0 aktiviert Kanal 1 nicht aktiviert
A	Е	E	Α	Α	E	ОК	Kanal 0 nicht aktiviert Kanal 1 aktiviert
A	Е	E	Α	E	E	ОК	Kanal 0 aktiviert Kanal 1 aktiviert
A	Е	E	E	Α	Α	Fehler	Kanal 0 nicht aktiviert Kanal 1 nicht aktiviert
Legende							
E: Ein	E: Ein A: Aus B: Blinkt -: unbestimmt						

Modul in Slave-Funktion (an einem Rack mit einer anderen Rackadresse als 00)

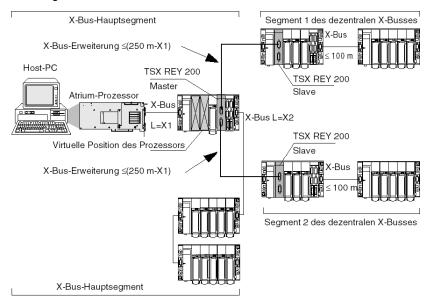

Diagnosetabelle

LED-Anzeigen						Modulstatus	Kommentare
ERR	RUN	Mst	1/0	CH0	CH1		
В	-	-	-	-	-	Fehler	Keine Kommunikation mit Prozessoren
Α	Е	Α	Α	Е	Α	ОК	Kanal 0 aktiviert
Α	Е	Α	E	Α	Α	Fehler	Kanal 0 nicht aktiviert
Legende							
E: Ein A: Aus B: Blinkt -: unbestimmt							

Topologie einer Steuerungsstation mit Erweiterungsmodul

Premium-Station

Abbildung:



Maximalkapazität der Station:

- Mit TSX P57 104\154-Prozessoren:
 - O 2 TSX RKY 12 EX-Racks
 - 4 TSX RKY 4EX/6EX/8EX-Racks
- Mit den Prozessoren TSX P57 204\254\304\354\454\5634\6634 und TSX H57 24M/44M:
 - O 8 TSX RKY 12 EX-Racks
 - o 16 TSX RKY 4EX/6EX/8EX-Racks

Atrium-Station

Abbildung:

Maximalkapazität der Station:

- Mit TSX PCI 57 204-Prozessoren:
 - O 2 TSX RKY 12 EX-Racks
 - 4 TSX RKY 4EX/6EX/8EX-Racks
- Mit TSX PCI 57 354-Prozessoren:
 - O 8 TSX RKY 12 EX-Racks
 - 16 TSX RKY 4EX/6EX/8EX-Racks

HINWEIS: In allen Fällen wird der Abstand der X-Bus-Erweiterungssegmente gemäß der Situation des Prozessors definiert. Dieser Maximalabstand beträgt 250 Meter. Für den Sonderfall des Atrium-Prozessors, bei dem sich der Prozessor im PC befindet, beträgt der Abstand der X-Bus-Erweiterungssegmente im Verhältnis zum Rack mit der Adresse 0 gleich 250 Meter minus den Abstand (X1) zwischen dem Prozessor und dem Rack mit der Adresse 0. X-Bus-Hauptsegment = (X1+X2) ≤ 100 Meter.

Verwalten eines Stromversorgungsmoduls mit einem X-Bus-Erweiterungsmodul

Allgemein

A VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Wenn ein X-Bus-Erweiterungsmodul (TSX REY 200) in einer Installation verwendet wird, schließen Sie alle in der Anwendung konfigurierten Racks an, schalten Sie diese ein, und nehmen Sie sie in Betrieb, bevor Sie die Software-Anwendung verwalten.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Durch die Verwendung eines X-Bus-Erweiterungsmoduls (TSX REY 200) in einer Installation müssen bei der Verwaltung der Installation oder des Geräts alle Racks eingeschlossen werden, die in der aktuellen Anwendung konfiguriert sind.

Dazu muss die Anwendung geprüft werden, um sicherzustellen, dass alle Racks der Anwendung vorhanden sind. Auf mindestens einem Modul jedes Racks wird Bit %MWxy MOD 2 X6 (expliziter Austausch) getestet. Mithilfe dieses Tests werden falsche Deklarationen in der Adressierung der Racks behoben, insbesondere, wenn zwei Racks versehentlich dieselbe Adresse tragen.

Dieser Test wird erst durchgeführt, nachdem die Installation komplett neu gestartet wurde (Eingeschaltet, Installation geändert, RESET des Prozessors durchgeführt, Konfiguration geändert).

Kapitel 54

Belüftungsmodul

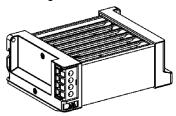
Gegenstand dieses Kapitels

In diesem Kapitel wird das Belüftungsmodul und seine Installation beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Belüftungsmodul: Allgemeine Informationen	434
Belüftungsmodul: Physikalische Beschreibung	436
Belüftungsmodul: Katalog	437
Belüftungsmodul: Abmessungen	438
Belüftungsmodul: Montage	439
Einbaubestimmungen für Racks mit Belüftungsmodulen	441
Belüftungsmodul: Anschlüsse	442
Belüftungsmodul: Technische Daten	444


Belüftungsmodul: Allgemeine Informationen

Auf einen Blick

Die Belüftungsmodule, die über den Racks der SPS-Station des Typs TSX P57/TSX H57 installiert werden, gewährleisten die Luftkonvektion, um die Umgebungstemperatur im Gehäuseinneren gleichförmig zu gestalten und um so die verschiedenen möglichen Wärmestaustellen zu beseitigen.

HINWEIS: Eine in jedem Modul eingebaute Temperatursonde informiert den Benutzer, wenn die Umgebungstemperatur ihren Maximalwert erreicht hat.

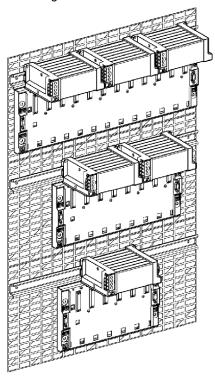
Belüftungsmodul:

Verwendung von Belüftungsmodulen

In den folgenden Fällen empfiehlt sich die Verwendung dieser Module:

- Die Umgebungstemperatur liegt im Bereich von 25 °C 60 °C: Die Gesamtnutzungsdauer der verschiedenen Komponenten der Premium-SPS wird erhöht (der mittlere Ausfallabstand wird um 25 % gesteigert).
- Die Umgebungstemperatur liegt im Bereich von 60 °C 70 °C: Wenn die Umgebungstemperatur ohne Belüftung auf maximal 60 °C beschränkt ist, ermöglicht eine Zwangsbelüftung, die Temperatur im Innern der Module um 10 °C zu senken, wodurch die interne Temperatur der Module auf das Äquivalent von 60 °C bei Umgebungstemperatur verringert wird.

35006162 12/2018


Verschiedene Modultypen

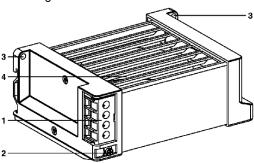
Es sind drei Belüftungsmodule erhältlich, die jeweils für eines der drei Hauptversorgungsnetze geeignet sind: Belüftungsmodul mit 24 VDC, 110 VAC oder 220 VAC Stromversorgung.

Entsprechend der Modularität des Racks (4, 6, 8 oder 12 Positionen) sind 1, 2 oder 3 Belüftungsmodule über jedem Rack zu montieren:

- Racks des Typs TSX RKY 12/12EX mit 12 Positionen: 3 Belüftungsmodule
- Racks des Typs TSX RKY 8/8EX mit 8 Positionen: 2 Belüftungsmodule
- Racks des Typs TSX RKY 4EX/6/6EX mit 4 bzw. 6 Positionen: 1 Belüftungsmodul

Abbildung:

TSX RKY 12/12EX


TSX RKY 8/8EX

TSX RKY 4EX/6/6EX

Belüftungsmodul: Physikalische Beschreibung

Abbildung

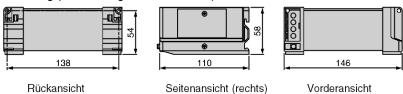
Tabelle der Nummerierungen

Diese Tabelle enthält Beschreibungen für die Nummern in der Abbildung.

Nummerierung	Beschreibung
1	 Klemmenblock zum Anschließen: der Stromversorgung des Moduls, der Versorgung für die Temperatursonde und der zugehörigen LED-Anzeige oder des Vorstellglieds. Jeder Anschluss kann einen Draht mit einem Querschnitt von 1,5 mm² ohne Kabelschuh oder zwei Drähte mit einem Querschnitt von 1 mm² mit einem Kabelschuh aufnehmen.
2	Anschluss zum Verbinden des Moduls mit Masse.
3	Bohrungen, um das Modul mit Schrauben (M4 x 12) zu befestigen. Wenn diese Module mit Premium-Steuerungen verwendet werden, müssen die Belüftungsmodule an einer Montageschiene vom Typ AM1-ED 35 x 15 befestigt werden.
4	Lamellen mit Lüftungsschlitzen, die die Luft nach vorn leiten.

Belüftungsmodul: Katalog

Katalog


In dieser Tabelle sind die verschiedenen Belüftungsmodule zusammengefasst.

Referenzen	TSX FAN D2 P	TSX FAN A4 P	TSX FAN A5 P
Versorgungsspannung	24 VDC	110 VAC	220 VAC
Temperaturfühler	Ja (Temperaturerkennung 80°C +/- 5°C), offener Typ bei Alarm		
Anzahl der Module pro Rack	 1 Modul im Rack mit 4 und 6 Positionen (TSX RKY 4EX/6/6EX) 2 Module pro Rack mit 8 Positionen (TSX RKY 8/8EX), 3 Module pro Rack mit 12 Positionen (TSX RKY 12/12EX). 		

Belüftungsmodul: Abmessungen

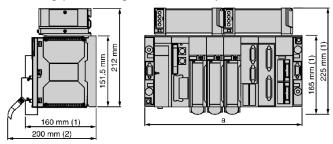

Belüftungsmodul (einziges Gerät)

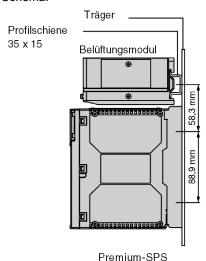
Abbildung (Abmessungen in Millimetern):

Belüftungsmodul und Rack

Abbildung (Abmessungen in Millimetern):

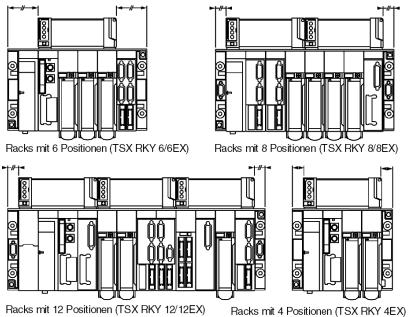
- (1) Module mit Schraubklemmenleiste
- (2) Maximale Tiefe für alle Modultypen und ihre zugehörigen Anschlüsse

Tabelle mit den technischen Daten


Racks	Anzahl der Positionen	a
TSX RKY 4EX	4	187,9 mm
TSX RKY 6/6EX	6	261,6 mm
TSX RKY 8/8EX	8	335,3 mm
TSX RKY 12/12EX	12	482,6 mm

Belüftungsmodul: Montage

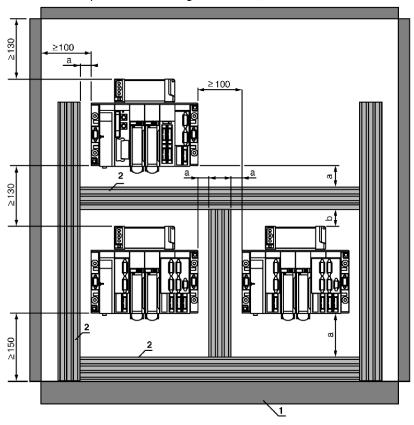
Allgemeines


Um die Dicke des Racks zu kompensieren, sind die zu den Premium-/Atrium-Steuerungen gehörigen Belüftungsmodule an Profile mit einer Breite von 35 mm und einer Tiefe von 15 mm (Typ AM1-ED...) zu montieren.

Schema:

Montageposition

Montageposition der Belüftungsmodule in Abhängigkeit vom Racktyp:

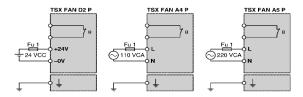


35006162 12/2018

Einbaubestimmungen für Racks mit Belüftungsmodulen

Abbildung

Übersichtsschaltplan: Siehe Montage der Racks, Seite 378

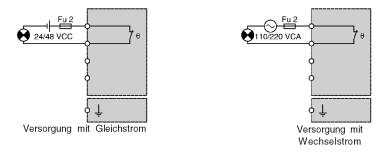


- a = 50 mm b = 30 mm
- 1 Apparatur bzw. Gehäuse
- 2 Kabelrille

Belüftungsmodul: Anschlüsse

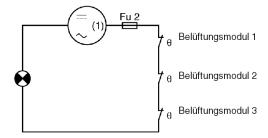
Anschluss der Stromversorgung des Belüftungsmoduls

Abbildung:



HINWEIS: Nutzen Sie bei Verwendung von mehreren Belüftungsmodulen des gleichen Typs eine gemeinsame Stromversorgung für alle Belüftungsmodule.

Anschluss der Stromversorgung der Temperatursonde


Die Temperatursonde kann entweder mit Gleichstrom oder mit Wechselstrom versorgt werden und an eine Anzeige-LED, einen Steuerungseingang usw. angeschlossen werden.

Schema:

HINWEIS: Bei Verwendung mehrerer Belüftungsmodule werden die Kontakte der Sonden in Serie geschaltet.

Abbildung:

(1) 24/28 VDC oder 110/220 VAC

Belüftungsmodul: Technische Daten

Tabelle der technischen Daten

Tabelle der technischen Daten der Belüftungsmodule:

Referenz		TSX FAN D2 P	TSX FAN A4P	TSX FAN A5P	
Versorgungs-	Nennspannung	24 VDC	110 VAC	220 VAC	
spannung	Grenze	20 - 27,6 VDC	90 - 120 VAC	180 - 260 VAC	
Leistungsaufnahme bei Nennspannung		180 mA	180 mA	100 mA	
Temperatur-	Versorgungsspannung	24/48 VDC bzw. 110/220 VAC			
sonde	Abschaltvermögen (bei Widerstandslast)	1 A bei 24 VDC / 10.000 Betätigungen 1 A bei 48 VDC / 30.000 Betätigungen 1 A bei 110 VDC / 30.000 Betätigungen 0,5 A bei 220 VDC / 10.000 Betätigungen			
	Auslösung	Temperatur >= 75°C +/- 5°C			
	Status	0,5 A bei 220 VDC / 10.000 Betätigungen Temperatur >= 75°C +/- 5°C			
Anzahl der Module pro Rack • •		 1 Modul pro Rack mit 4 und 6 Positionen (TSX RKY 4EX/6/6EX), 2 Module pro Rack mit 8 Positionen (TSX RKY 8/8EX), 3 Module pro Rack mit 12 Positionen (TSX RKY 12/12EX). 			

Index

Symbols

Prozessversorgungsmodule installieren, 349

Α

Adressieren
Atrium, 219
Adressierung
Atrium, 218
Module, 395
Racks, 392
Alarmrelais
Stromversorgung, 294
Antwortzeit bei einem Ereignis, 196
Architekturen, 430

В

Batterie für PCMCIA-Karten Lebensdauer, 130 Batterien einsetzen, 119 Batterien für CPUs auswechseln, 240 Batterien für PCMCIA-Karten Ersatz, 126 Behördliche Zulassungen, 71 Belüftungsmodule, 433

C

CPUs installieren Premium, 401

D

Diagnose für CPU-Module, 119
Premium, 119
Diagnose für SPU-Module
Atrium, 237
Diagnose für Stromversorgungsmodule, 287

Diagnose von CPU-Modulen, 120 Diagnose von Stromversorgungsmodulen, 288

F

Echtzeituhren, *89*Einbau von Modulen im Rack, *397*Erden
Racks, *383*

1

Installation der Stromversorgung
Atrium, 222
Installieren von CPUs
Atrium, 211
Installieren von Leitungsabschlüssen, 408
Installieren von Stromversorgungsmodulen, 269

K

Konformität, 71

L

Leistung, 187

P

PCMCIA-Karten, 99
Prozessoren
Atrium, 197
Premium, 81
Prozessversorgungsmodule, 323

R

Rackmontage, 377 Racks, 28

TSXPSY1610, 317

Racks TSXPSY2600, 311 Zubehör, 401 TSXPSY3610, 319 TSXPSY5500, 313 TSXPSY5520, 321 S TSXREY200, 415 Sicherungen, 284 TSXRKA02, 409 TSXRKYxx, 365 Speicher TSXSUP101, 323 CPU-Module, 96 TSXSUP1011, 323 Speicherkarten, 99 TSXSUP1021, 323 Speicherkarten, Einbau, 114 Stromversorgungsmodule, 259 TSXSUP1051, 323 TSXTLYEX, 406 Т U TBXSUP10, 323 Überblick über Steuerungsstation, 19 Topologien, 430 Racks, 385 TSXBAT02, 126 V TSXBAT03, 126 VAC-Netze. 281 TSXCBY..0K, 401 VDC-Netze, 281 TSXCBY1000, 401 Verbrauch, 299 TSXFAN, 433 Verdrahtungszubehör, 207 TSXH5724M. 81 TSXH5744M, 81 TSXP53204, 81 X TSXP57/TSXH57. 81 TSXP570244, 81 X-Bus-Erweiterungsmodul: Diagnose, 429 TSXP57104, 81 X-Bus-Erweiterungsmodule, 415 TSXP57154, 81 X-Bus-Erweiterungsmodule: Anschlüsse, TSXP571634, 81 427 TSXP57254. 81 TSXP572634, 81 TSXP57304, 81 TSXP57354. 81 TSXP573634. 81 TSXP57454, 81 TSXP574634, 81 TSXP57554, 81 TSXP575634, 81 TSXP576634, 81 TSXPCI57204. 197 TSXPCI57354, 197 TSXPCIACC1. 207 TSXPSI2010. 207